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The spatial receptive fields of simple cells in mammalian striate cortex have been reasonably well 
described physiologically and can be characterized as being localized, oriented, and ban@ass, 
comparable with the basis functions of wavelet transforms. Previously, we have shown that these 
receptive field properties may be accounted for in terms of a strategy for producing a sparse 
distribution of output activity in response to natural images. Here, in addition to describing this 
work in a more expansive fashion, we examine the neurobiological implications of sparse coding. Of 
particular interest is the case when the code is overcomplete--i .e. ,  when the number of code 
elements is greater than the effective dimensionality of the input space. Because the basis functions 
are non-orthogonal and not linearly independent of each other, sparsifying the code will recruit 
only those basis functions necessary for representing a given input, and so the input-output 
function will deviate from being purely linear. These deviations from linearity provide a potential 
explanation for the weak forms of non-linearity observed in the response properties of cortical 
simple cells, and they further make predictions about the expected interactions among units in 
response to naturalistic stimuli. © 1997 Elsevier Science Ltd 
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INTRODUCTION 

The mammalian visual cortex has evolved over millions 
of years to effectively cope with images of the natural 
environment. Given the importance of using resources 
efficiently in the competition for survival, it is reasonable 
to think that the cortex has discovered efficient coding 
strategies for representing natural images. In this paper, 
we explore to what extent theories of efficient coding can 
provide us with insights about cortical image representa- 
tion. 

The notion of efficiency we adopt is based on Barlow's 
principle of redundancy reduction (Barlow, 1961, 1989), 
which states that a useful goal of sensory coding is to 
transform the input in such a manner that reduces the 
redundancy* due to complex statistical dependencies 

*A confusion that often arises from the term "redundancy reduction" is 
that it would seem to contradict the conventional wisdom that the 
brain contains redundant circuitry to deal with noise and physical 
damage.  It is important, however,  to distinguish between the form 
of  redundancy that is present within the raw input stream (which 
reflects structure in the external world), and redundancy that is 
introduced by the nelvous system through schemes such as 
population coding (e.g., as in the motor system). It is the former 
notion of  redundancy that we refer to here. 
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among elements of the input stream. The usefulness of 
redundancy reduction can be understood by considering 
the process of image formation, which occurs by light 
reflecting off of independent entities (i.e., objects) in the 
world and being focussed onto an array of photoreceptors 
in the retina. The activities of the photoreceptors 
themselves do not form a particularly useful signal to 
the organism because the structure present in the world is 
not made explicit, but rather is embedded in the form of 
complex statistical dependencies, or redundancies, 
among photoreceptor activities. A reasonable goal of 
the visual system, then, is to extract these statistical 
dependencies so that images may be explained in terms of 
a collection of independent events. The hope is that such 
a strategy will recover an explicit representation of the 
underlying independent entities that gave rise to the 
image, which would be useful to the survival of the 
organism. 

Atick and colleagues (Atick & Redlich, 1990, 1992; 
Atick, 1992; Dong & Atick, 1995; Dan, Atick, & Reid, 
1996) have achieved considerable success in showing 
how the principle of redundancy reduction may be 
applied toward understanding the response properties of 
retinal ganglion cells in terms of a strategy for 
"whitening", or decorrelating, a set of outputs in response 
to the 1/f amplitude spectrum of natural images. A 
limitation of their approach, however, was that it 
considered only the redundancy due to linear pairwise 
correlations among image pixels. In natural images, 
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FIGURE 1. Sparse coding. (a) An image is represented by a small number of "active" code elements, ai, out of a large set. 
Which elements are active varies from one image to the next. (b) Since a given element in a sparse code will most of the time be 
inactive, the probability distribution of its activity will be highly peaked around zero with heavy tails. This is in contrast to a 

code where the probability distribution of activity is spread more evenly among a range of values (such as a Gaussian). 

oriented lines and edges, especially curved, fractal-like 
edges, give rise to statistical dependencies that are of  
higher-order than linear pairwise correlations (e.g., three- 
point correlations) (Field, 1993; Olshausen & Field, 
1996b), and so it is important to consider these forms of 
structure as well in developing an efficient code. Our goal 
here will be to find a linear coding strategy that is capable 
of  reducing these higher-order forms of redundancy. 

The strategy for reducing higher-order redundancy that 
we shall explore is based on using a probabilistic model 
to capture the image structure. In this scheme, images are 
described in terms of a linear superposition of basis 
functions, and the basis functions are adapted so as to best 
account for the image structure in terms of a collection of 
statistically independent events. We conjecture that the 
appropriate form for the probability distribution of these 
events is that they are "sparse", meaning that a given 
image may usually be described in terms of a small 
number of  basis functions chosen out of  a larger set 
(Field, 1994), as illustrated in Fig. 1. It was shown 
previously that when such a code is sought for natural 
images, the basis functions that emerge are qualitatively 
similar in form to simple cell receptive fields and also to 
the basis functions of certain wavelet transforms 
(Olshausen & Field, 1996a). Here, we shall examine 
more closely the consequences of  utilizing an "over- 
complete" code, in which the number of  basis functions is 
greater than the effective dimensionality of the input. As 
we shall see, sparse coding with an overcomplete basis 
set leads to interesting interactions among the code 
elements, since sparsification weeds out those basis 
functions not needed to describe a given image structure. 
These interactions lead to deviations from a strictly linear 
input-output relationship, some of which have already 
been observed in the responses of  cortical simple cells, 
and others of  which could be tested for empirically. 

We begin by introducing the representational frame- 
work, based on an overcomplete, linear generative model 
of  images. The next section describes the probabilistic 
framework for modeling images in terms of sparse, 

statistically independent components and the question of 
"why sparseness" is addressed in more detail. We then 
derive an algorithm for learning overcomplete sparse 
codes and the simulation and results obtained applying 
the algorithm to natural images are described. Finally, we 
discuss experimental predictions that arise from the 
model, as well as the relation between our algorithm and 
other efficient coding methods that have been proposed. 

IMAGE MODEL 

Before describing the image model, let us first revisit 
the standard notions of linear coding commonly adopted 
in the image processing community. A typical form of 
coding strategy is to apply a linear transform to the image 
by taking the inner-product of  the image, I ( ~ ) ,  with a set 
of spatial weighting functions, ~k: 

bi = Z ~i( x~j)/(x~j), (1) 
____+ 
xi 

where ~j  denotes a discrete spatial position within the 
two-dimensional image. The output of the transformation 
is represented by the values bi. Alternatively we may 
write this operation in vector notation as 

b = WI,  (2) 

where I is the vector with components Ii = I(x+i) and W 
is the matrix with components Wij = ~/:i (x~j). Generally, 
the goal in such a coding strategy is to find an invertible 
weight matrix W that transforms the input so that some 
criterion of optimality on the output activities is met (e.g., 
decorrelation, sparseness, etc.). This is the basis of coding 
strategies such as the Discrete Cosine Transform (used in 
JPEG image compression), or orthonormal wavelet 
transforms (Mallat, 1989). In terms of a physical 
implementation, such a coding scheme could be realized 
by a strictly feed-forward neural network, in which case 
the functions ~ i ( ~ )  would correspond to the spatial 
"receptive field" of each output bi. This is what one 
usually thinks of as the standard model of a cortical 
simple cell, although the physiological data show that 
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there are interesting forms of non-linearity in these cells 
(e.g., Tadmor & Tolhurst, 1989) that are not captured by 
such a straightforward, linear model. 

An alternative way of coding images within a linear 
framework, which we explore in this paper, is in terms of 
a generative model, illustrated in Fig. 2. Here, the image 
is modeled in terms of a linear superposition of basis 
functions, ~bi(~), mixed together with amplitudes ai: 

I(-X') = Z ai$i(~'). (3) 
i 

The choice of basis functions, ~bi, determines the image 
code. The ai are then computed for each image to satisfy 
the above equality, and these quantities constitute the 
output of the code. In the terminology adopted by the 
wavelet community, the ~bi are analysis functions and the 
qSi are synthesis functions. In some cases it may be 
possible to directly relate the analysis functions to the 
synthesis functions. For example, when the $i are 
linearly independent and there are as many of them as 
there are inputs, then the ~bi are equal to the rows of the 
inverse transpose of the weight matrix formed by the ~Pi, 
i.e., q)i(X+j)= (W 1)j i. If the (Di form an orthonormal 
basis, then the code is self-inverting, i.e., 
~bi(-~) = ~/:i(~). However, in general these conditions 
may not hold. In particular, if the code is "overcomplete", 
which is when the number of basis functions exceeds the 
effective dimensionality of the input (i.e., number of non- 
zero eigenvalues in the input covariance matrix), then 
there will be multiple solutions for the ai for explaining 
any given image. 

In this paper we shall be exclusively concerned with 
the case where the basis set is overcomplete. One obvious 
reason for desiring an overcomplete code is that it 
possesses greater robustness in the face of noise and other 
forms of degradation. The reason more pertinent to our 
purposes, though, is that an overcomplete code will allow 
greater flexibility in matching the generative model to the 
input structure. This is especially important for images, 
because there is little reason to believe a priori that 
images are composed of N discrete independent causes 
(where N is the dimensionality of the input). Indeed, the 
features that compose images occur along a continuum of 
positions and scales, and so an overcomplete code should 
allow for smooth interpolation along this continuum. This 
point has been emphasized by Simoncelli, Freeman, 
Adelson, & Heeger (1992), who show that overcomplete 
codes allow for small translations or scaling of local 
image features to result in a smooth and graceful change 
in the distribution of activity among coefficients. By 
contrast, in a critically sampled code, where the number 
of basis functions exactly equals the number of effective 
input dimensions, local image changes typically result in 
fairly global and drastic undulations among the coeffi- 
cient values. Such instabilities would be undesirable for 
doing pattern analysis, and also in terms of maintaining a 
sparse image representation. 

It should be noted at this point that in order to recover 
the truly independent components of images (i.e., 
objects), we would need to utilize an image model that 

..... External......D,. world l n t e r n a i ~  

I(x,y) ¢~i(x,y) ai 

FIGURE 2. In a generative image model, one attempts to capture the 
underlying causes of images. In this case, images are assumed to be 
composed of a linear superposition of basis functions, ~i (~) ,  mixed 
together with amplitudes ai. The goal of efficient coding is to learn the 
basis functions that can best account for the structure in images in 

terms of statistically independent events. 

goes beyond simple linear superposition and incorporates 
notions of translation and scale (since the appearance of 
objects on the retina changes depending on viewing 
configuration), as well as other non-linear aspects of 
imaging such as occlusion. We shall revisit these 
concerns later (see section entitled "Future challenges") 
but for now we choose not to deal with these extra 
complications and we restrict ourselves to the admittedly 
impoverished class of overcomplete, linear image models 
in order to ask what set of bases, ~b, best capture the 
independent structure in images. This is a useful question 
to ask, because simple cells are still fairly linear, and 
early processing stages may be limited in the complexity 
of image model that can be achieved. 

PROBABILISTIC FRAMEWORK 
Our problem now is to find a set of basis functions, qS, 

that can best account for the structure in images in terms 
of a linear superposition of sparse statistically indepen- 
dent events. In the language of probability theory, we 
wish to match as closely as possible the distribution of 
images arising from our linear image model, P(I Iqg), to 
the actual distribution of images observed in nature, 
P*(/). In other words, if we were to generate images 
stochastically by drawing each ai in equation (3) 
independently from a distribution such as depicted in 
Fig. l(b), what would the probability distribution of 
generated images look like, and how could we adapt to 
resemble the distribution of images generated by nature? 
In order to calculate the probability of images arising 
from the model, we need to specify the prior probability 
distribution over the coefficients, P(a), as well as the 
probability of an image arising from a certain state of the 
coefficients in the model, P(lla,~). Once we have 
specified these two probabilistic aspects of the imaging 
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FIGURE 3. Two-dimensional iso-probability plots of  (a) Gaussian likelihood; (b) Cauchy prior; and (c) their product. The axes 
on each plot are al ,  a2. 

model, then the probability of an image arising from the 
model is given by: 

= [P( I [a ,  ~)P(a)da. (4) P(II~) 

We shall first specify the form of the distributions for 
P(~a, ~) and P(a), and then discuss the problem of 
assessing how closely our model distribution of images 
matches that observed in nature. 

The probability of an image arising from a particular 
choice of coefficients, P(~a,~), essentially expresses our 
model of the level of noise or uncertainty in the imaging 
process. If we assume Gaussian, white, additive image 
noise, then our imaging model becomes: 

I(~') = Z ai+i(--~') + u(~') (5) 
i 

and the probability of an image arising from a particular 
choice of coefficients, a, is given by: 

1 i, o0i 2 

P(Ila, +) = e ~-~ 
Zan 

where II - a~bl 2 denotes the sum 

(6) 

~ I (x  +) - a i+i(~)  ,Cr2Nis the variance of 

the noise, and Z~ N is a normalizing constant. If the basis 
set is overcomplete, then there will be an infinite variety 
of a 's  for explaining any given image, and so P(lla, 4)) 
will take the form of a Gaussian ridge along the line (or 
plane, etc.) where I =  aqS. This is illustrated in two 
dimensions in Fig. 3(a). 

The prior probability distribution over the coefficients, 
P(a), is where we incorporate the notion of sparse, 
statistically independent components into the image 
model. Statistical independence is incorporated by 
specifying P(a) to be a factorial distribution in the ai: 

P(a) = I-[ P(oi). (7) 
i 

Thus, the probability of any state, a, of the coefficients is 
simply given by the product of individual probabilities of 
each component, ai .  The notion of sparseness is 
incorporated by shaping the probability distribution of 
each ai to be uni-modal and peaked at zero with heavy 
tails [i.e., implying that units are mostly inactive, as in 
Fig. 1 (b).] We choose to parameterize this distribution as 

P(ai) = 1 e_~S(a,) (8) 

where the function S determines the shape of the 
distribution, fl is a parameter that controls its steepness, 
and Z/~ is a normalizing constant. For example, choosing 
fi = 1 and S(x) = logo + x 2) corresponds to specifying a 
Cauchy distribution for the prior, which has the desired 
sparse shape [Fig. 3(b)]. 

To assess how well the probability distribution of 
images generated by our model, P(II~), matches the 
actual probability distribution of images sampled from 
nature, P*(/), we take the Kullback-Leibler divergence 
between the two distributions: 

K L =  P*(I)log dI. (9) 

This measures the average information gain, per image 
drawn from P*(/), for judging in favor of the image being 
drawn from P*(/) as opposed to P(/lq~) (Kullback, 1959). 
The greater the difference between the two distributions, 
the greater will be KL, with KL = 0 if and only if the two 
distributions are equal. Because P*(/) is fixed, minimiz- 
ing KL amounts to maximizing {log P(/kb)), since: 

<log P(IlqS)) = JP*(1)log P(IIO)dI. (10) 

Thus, the goal of learning will be to find a set of 4~ that 
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maximize the average log-likelihood of the images under 
a sparse, statistically independent prior. 

W H Y  SPARSENESS? 

The reason for conjecturing that sparseness is an 
appropriate prior for the ai is based on the intuition that 
natural images may generally be described in terms of a 
small number of structural primitives--for example, 
edges, lines, or other elementary features (Field, 1994). 
In addition, one can see evidence for sparse structure in 
images by filtering them with a set of log-Gabor filters 
and collecting histograms of the resulting output 
distributions; these distributions typically show high 
kurtosis (Field, 1993), which is indicative of sparse 
structure. 

Another form of reasoning that leads one to believe 
sparse coding is appropriate for natural images is to 
consider what would be implied by seeking an alternative 
form of probability distribution--e.g., where the code 
elements are multi-modally distributed. In this case, a 
given event or image feature would take on two or more 
values frequently and spend little time in between. 
Indeed, it is difficult to conceive of such examples in 
natural images. What tends to be more typically the case 
is that an event occurs rarely (spends most of the time 
zero), and when it does occur it does so along a 
continuum, giving rise to a distribution such as depicted 
in Fig. l(b). 

Note that these reasons for desiring sparseness are 
separate from those that have been written about 
elsewhere, such as increasing capacity in associative 
memory (Baum, Moody, & Wilczek, 1988), minimizing 
wiring length and ease of forming associations (Foldiak, 
1995), or metabolic efficiency (Baddeley, 1996). While 
these are obvious advantages of a sparse code, they are 
independent from the criteria we are considering here. If 
the data were actually composed from causes with 
multimodal distributions with heavy peaks around non- 
zero values, then seeking a sparse code would constitute 
an inappropriate strategy. In other words, sparse coding is 
not a general principle for finding statistically indepen- 
dent components in data; it only applies if the data 
actually have sparse structure. 

LEARNING SPARSE CODES 

We now turn to the problem of learning a set of basis 
functions, ~b, for the image model that best accounts for 
images in terms of sparse, statistically independent 
components. As described in the probabilistic framework 
above, the goal is to find a set of bases, qS*, such that 

4)* = arg na~x (log P(llqi)). (11) 

Unfortunately, this is easier said than done because 
evaluation of P(IIO) requires integrating over all possible 
states of a [equation (4)], which is in general intractable. 
However, if we assume that the function inside the 
integral, P(Lal(a)=P(lla,c~)P(a), has a fairly tightly 
peaked maximum in a-space [Fig. 3(c)], then we may 

approximate the volume under this surface, (i.e., the 
integral), by evaluating P(L a140 only at its maximum. 
Our goal then becomes to find a ~b* such that 

~* = arg max (maxlog P(l[a, cp)P(a)). (12) 

The price we pay for this approximation, though, is that 
there will be a trivial solution for the ~bi, since the greater 
their norm, ~-'~T[~i(-~)[ 2, the smaller each ai will 
become, thus increasing P(I, alq~) due to the peak at zero 
in P(a). This problem may be alleviated by adding an 
appropriate constraint on the length of the basis 
functions, as described below. 

In order to see what the optimization problem of 
equation (12) involves, it is helpful to first re-cast the 
objective in an energy function framework by defining 
E(I, alq~)=-logP(/la,  ~b)P(a), in which case equation 
(12) may be restated as 

~* = arg m~n (m~n E(I,alO)) (13) 

where 

E ( l ,  a l ¢ )  = - ai i( ) 
• i 

(14) 
The last step was obtained by using the expressions for 
P(Ila, c~) and P(a) in equations (6, 7, 8), and setting 
A = 2o~N~. The function to be minimized, E(I, atq~), is the 
sum of two terms: the first term computes the 
reconstruction error, which forces the ~b to span the input 
space, and the second term incurs a penalty on the 
coefficient activities, which encourages sparse 
representations. E is minimized in two separate phases, 
one nested inside the other. In the inner phase, E is 
minimized with respect to the ai for each image, holding 
the ~bi fixed. In the outer phase (i.e., on a long timescale, 
over many image presentations), E is minimized with 
respect to the 4~i. 

The inner loop minimization over the ai may be 
performed by iterating, by some appropriate procedure, 
until the derivative of  E(L alq~) with respect to each ai is 
zero. For each image, then, the ai are determined from the 
equilibrium solution to the differential equation 

~ti = Z (bi(-~)r(~) --/~St(ai)' (15) 

T 

where r(-~) is the residual image 

r(-~) = I (~)  - ~ ai~)i(-x ). (16) 
i 

According to equation (15), the ai are driven by a sum of 
two terms. The first term takes a spatially weighted sum 
of the current residual image using the function ~bi (-~) as 
the weights. The second term applies a non-linear self- 
inhibition on the ai, according to the derivative of S, that 
differentially pushes activity towards zero, as shown in 
Fig. 4(b). A neural network implementation of this 
computation is shown in Fig. 5. 

The outer loop minimization over the 4~i may be 
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FIGURE 4. The effect of the sparseness cost function on the input-  
output relationship of  each unit. (a) The sparseness cost function, 
S(x) = log(1 + x2). (b) The derivative of  the sparseness cost function 
utilized in gradient descent, S'. The effect of  S' will be to differentially 

suppress values near zero. 

accomplished by simple gradient descent. This yields the 
learning rule: 

A ~ i ( - ~  =- ~ l (a i r (~)  ) , (17) 

where r/ is the learning rate. In terms of the network 
implementation shown in Fig. 5, the q~i are updated by 
simple Hebbian learning between the outputs computed 
for each image, ai, and the resulting residual image, 
r ( ~ ) .  As mentioned above, though, doing this alone will 
result in the q~i growing without bound, and so to prevent 
this from happening the L2 norm of each basis function, 
2 --+ 2 l i = ~-~ x~ [0i(x)l  , is separately adapted so that the 

output variance of each ai is held at an appropriate level: 

, (18) 

where ~r2oal is the desired variance of the coefficients. 
An intuitive interpretation of the algorithm is that on 

each image presentation, the gradient of S "sparsifies" the 
distribution of activity on the ai by differentially reducing 
the value of low-activity coefficients more than high- 
activity coefficients. The q~i then learn on the error 
induced by this sparsification process, resulting in a set of 
bases that can tolerate sparsification with minimum mean 
square reconstruction error. When the basis set is 
overcomplete and non-orthogonal, the effect of sparsifi- 

SIMULATION METHODS 

In order to confirm that the algorithm is capable of 
recovering sparse, independent structure, we tested it on a 
number of artificial data sets containing known forms of 
sparse structure. The method and results of these tests are 
described elsewhere (Olshausen & Field, 1996a). Here, 
we focus on applying the algorithm to natural images. 

The data for training were taken from ten 512 × 512 
pixel images of natural surroundings (trees, rocks, 
mountain scenes, etc.). These data in their raw form 
pose potential problems, however, because of vast 
inequities in variance along different directions of the 
input space, and also because of corrupted and artifactual 
data at the highest image spatial-frequencies. The large 
inequities in variance are due to the 1/f2 power spectrum 
of natural images. (Because the image statistics are 
roughly stationary, the eigenvectors of the covariance 
matrix will essentially be equivalent to the Fourier bases. 
Thus, the variance along the low-frequency eigenvectors 
will be much larger than the variance along the high- 
frequency eigenvectors.) This produces huge differences 
in the variance along different directions, which will be 
troublesome for gradient descent techniques searching 
for structure in this space. A standard technique to 
ameliorate these effects is to "sphere" the data by 
equalizing the variance in all directions (Friedman, 
1987), as schematically illustrated in Fig. 6(a). Since 
the amplitude spectrum falls as roughly 1/f at all 
orientations in the 2D frequency plane, sphering may 
be accomplished by filtering with a circularly symmetric 
"whitening filter" with frequency response, Wq)=f ,  
thereby attenuating the low frequencies and boosting 
the high frequencies so as to yield a roughly flat 
amplitude spectrum across all spatial frequencies. How- 
ever, it is not wise to boost all high frequencies 
indiscriminately for several reasons: one is that the 
highest spatial frequencies in most digitized images will 
typically be corrupted by noise and effects of aliasing*. 

*In order to avoid aliasing, an image should be sufficiently blurred 
before sampling so that the power spectrum is reduced to nearly 
zero by the Nyquist frequency corresponding to the largest sample 
spacing in the grid. In order to do this, though, the resulting 
sampled image will end up looking blurred, and so more often than 
not the integrity of data at the highest spatial frequencies is 
sacrificed in order to make the image look "sharp". 
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FIGURE 5. A network implementation for computing the ai. Each output unit represents the value of a single coefficient, ai. The 
output activities are fed back through the basis functions, qbi, to form a reconstruction of the image. The reconstructed image is 
then subtracted from the input image, and the residual image is fed forward through the q~i to drive each output, ai, which is also 
being self-inhibited by S'. This process is analogous to the analysis-synthesis loop proposed by Mumford (1994) for performing 
inference on images. Learning is accomplished by doing a Hebbian update of the qSi based on the average joint activity between 

the outputs (ai) and the residual image computed via the negative feedback connections. 

Second, the energy present in the corners of  the 2D 
frequency domain is an artifact of  working on a 
rectangular sampling lattice, since there is an effectively 
higher sampling density along the diagonals (by a factor 
of  v/-2) than along the vertical or horizontal directions 
[Fig. 6(b)]. For these reasons, it is appropriate to cut out 
the energy at the highest spatial frequencies and also in 
the corners of  the 2D Fourier plane by filtering with a 
circularly symmetric low-pass filter. We chose for this 
purpose an exponential filter with frequency response, 
L ( f )  = e -( f / fo)°,  with a cutoff frequency, f0, of  200 
cycles/picture, and a "steepness parameter", n, of  four. 
The latter was chosen to produce a fairly sharp cutoff (to 
avoid eliminating too much of the data) but without being 
so sharp as to introduce substantial ringing in the space 
domain. The combined whitening/low-pass filter used to 
preprocess the data thus had a frequency response of: 

R ( f )  ---- W ( f ) L ( f )  (19) 

= f e  - f f  /f°)4 . (20) 

The phase of the filter was set to zero across all 
frequencies. The profile of  the resulting filter in both the 
frequency and space domain is shown in Fig. 6(c). Such a 
filter roughly resembles the spatial-frequency response 
characteristic of  retinal ganglion cells. 

Training data were obtained by extracting 12x 12 
image patches at random from the preprocessed images, 
skipping over any patch within four pixels of  the border 
of the image. Also, to speed up training, any image patch 
with less than 10% of the average image variance was 
discarded, as these patches have such low variance that 
they contribute little to establishing a gradient for the ~b' s, 
yet they consume an equal amount of  computation time. 

The ai were computed by first initializing to 

a° = Z ~ / ( ' ~ ) / ( ' - ~ )  (21) 
x--* 

and then iterating equation (15) using the conjugate 
gradient method, halting after 10 iterations, or when the 
change in E was less than 1% (whichever came first). The 
stopping point was chosen by observing that after this 
many iterations only very slight changes occurred on the 

ai. 
A set of  144 basis functions was initialized to random 

values and was updated according to equations (17, 18) 
based on averages computed over every 100 image 
presentations. The learning rate parameter ~/ was 
gradually lowered during learning, with an initial setting 
of 5.0 for the first 600 iterations, then 2.5 for the second 
600 iterations, and finally 1.0 for the remainder. The rate 
parameter for the gain adjustment, ~, was set to 0.01 and 
the target level for the output variance, 2 O'goal, w a s  set to 
the variance of the image pixels, cr 2. 

The value of the parameter 2 was set relative to ai so 
that 2/ai = 0.1. The form of the sparseness cost function 
was S ( x ) =  log(1 + x2). 

RESULTS 

A stable solution was usually arrived at after 
approximately 2000 updates (--~ 200 000 image presenta- 
tions). The result is shown in Fig. 7. The vast majority of  
basis functions have become well localized within each 
array (with the exception of the low frequency functions 
which, as expected, occupy a larger spatial extent). The 
functions are also oriented and broken into different 
spatial-frequency bands. This result should not come as a 
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FIGURE 6. Illustration of the steps taken in preprocessing. (a) A hypothetical distribution being "sphered" so that the variance 
in all directions is equal. (b) The energy present in the comers of the 2D Fourier plane is an artifact of rectangular sampling. 
Low-pass filtering within a circle in frequency space eliminates these artifacts. (c) The profile of the combined low-pass/ 
whitening filter, R(f)  = fe (f/f,,)4, in spatial frequency and space (the inverse Fourier transform (IFT) assumes zero phase). 

surprise, because it simply reflects the fact that natural 
images contain localized, oriented structures with limited 
phase alignment across spatial frequency (Field, 1993). 
Indeed, the result makes intuitive sense, because common 
image structures such as lines and edges may be captured 
using only a handful of oriented basis functions, rather 
than having a separate descriptor for each pixel along the 
line or edge. This can be observed from Fig. 9: the 
learned bases code for the structures in natural images 
more sparsely than pixels or a set of bases chosen at 
random. 

The general form of the solution (i.e., localized, 
oriented, bandpass functions) is very robust, and has 
been observed for values of 2 ranging from 0.05 to 0.15, 
as well as for different forms for the prior (e.g., 
Laplacian). It should also be noted that the preprocessing 
steps mentioned previously do not affect the overall, 
qualitative appearance of the basis functions (i.e., 
localized, oriented, bandpass functions). The main effect 
of whitening is that it vastly decreases the time required 

for learning, because better gradients (i.e., those pointing 
toward the true minimum) are obtained for minimizations 
with respect to both the ai  and qSi, and so fewer iterations 
are required for both of these variables. Harpur (1997) 
has devised a modification to the algorithm that speeds up 
the learning without requiring whitening, and the results 
look very similar to those shown here. The main effect of 
low-pass filtering is that it removes artifacts of rectan- 
gular sampling. Without low-pass filtering, there is a 
visible anisotropy in orientation tuning, with diagonally 
oriented functions becoming somewhat more elongated 
than horizontal or vertically oriented functions. In 
addition, some functions appear like localized checker- 
boards, which would be expected in order to tile the far 
corners of the 2D Fourier plane. 

The entire set of basis functions forms a complete 
image code that spans the joint space of spatial position, 
orientation, and scale in a manner similar to wavelet 
codes, which have previously been shown to form sparse 
representations of natural images (Field, 1987; Field, 
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FIGURE 7. The set of 144 basis functions learned by the sparse coding algorithm. The basis functions are totally overlapping 
(i.e., the entire set codes for the same image patch). All have been normalized to fill the grey scale, but with zero always 

represented by the same grey level. 

1994; Daugman, 1989). Shown in Fig. 8 is the 
distribution of the basis functions in spatial frequency 
and orientation. The vast majority lie within the high 
spatial-frequency bands, as expected of a wavelet code in 
order to form a complete tiling of space and spatial 
frequency. Note, however, that the basis functions 
deviate somewhat from strict self-similarity in that the 
high spatial-frequency functions have more wobbles (are 
more narrowly tuned in log-frequency) than the low 
spatial-frequency functions. Characterizing the band- 
width vs spatial-frequency relationship more adequately 
will require simulations over larger window sizes in order 
to span a larger range of spatial frequencies. 

Although the number of basis functions equals the 
number of input pixels, the representation is effectively 
about 1.5-times overcomplete (this one can discern by 
observing that the eigenvalues of the input covariance 
matrix, as well as the singular values of the 4) matrix, 

begin to drop off sharply at about 100 dimensions). The 
effect of sparsification with an overcomplete representa- 
tion is demonstrated in Fig. 9. Here we compare the 
distribution of activity obtained with a purely feedfor- 
ward computation: 

bi ~- Z ~ i ( - ~ ) / ( " ~ )  (22)  

to the sparsified coefficient values, ai. One can readily see 
that in the latter case, the sparseness cost function shifts 
the responsibility for coding the structure onto only those 
units that best match the structure, silencing the other 
units. Thus, the input-output relationship for any given 
unit will be somewhat non-linear, with units becoming 
more selective in what aspects of the image they respond 
to. Because of this non-linear response property, and 
because there is no closed-form solution for the response 
of each ai to any given image, the "receptive field" of 
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FIGURE 8. The distribution of the 144 basis functions in spatial-frequency. Each basis function was fit with a Gabor function, 
and the spatial frequency underlying the Gabor function was plotted in the upper-half of the fx, fy plane. 

each unit may only be discerned by mapping it out with 
various spatial functions, similar to methods employed in 
physiological experiments. Previously, we ascertained 
the receptive field for each unit by spot-mapping and 
showed that they are basically similar in form to the basis 
functions, with somewhat tighter spatial localization 
[Olshausen & Field, 1996b; Fig. 4(b)]. Here, in addition 
to mapping out with spots, we also mapped out the 
response to gratings at every spatial frequency and 
orientation. The result of these assays for one unit (#120, 
1 lth row, first column), are shown in Fig. 10. In both the 
space and frequency domains, the unit becomes more 
selective to stimulus properties, because if there is 
another unit that does better it will take over. The effect 
of this can be seen by taking the inverse Fourier 
transform of the spatial-frequency response, which shows 
more undulations than obtained with spot mapping, due 
to the sharper cutoff in spatial frequency. A similar effect 
has been observed in cortical cells (Tadmor & Tolhurst, 
1989). 

DISCUSSION 

Model predictions 
The most important prediction that arises from the 

overcomplete sparse coding model is that one would 
expect to observe interesting forms of interaction in the 
response of simple-cells while coding images. An 
example scenario is illustrated in Fig. 11. Given two 
units with overlapping basis functions, then a strictly 
feedforward computation that took the inner product of 
each basis function with the image would result in both 
units responding, the one most aligned with the edge 
having somewhat higher activity than the other. If the 
code is sparsified, then the unit most aligned with the 
edge will take responsibility for coding it, and the other 

unit will be suppressed since it is not needed. A potential 
advantage of such a coding scheme is that forming 
associations will be made easier by not having to consider 
relationships among more units than are truly necessary 
for representing a given structure. A possible disadvan- 
tage is that the loss of a population-style code would be 
more susceptible to noise, and small changes in the input 
(e.g., a small translation of an image feature) will result in 
distinctly different patterns of neural activity (since a new 
basis function will code for the translated structure). In 
any case, the question of which of these coding schemes 
are employed could be resolved using multi-unit record- 
ing methods. By isolating two overlapping simple-cells, 
as ascertained by spot mapping or other methods, and 
observing their joint activity in response to more 
naturalistic stimuli containing edges, contours and the 
like, one could see if there is a trade-off of responses, as 
depicted in Fig. 11. 

An outcome of the sparse coding learning algorithm 
that pertains to cortical image representation is that there 
are many more basis functions at the high spatial- 
frequency bands, with substantially fewer in the lower 
spatial-frequency bands. Such a tiling of space and spatial 
frequency would be expected of a wavelet code (the exact 
proportions depend upon bandwidth spacing: a factor of 
four decrease in number would be expected for an octave 
decrease in spatial frequency). However, the currently 
available physiological assays on the relative numbers of 
cells in different spatial-frequency bands are in disagree- 
ment with this general picture. Two studies in macaque 
V1 put the vast majority of simple-cells in the mid to low- 
spatial-frequency range--i.e., around 4-8 cyc/deg in the 
parafoveal region, when the highest spatial-frequency 
band should be in the range of 16-32 cyc/deg (De Valois, 
Albrecht, & Thorell, 1982; Parker & Hawken, 1988). 
However, there is good reason to believe that the number 
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FIGURE 10. The results of mapping the response profile of a given unit with bars (top) and gratings (bottom). At the right is 
shown a Hilbert transform pair of spatial profiles recovered from the inverse Fourier transform of the frequency response, 
assuming zero phase. Note that these show more ringing, due to the sharper cutoff in frequency response incurred by 

sparsification. 

of  high-frequency cells may have been substantially 
underestimated since these units will generally have 
smaller receptive fields and so will be much more 
difficult to isolate than a low-frequency unit that exhibits 
a more prolonged response to bars and the like 
(Olshausen & Anderson, 1994). This will be an important 
issue to resolve in future experiments if wavelet-like 
codes are to be taken seriously as models of a complete 
early visual representation. 

Sparse coding vs coarse coding 

The notion of sparse coding, in which a relatively small 
number of  units are recruited to represent a given image, 
would seem to be at odds with the notion of coarse coding 
or population codes, in which large numbers of  units 
participate in coding a single parameter or attribute such 
as color or stimulus velocity. However,  it should be noted 
that the code being utilized here is a sparse, distributed 
code, which actually occupies a middle ground between 
dense population codes at one end and local representa- 
tions (i.e., grandmother cells) at the other (Foldiak, 1995; 
Hinton & Ghahramani, 1997). Note for example that the 
learned basis functions are broadly tuned to some 
stimulus dimensions (e.g., spatial frequency), as would 
be expected of a coarse code, while narrowly tuned to 
others (e.g., position), as in a local code. In a sparse 
distributed code, units both share in the representation of 
different images and also minimize the total number 
active per image. 

Dense population codes are appropriate in situations 
where only a single or few attributes need to be encoded, 
such as the intended position of an actuator (i.e., in the 
motor system). When it is important to represent many 
attributes simultaneously, such as various spatial features 
in an image, introducing population codes would 
effectively blur over spatial position, and so two nearby 

features would be indistinguishable from a single feature 
positioned at the mean of the two. Thus, sparse coding 
and coarse coding schemes are appropriate under 
different circumstances. Resolving where and how in 
the nervous system these different coding schemes are 
played out will be an important goal of  future experi- 
ments. 

Relation to other work 

Harpur & Prager (1996) have developed an algorithm, 
concurrently and independently to us, that is virtually 
identical to ours. They have applied their algorithm to a 
number of  test problems, showing that it can learn sparse 
structure in data. They have also tested it on natural 
images, obtaining similar results to ours (without 
prewhitening). 

There are several algorithms quite similar to ours based 
on the idea of finding independent components in data, or 
so-called "Independent Components Analysis" (ICA). 
Among these are the algorithms of Comon (1994), 
Amari, Cichocki, & Yang (1996), and Bell & Sejnowski 
(1995). The one most closely related to ours is that of Bell 
& Sejnowski (see also their article in this issue). The 
formal relationship described in Appendix I (see also 
Olshausen, 1996), shows that both algorithms are solving 
the same maximum-likelihood problem, but by making 
different simplifying assumptions. Bell & Sejnowski 
assume the weight matrix to be square and of full rank so 
that a unique solution exists for the ai in terms of a 
feedforward model [equation (1)]. The advantage of this 
approach is that the algorithm runs considerably faster. 
The disadvantage is that the code cannot be made 
overcomplete and so would be limited to a critically 
sampled representation. When trained on natural images, 
Bell & Sejnowski 's  algorithm develops both receptive 
fields and basis functions qualitatively similar to those 
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FIGURE 11. An example scenario of two basis function that overlap. Both respond in a strictly linear feedforward network, but 

in the sparse coding network only the function that best describes the stimulus responds. 

described here, the major difference being that more of 
the units are grouped into high-frequency, broadband 
functions, rather than spanning a range of spatial 
frequencies. In addition, their algorithm develops 
"checkerboard" receptive fields which arise as an artifact 
of working on a rectangular sampling lattice (their 
training images were not low-pass filtered like ours to 
remove the energy in the corners of the 2D Fourier 
domain). When their algorithm is trained on our images 
(which have been low-pass filtered and thus have reduced 
dimensionality), many of the basis functions simply drop 
out (i.e., take on zero norm) because the algorithm is not 
able to utilize the extra dimensions. 

Other methods for learning sparse codes have been 
described by Foldiak (1990) and Zemel (1993). The 
principal difference here is that unit values were 
considered to be binary, although the models could 
conceivably be extended to the analog domain. Both of 
these algorithms formed the inspiration for the develop- 
ment of our algorithm. 

Another class of efficient coding methods is based on 
projection pursuit methods (Friedman, 1987; Intrator, 
1992; Law & Cooper, 1994; Fyfe & Baddeley, 1995; 
Press & Lee, 1996; Lu, Chubb, & Sperling, 1996). Some 
of these were trained on natural images, but with the 
exception of Press & Lee (1996) and Lu et al. (1996), 
they did not show a full family of receptive fields for 
forming a complete image code. 

Finally, in the realm of generative models, Dayan, 
Hinton, Neal, & Zemel (1995) and Rao & Ballard (1997) 
have described methods for learning the causal structure 
in data in a hierarchical fashion. Rao & Ballard's 
network, when reduced to a single-layer system such as 
ours, is very similar but uses a quadratic penalty term 
(corresponding to a Gaussian prior). When trained on 
natural images, it does not develop localized receptive 
fields (they are artificially localized by using a gaussian 
spatial window), presumably because of the prior being 
Gaussian, rather than sparse. 

Future challenges 

A major limitation of the work we have presented here 
is that it relies entirely on a linear image model, and so it 

will necessarily be limited in the forms of independent 
structure that it can extract from images. The real causes 
of images (e.g., objects) do not mix linearly but rather 
occlude one another and also undergo shifts in position, 
changes in size, rotations, etc. These types of interaction 
would need to be included in the generative image model 
in order to have any hope of recovering the real causes of 
images using the independence principle. For example, to 
deal with translation one may modify equation (3) to be 
of the form: 

I ( ~ )  = ~ ai~i(-~ + A~ i ) ,  (23) 
i 

in which case one would need to determine the shift 
A x i, in addition to the ai, for each image. parameters, ---* 

For the case of occlusion, Saund (1995) has described a 
"soft-or" function for dealing with feature overlaps in a 
binary image domain. In the analog domain, it would 
appear necessary to introduce another dynamic variable 
to represent depth or ordering in the scene in order to 
properly render overlapping objects. 

Another shortcoming of the current image model is 
that it utilizes only a single stage. Surely, there will be 
statistical dependencies among the elements of the 
single-stage model, and it would be desirable to have 
these modeled by a second and third stage in a 
hierarchical fashion (Dayan et al., 1995; Lewicki & 
Sejnowski, 1996). In order to do this though, non- 
linearities such as those mentioned above will also need 
to be dealt with. Simply adding another linear image 
model on top of the current one, using the same number 
of units, results merely in the identity transform being 
discovered (unpublished observations). Indeed, it would 
be surprising if something other than this happened, as it 
would beg the question of why the combined transforma- 
tion was not discovered by the first linear stage to begin 
with. Adding more units in the second stage may enable 
the discovery of further complex structure, but this would 
be an unacceptable solution because it would simply 
result in combinatorial explosion as complex features are 
replicated at each and every position and scale. 
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CONCLUSIONS 

When considered purely from an empirical point of 
view, the response properties of cortical neurons present 
one with a bewildering array of data that can make very 
little sense without a theory for interpretation. The form 
of theory we have attempted to offer here is based on the 
notion that the visual cortex is trying to produce an 
efficient representation, in terms of extracting the 
statistically independent (and hopefully, meaningful) 
structure in images. We drew upon our prior notions of 
the structure of natural images in order to propose sparse 
coding as a viable option for reducing statistical 
dependencies among elements of the representation. 
The receptive fields that emerge from this algorithm 
strongly resemble those found in the primary visual 
cortex, and also those that have been previously deduced 
by engineers to form efficient image representations. The 
solution is very robust, as long as some notion of 
sparseness is enforced, and so provides a compelling 
functional account of the response properties of cortical 
simple cells in terms of a sparse code for natural images. 
When the code is overcomplete, interesting forms of non- 
linearity arise in the input-output relationship, and these 
forms of interaction may be tested for experimentally. 
While the current theory merely sheds light on the 
response properties of cortical simple-cells, it is our hope 
that when this general approach is extended in a 
hierarchical fashion it may lend insights into other 
aspects of cortical processing, such as the response 
properties of neurons at higher stages of cortical 
processing, as well as the role of feedback. 
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APPENDIX A 
Relation to the 1CA algorithm o f  Bell and Sejnowski 

Bell & Sejnowski (1995) describe an algorithm for "independent 
components analysis" (ICA) based on maximizing the mutual 
information between the inputs and outputs of a neural network (see 
also the article in this issue). Here, we show that this algorithm may be 
understood as solving the same maximum-likelihood problem as our 
algorithm, except by making a different simplifying assumption. This 
connection has also been shown recently by Pearlmntter & Parra 
(1996). 

Bell & Sejnowski examine the case where the number of basis 
functions is equal to the number of inputs, and where the q~i are  linearly 
independent. In this case, there is a unique set of ai for which II - aq~l 2 
equals zero for any given image, I. In terms of the previous discussion, 
P(lla,c~) is now a Gaussian hump with a single maximum at a = l~b 1, 
rather than a gaussian ridge as in Fig. l(b). If we let aN go to zero in 

equation (6), then P(lla,d?) becomes like a delta function and the 
integral of equation (6) becomes 

e(llq~ ) = [ 6(I - aO)P(a)da (A1) 
J 

and so 

= e(lO l) x I det ~b l I (A2) 

4)* = arg moax [( log P(14) ' ))  + log I det 0-1l] (A3) 

By making the following definitions according to the convention of 
Bell & Sejnowski (1995), 

W = q~--I (A5) 

ui = Wi " 1 (A6) 

then, the gradient descent learning rule for W becomes 

cofWij (A7) 
AWq ¢x -AS'(ui)Ij + d e t W "  

This is precisely Bell and Sejnowski's learning rule when the output 
non-linearity of their network, g(x), is equal to the cdf (cumulative 
density function) of the prior on the ai, i.e., 

Yi = g(ui) (A8) 

g(ui) = [" ~ l e  ~s(~)dx. (A9) 
J~Z~ 

Thus, the independent component analysis algorithm of Bell & 
Sejnowsld (1995) is formally equivalent to maximum likelihood in the 
case of no noise and a square system (dimensionality of out- 
put = dimensionality of input). It is easy to generalize this to the case 
when the number of outputs is less than the number of inputs, but not 
the other way around. When the number of outputs is greater than the 
effective dimensionality of the input (# of non-zero eigenvalues of the 
input covariance matrix), then the extra dimensions of the output will 
simply drop out. While this does not pose a problem for blind 
separation problems, where the number of independent sources 
(dimensionality of a) is less than or equal to the number of mixed 
signals (dimensionality of /), it will become a concern in the 
representation of images, where overcompleteness is a desirable 
feature. 


