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ABSTRACT 

An analysis is presented leading to explicit equations for the limits of the Buchstab iteration sieve. 
Moreover, the limits are computed for some values of the relevant parameter K. 
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1. INTRODUCTION 

The purpose of this note is to present an analysis leading to explicit equations 
for the limits of the Buchstab iteration sieve and to compute the limits for some 
values of the relevant parameter K. The approximations given in tables 1, 2 and 
3 have been computed on a CDC 6600 CYBER 73/173 computer system at the 
Mathematical Centre in Amsterdam. Six years ago H. Diamond and W.B. 
Jurkat made numerical computations for the limits of 10 iterations (un- 
published). We used their results to test the solutions of our equations. The 
same equations have been obtained in the meantime by D. Rawsthorne. 

The first author would like to thank the Mathematical Centre for financial 
support and for providing him with excellent working conditions. He also ex- 
presses his thanks to Professor H. Diamond and to D. Rawsthorne for an inter- 
esting conversation. 

2. ASSUMPTIONS 

We shall be using the notations of Halberstam and Richert [7]. Let .&be a 

409 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82428766?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


finite sequence of integers and 13 a set of primes. For a real number zr2 let 

m = P<ppE(DP 

and 

G4(P,z)= I{Q-e (oY2))=1}I, 

where I(. > 1 denotes the cardinality of the set { .}. The fundamental problem of 
sieve theory is to give a lower bound and an upper bound for S(d!J.J,z) for 
various values of z. The trivial, but useful, bound 

holds without any restriction. In order to get nontrivial estimates one must 
impose on our sequences Band ‘Q some regularity conditions. A very elegant 
and, in practice, fruitful set of conditions has been elaborated by Halberstam 
and Richert in a series of papers [4], [5] and [6]. 

For every d I P(z) denote 

&={(a~.&; a=0 (mod 6)}, 

and let 1 &I represent the cardinality of &, i.e. the number of those elements in 
dwhich are divisible by d. 

ASSUMPTIONS: 

(Al) every I & / can be written in the form 

l&l = $b+r(&gd) 

where X is a positive parameter independent of d, 
(AZ) m,(d) is a multiplicative function such that 0 I w(p) I (1 - (l/Al))p and 

c P 
- logp</c log f +A& dP) 

w~p~z W 
PC’P 

for all z > w 2 2 with some constants AI > 1, A2 > 1 and K 2 0; 
(~43) there exists q > 0 such that 

c &yI(,:6)I CX(logx)-=2 
d<X’I 

dlP(X) 

for any cr >0 and c2 >0, provided X>X(q, cl, ~2); here, Q(d) denotes the 
number of prime factors of d. 

Several papers on sieve methods, for example [3], [l] and especially the 
fundamental paper of Selberg [12], revealed that under such assumptions the 
sieve problem reduces itself to a search for functions F(s) andf(s) for which 

(1) Xl/(z)(f(s) - E) I S(4 ‘p, z) I XV(z)(F(s) + E), 
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where 

s= 9 log X/log z, E is any positive constant and X>X(e, II, K, cl, CZ). The 
functions F(s) andf(s) are universal in the sense that they may depend at most 
on the parameter K but not on the sequences &and ‘$. Different sieves yield 
different pairs of admissible functions F(s) andf(s). The problem of finding the 
best possible functions F(s) and f(s) has not been solved effectively in general. 
Brun’s sieve method yields functions which are very good for large s. We need 

(2) F(s) = 1 + O(e-s) and&) = 1 + O(e-S), as s-+ M, 

but much sharper estimates can be derived (see [6]). 

3. ITERATION SIEVE OF BUCHSTAB 

In 1938 A.A. Buchstab [3] had a beautiful idea of improving sieve results by 
means of the following elementary relation 

which holds for every z > w 2 2. From a given pair of admissible functions Fo(s) 
andf&s) satisfying (1) and (2) he obtains from (3) a new pair 

Fl(s)=l-s-K 5 (J$t-1)-l)&” 

fits) = 1 -S-K j (Fo(t- i)- l)dtK, 
s 

which for some values of the variable s may turn out to be better than the 
original pair. One can then repeat the Buchstab procedure with the new pair of 
admissible functions 

min (Fo(s), FI(s)) and mx ti@),fi(~)h 

thus getting further improvements. If we used Brun’s results to initiate this 
process, then in the limit we would arrive at the Rosser sieve. A detailed 
exposition of Rosser’s sieve, based on a different idea however, can be found in 
PI. 

4. STATEMENT OF THE PROBLEM 

In 1950 A. Selberg [l l] discovered a very powerful upper bound sieve method 
which gives 

14) S(4Wz)5XV(z) (--& .,), 
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where a(s) is the continuous solution of the differential-difference equation 

(5) 
i 

s-%(s) =A-’ if O<sr2 
(SmKO(S))‘= -KS-K-1cr(S-2) if s>2, 

with A =~‘VYT(K+ I), y the Euler constant (see [7], p. 194). Selberg’s sieve is 
very strong for large values of K and small values of s. If K > 1 and s I 2 then the 
upper bound (4) is even stronger than that obtained by Rosser’s sieve. Conse- 
quently, this might lead to better limit functions of the Buchstab iterations. The 
first iteration has been carried out by Ankeny and Onishi [l] and the second 
iteration by Porter [9]. It is not difficult to write down a system of equations 
which should be satisfied by the limit functions F(s) andf(s). There must exist 
two numbers a? 1 and pz 1 (sieving limits) such that 

F(s) = 1 /a(s) if sscz, 

(6) 
f(s) = 0 if s5/3, 

(sKF(s))‘=m+lf(.s- 1) if ~>a, 
(s”f(s))‘=&-‘F(s- 1) if s>p. 

Hence one can compute F(s) and f(s) by the method of steps. It remains to 
determine two unknown constants a and p. They should be obtained from the 
asymptotic behaviour (2). The aim of this note is just to solve the differential- 
difference problem (6) effectively and to compute a and p for special values of 
K with 1 <K 52.0. Our arguments are much the same as those used in [8] for the 
Rosser sieve. We would like to draw the reader’s attention to a very elegant and 
almost forgotten doctoral thesis of J.J.A. Beenakker [2] in which the author 
develops a theory of the differential-difference equation 

mfyx)+f(x-l)=O. 

This equation is a special case of those which have been investigated in [8] 
independently but later. 

5. SOME DIFFERENTIAL-DIFFERENCE EQUATIONS 

Here we collect some results of [8] concerning the differential-difference 
equation 

(7) sG’(s)= -aG(s)-bG(s--l), s>a, a>l. 

It is often convenient to study such an equation together with its adjoint 
equation 

(8) (sg(s))’ = ag(s) + bg(s + 1). 

For any real numbers a, b there exists a solution g(s) of (8) which is regular on 
the half-plane Re s>O and satisfies 

g(s)-sa+b-l as s-00, s real. 
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If a + b < 1 we have the surprisingly simple formula 

(9) L!(s) = 
1 

7 exp (-SZ+, 5 ‘-,‘-” G!U] 5. 
T(l--a-b) 0 0 

If a + b 2 1 one should take the analytic continuation of g(s) with respect to a 
and b. To this end, expand the function 

R(z)= exp 
z 1-e-U 

b f du 
0 u > 

into a Taylor series 

R(z) = R(0) + R’(O)z + . . . + R(“)(O) -$ + Rn(Z), 

say, and integrate termwise getting 

g(s)= j, (-l)'R'o(O)( a+;-p-, 
1 

+ T(l-a-b) 0 
i e-SZRn(z)z-a-bdz. 

This formula defines g(s) for Re (a + 6) < n + 2. The idea of solving problem (6) 
rests on the observation that the “inner product” 

( G, g> = sG(s)g(s) - b j G(x)g(x + 1)dx 
s-l 

is constant for s 2 a. 

6. EQUATIONS FOR THE SIEVING LIMITS 

Letting 

P(s) = F(s) +f(s) and Q(s) = F(s) --f(s), 

by (2) we get 

(10) P(s)=2+O(eeS)and Q(s)=O(ePS)asS+oo. 

As we will see later, we have a>/?, which we henceforth assume for simplicity. 
Therefore, by (6) one can easily deduce that 

P’(s) = - f@(s) + KP(s - 1) if s > a, 
sQ’(s) = - KQ(s) - KQ(S - 1) if s > cr. 

The corresponding adjoint equations take the form 

(11) 
i 

(v%9)’ = Km - vts + 1) 9 
@q(S))’ = Kq(S) + Kq(S + 1). 

By (9) we obtain 

1 -‘-’ du dz. 
u > 
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The formula for q(s) is slightly more complicated. For all K < 2 we have 

I q(S)=S2x-‘- K(2K- l)S2x-2++K(K- 1)(2K- 1)2s2K-3 

’ 
(13) + I(1 - 2k) 

% e-” [exp (K j l-i-* du) 
0 

-I-KZ-+K(2K--)Z2 $. 1 
We remark that if 2~ is a positive integer then q(s) is a polynomial of degree 
2~- 1 with rational coefficients. Since p(s)-s-r and q(s)-SK-’ as s--+00, by 
(10) we derive 

(P,p> =2 and (Q,q) =O. 

Hence, on taking s = o we get 

C#(a)&X) + K i P(X)p(X + l)dX = 2, 
0-l 

(14) 
aQ(a)q(a) - K ; Q(x)q(x + 1)dx = 0. 

a-1 

Note that 

(S’-KJ$S)),= - KS-“p(S+ I), 

(S1 -‘?&)) = KS-‘&+ 1). 

Therefore, by partial integration we obtain 

+ i x’ -“p(x)dflf(x), 
a-l 

and similarly 

K .I, f(x)dX+ l)dX= ‘dtci)dol) - (a--- I)&- I)&-- 1) 

- ,2, x1 - Kq(x)dYf(x). 

By (6) we have 

IO if x<P, 
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so that, by (14) we finally obtain 

r p(a) a-+/c j a p(x+l) dx=2 
@cl) 8-l Q(x) 

(15) 

I 
a da) --K i dx+l) dx=O 

a@) , D-1 4x1 

provided /?<a</?+ 1, and 

(16) 

a p(a) +?c i p(x+ 1) 
o(a) 

dx+(a-lXf(a-l)p(a-I)=2 
a-2 4x) 

da) a 4(x+1) a - --IC l2 
a(a) 49 

dx-(a-l)f(a-l)q(a-l)=O, 

provided ar/3+ 1. In the latter case we can find one equation with one 
unknown parameter a: 

1 -&- MMa- l)+daMa-l)l+K i, Ma- l)p(x+ 1) 

(17) dx 
-da- lMx+ 111 - 

4x1 
=2q(a- 1). 

Having computed a we can findf(a- 1) from any of (16). To get /I we use the 
formula 

(18) 
a-l 

(a- lYf(a- l>= j o(~~l, . 

7. NUMERICAL COMPUTATION 

On the basis of the above formulas we have found that the critical value for K 
with the property a = fi + 1 is approximately equal to ICO = 1.83443 11 for which 
we actually have a=P+ 1=4.8818986. In the ranges 1 <K<KO resp. KO<KS~ 
we used (15) resp. (17)-(18) to compute the following approximations (for 
details, see [IO]). 

Table 1 

K a P 

1.1 2.6139543 2.2222008 
1.2 2.9707579 2.4440641 
1.3 3.2966728 2.6666073 
1.4 3.6086127 2.8903540 
1.5 3.9114805 3.1158210 
1.6 4.2070239 3.3431530 
1.7 4.4971338 3.5720602 
1.8 4.7837685 3.8023258 
1.9 5.0692755 4.0338227 
2.0 5.3577274 4.2664503 
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The cases of rational values of K may turn out to be useful for future appli- 
cations. Having this in mind we prepared the following 

Table 2 

K a B 

1 .OOOl 2.0157572 2.0002252 

1.001 2.0503075 2.0022478 

1.01 2.1652207 2.0223726 

4/3 3.4018518 2.7410304 
5/3 4.4008971 3.4955983 

5/4 3.1360309 2.5552172 

l/4 4.6407933 3.6870328 

l/6 2.8568940 2.3700618 

11/6 4.8787136 3.8793594 

8/l 2.7730138 2.3172387 

9/l 3.2511596 2.6341537 
10/l 3.6959687 2.9545759 

9/8 2.7082466 2.2776350 

11/8 3.5315852 2.8342762 

8. A COMPARISON WITH ROSSER’S SIEVE 

In Rosser’s sieve the functions F(s) andf(s) are the continuous solutions of 
the following differential-difference equation 

I 
fF(s) = A 1 if s5/3l 
s”f(s) = 0 if slj31 

i 
(sKF(s))’ = KSK - ‘f(s - 1) if s>pi 
(Py(s)) = KsK - ‘F(s - 1) if s>/?I, 

such that F(S) = 1 + O(emS) andf(s) = 1 + O(ePS) as S+ cu. It turns out that pi - 1 is 
the greatest real zero of q(s) and 

Al =2(p1- l)K-l/J@l - 1). 

On the basis of these formulas we computed 

Table 3 

K P Al 

1 2 2eJ'= 3.56214484 

1.1 2.26057452 4.40840026 

1.2 2.52866481 5.51094507 
1.3 2.80289152 6.95285156 
1.4 5+G 3.08226086 8.84647618 

1.5 -= 3.36602540 11.34422212 
2 

It has been proved in [8] that 

p1 = Cl K + o(K2’3) 
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where cl is the solution of c log c=c+ 1, cl =3.59112147.... It would be inter- 
esting to find analogous asymptotic formulas for our limits a and p given by 
(16). It is very likely that our /3 is asymptotically equivalent to the Ankeny and 
Onishi limit for the first step of Buchstab’s iterations. The limit v is the unique 
solution of 

s ( u(*L 1) -1 dF=VK. 
> 

As IC-+~ they showed that 

V-UC 

where 

2 
c= pexp 

e log 2 
e”-l du =2.44518586.... 

u 

Hence, the power of Selberg’s sieve for large K is evident. 
For some reasons it is interesting to know the local behaviour of sieving limits 

in the vicinity of K = 1. For Rosser’s sieve we are able to show that 

Pi=2+(3-2a)(~-~)+O((K-l)2)as~-+1+, 

where 

’ -‘-* du 
u 

f =.21892758.... 
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