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Heart failure
The natriuretic peptide system exerts beneficial car-

diorenal effects in chronic heart failure, whereas acti-

vation of the renin–angiotensin–aldosterone system

exerts opposing and deleterious effects. LCZ696, a

first-in-class angiotensin receptor neprilysin inhibitor,

targets both neurohormonal systems by inhibiting

neprilysin, which prevents natriuretic peptide degrada-

tion, while concomitantly blocking the angiotensin

(AT1) receptor. In clinical studies of patients with

chronic heart failure with reduced and preserved left

ventricular ejection fraction, LCZ696 has been shown

to improve biomarkers of cardiorenal function. The

effects of LCZ696 on cardiovascular outcomes and

survival in patients with heart failure are currently

being investigated.
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Introduction

Heart failure (HF) is a common syndrome, resulting in high

mortality. The prevalence of HF has risen steadily in recent

years and this trend is expected to continue due to a growing

aging population with more cardiovascular risk factors [1,2].

Indeed, risk factors, such as hypertension, are common prog-

nostic comorbidities in chronic HF [3].

The impact of HF on patient quality of life and the financial

burden imposed on the healthcare system are great, with

frequent costly hospitalizations and a 5-year mortality rate of

approximately 50% [2]. While survival rates have improved

for HF with reduced ejection fraction (HFrEF) due to more

widespread use of drugs that block the renin–angiotensin–

aldosterone system (RAAS) residual mortality rates remain

high. For patients with HF with preserved ejection fraction

(HFpEF) no therapy has proven to be effective at reducing

morbidity and mortality [4]. Consequently, there is an urgent

need for new therapies to prevent and treat HFrEF and HFpEF.

Role of the RAAS and natriuretic peptides (NPs) in heart failure

The consequences of activation of the RAAS and sympathetic

nervous system in the pathogenesis of HF are well established,

as is the therapeutic benefit of RAAS blockers in improving HF
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outcomes. A growing body of experimental and clinical

evidence indicates that the natriuretic peptide (NP) system,

which mediates beneficial cardiorenal effects, is also impaired

in HF [5]. This suggests that approaches designed to upregu-

late NPs and/or enhance their biological activity may be of

therapeutic benefit, particularly in conjunction with RAAS

blockade [5].

The RAAS and HF

Chronic HF is a progressive condition characterized by ele-

vated cardiac filling pressures, reduced cardiac output and

decreased tissue oxygen delivery [6]. These hemodynamic

abnormalities result in activation of the RAAS and sympa-

thetic nervous system to maintain vital organ perfusion [6].

Initially, this serves as an acute compensatory response, but

prolonged activation contributes to the pathophysiology of

HF, resulting in progressive cardiorenal abnormalities,

including myocardial hypertrophy, fibrosis and apoptosis,

increased systemic vascular resistance, and increased sodium

and water retention [6,7].

The NP system and HF

The NP system comprises three structurally similar peptides

with cardiorenal protective properties: atrial NP (ANP), B-type

NP (BNP) and C-type NP (CNP) [8]. ANP and BNP are pri-

marily expressed in the heart and released by cardiomyocytes

in response to mechanical stretch [5]. CNP is derived mainly

from endothelial and renal cells and secreted in response to

endothelium-dependent agonists and pro-inflammatory

cytokines [5]. As filling pressures rise in HF, increased cardiac

stretch causes the secretion of precursor NPs, which are

cleaved by specific proteases to produce biologically active

NPs which then act on NP receptors (NP receptor-A [NPR-A],

NPR-B and NPR-C) [8]. Binding of NPs to NPR-A and NPR-B

activates particulate guanylate cyclase resulting in increases

in the second messenger, cyclic guanosine monophosphate

(cGMP), which mediates many of the cardiovascular and

renal effects of the NPs [8,9].

NPs are cleared from the circulation by two mechanisms –

binding to NPR-C and inactivation (hydrolytic cleavage) by

neprilysin [8]. Neprilysin has a high affinity for both ANP and

CNP, and a lower affinity for BNP, which is more resistant to

hydrolysis [10]. Since neprilysin does not hydrolyze N-term-

inal pro-BNP (NT-proBNP) [11], it remains a useful cardiac

biomarker to assess therapeutic effect and prognosis in

patients treated with neprilysin inhibitors.

The cardiovascular and renal effects of the NP system

oppose those of the RAAS [12], providing the scientific and

therapeutic basis for neprilysin inhibition in the setting of

HF. One of the major effects of NPs is vasodilation, which

results from cGMP-mediated relaxation of smooth muscle

cells as well as indirect effects of NPs to inhibit the RAAS and

decrease endothelin-1 (ET-1) production [9]. Indeed, NPs
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have been shown to cause significant reductions in systemic

vascular resistance, pulmonary artery pressure, pulmonary

capillary wedge pressure and right arterial pressure in patients

with severe HF [13]. NPs also mediate other beneficial hemo-

dynamic effects, including reducing arterial stiffness and

enhancing endothelial function [14].

NPs promote sodium and water excretion by inhibiting

sodium reabsorption in the proximal and distal nephron,

while preventing decreases in glomerular filtration rate by

regulating tubuloglomerular feedback [9]. These effects of

NPs have been observed in patients with severe HF, resulting

in improvement in hemodynamics and renal function [13].

In addition to the direct effects of NPs on the kidney, their

inhibitory actions on the RAAS and sympathetic nervous

system also contribute to their natriuretic, diuretic and

hemodynamic effects [9,14].

The NPs have potent cardiac antihypertrophic and anti-

fibrotic properties. In animal models, ANP and CNP inhibit

cardiac hypertrophy induced by angiotensin II (Ang II) or ET-

1 [15,16]. Furthermore, in cardiac fibroblasts, ANP and BNP

inhibit the fibrotic effects of transforming growth factor beta

(TGF-b), while Ang II-induced interstitial fibrosis was inhib-

ited by CNP [16].

Recent experimental and clinical data indicate that NPs

have physiologically important metabolic effects that may be

relevant to HF [17,18]. ANP has been shown to stimulate

lipolysis in human adipocytes by activating the NPR-A recep-

tor and increasing intracellular cGMP [19]. ANP-induced

lipolysis could contribute to cardiac energy utilization by

providing substrate in the form of free fatty acids and pro-

moting lipid oxidation through increased mitochondrial

biogenesis [17,20]. On the other hand, an imbalance between

fatty acid uptake and utilization for adenosine triphosphate

(ATP) generation could result in mitochondrial oxidative

stress and lead to excessive cardiomyocyte accumulation of

neutral lipids, contractile dysfunction and lipotoxicity [21].

Other metabolic effects of NPs demonstrated in human tissue

samples include increased oxygen consumption and

enhanced expression of adiponectin. Studies in animal and

human adipocytes have also shown that NPs induce brown

fat thermogenesis and can mediate a phenotypic switch from

white to brown fat [17]. Furthermore, there is emerging

evidence that NP signaling may directly improve glucose

control and inhibit adipocyte growth [17,18,22]. Finally, a

specific human ANP genetic polymorphism which increases

circulating ANP has been reported to protect against hyper-

tension and metabolic syndrome [23]. The relevance of the

metabolic effects of NP to insulin resistance and cardiovas-

cular diseases is an active area of research.

Dysregulation of the NP system and role of neprilysin in HF

While it was initially thought that the NP system was

upregulated in HF due to high circulating levels of total
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immunoreactive ANP and BNP, recent studies indicate that

mature BNP (BNP1–32) levels are reduced and levels of less

biologically active BNP fragments are increased [5]. This is

due to altered processing of proBNP to biologically active

BNP1–32 [24] and partly explains the blunting of the phy-

siological response to high levels of total immunoreactive

BNP observed in patients with HF [5]. Thus, advanced HF may

represent a state of NP deficiency [5]. Furthermore, the

expression and activation of neprilysin are increased in

patients with HF, which enhances the rate of degradation

of NPs and contributes to reduced levels of biologically active

NPs [25].

As HF progresses, relative resistance or hyporesponsiveness

to NPs develops, which is particularly evident in the kidney

and vasculature [8,12]. This hyporesponsiveness is an impor-

tant feature of HF that adversely affects prognosis by worsen-

ing sodium retention and volume overload and increasing

peripheral vascular resistance. The mechanisms for NP resis-

tance are multifactorial and include: downregulation of NP

receptors, dysregulated NP signal transduction, increased

cGMP degradation and activation of the RAAS [26].

In addition to hydrolyzing the NPs, neprilysin also hydro-

lyzes other vasoactive peptides, including substance P, bra-

dykinin, ET-1, angiotensin I (Ang I) and Ang II [27,28]. Since

there are multiple neprilysin substrates with differing and, in

some instances, opposing biologic actions, the pharmacolo-

gic profile of neprilysin inhibitors is complex and will depend

on the net effect on all biologically relevant substrates. While

inhibition of neprilysin is expected to result in beneficial

cardiovascular and renal effects in HF by increasing NP levels,

corresponding increases in Ang II and ET-1, both of which

have vasoconstrictor, pro-fibrotic and pro-hypertrophic

properties, would be expected to oppose the beneficial effects

of the NPs. In the case of angiotensin, neprilysin hydrolyzes

and inactivates Ang II; therefore, neprilysin inhibition alone

will not only increase NP levels but can also result in accu-

mulation of Ang II, which could attenuate or negate any

beneficial NP effects in the setting of HF. The increase in Ang

II observed with neprilysin inhibition provides a rationale for

concomitant RAAS blockade. However, neprilysin also con-

verts Ang I to Ang 1–7 [28], which has vasodilating, anti-

proliferative and natriuretic actions mediated through

activation of the Mas receptor [29]. In the case of ET-1,

neprilysin not only hydrolyzes ET-1, but also its precursor

peptide big ET-1. Thus, the effect of a neprilysin inhibitor on

ET-1 levels will depend on the net effect of hydrolysis of both

big-ET1 and ET-1 [27]. It should also be noted that both

substance P and bradykinin, which are both inactivated by

neprilysin, have vasodilatory properties, increase vascular

permeability and, when combined with an angiotensin-

converting-enzyme inhibitor (ACEI), are implicated in the

pathogenesis of angioedema [30], a potential side effect of

neprilysin inhibitors.
NPs as treatment for chronic HF

The therapeutic rationale for the initial development of

neprilysin inhibitors as a potential treatment for chronic

HF is based on the observation that neprilysin inhibition

increases endogenous NP levels [31,32]. One of the first

selective neprilysin inhibitors studied in humans was can-

doxatril, which produced beneficial hemodynamic, natriure-

tic and diuretic effects in patients with chronic HF [32,33]. In

patients with chronic HF receiving ACEI, candoxatril also

improved exercise tolerance compared with placebo [34].

However, as noted above, neprilysin also degrades Ang II;

therefore, neprilysin inhibition also activates Ang II-depen-

dent pathways [31], limiting the utility of selective neprilysin

inhibitors as monotherapy for HF. Activation of the RAAS

attenuates the actions of NPs and RAAS inhibition has been

reported to potentiate the effects of neprilysin inhibition in a

canine model of HF [35]. Therefore, achieving the potential

clinical benefits of neprilysin inhibition will likely require

concomitant inhibition of the RAAS.

These observations led to the therapeutic strategy of con-

comitant inhibition of neprilysin and the angiotensin-con-

verting enzyme (ACE), and to the development of

omapatrilat. In a Phase III trial in patients with chronic

HF, omapatrilat demonstrated a trend towards improved

morbidity and mortality with once daily dosing that might

have been even greater with a more frequent dosing regimen

[36]. However, omapatrilat treatment was also associated

with a substantially increased risk of angioedema [36], and

its development was discontinued.

Angioedema is thought to be mediated by increases in

bradykinin, des-Arg9-bradykinin and possibly substance P,

potent vasoactive peptides that cause vasodilation and

enhance vascular permeability [30]. Bradykinin is degraded

predominantly by ACE, but also by aminopeptidase P (APP),

neprilysin and dipeptidyl peptidase 4 (DPP-4) [37]. Compared

with ACE and aminopeptidase P, the relative contribution of

neprilysin to the degradation of substance P and bradykinin

appears to be very small [37]. In the presence of ACE inhibi-

tion, the development of angioedema is believed to require

functional (genetic or pharmacologic) defects in several non-

kininase II enzymatic pathways [30,38]. Omapatrilat not only

inhibits ACE, but also inhibits APP and neprilysin. The

increase in bradykinin resulting from inhibition of all three

enzymes may have been the cause of the increased incidence

of angioedema observed with that agent [37].

The therapeutic strategy of concomitant neprilysin and

RAAS inhibition still holds promise for patients with chronic

HF assuming the risk of angioedema can be minimized while

achieving superior efficacy compared to RAAS blockers alone.

While angiotensin type 1 (AT1) receptor blockers (ARBs) are

known to cause angioedema, the reported incidence is much

less than that for ACEIs [39]. The proposed mechanism for

ARB induced angioedema involves Ang-II/AT2 receptor
www.drugdiscoverytoday.com e133
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mediated increases in bradykinin due to weak indirect inhi-

bitory effects on ACE and possibly neprilysin [40]. Thus, a

potentially more successful therapeutic strategy would be to

block the RAAS at the AT1 receptor rather than inhibit ACE.

Experiments in stroke-prone spontaneously hypertensive rats

have shown that concomitant neprilysin inhibition and AT1

receptor blockade improved endothelial function to a similar

extent as that achieved with combined neprilysin and ACE

inhibition [41]. In an in vitro study in rat cardiomyocytes and

fibroblasts, simultaneous addition of a neprilysin inhibitor

and ARB into the culture media was more effective than the

ARB alone in inhibiting biochemical markers of cardiac

hypertrophy and fibrosis [42]. Finally, an in vivo study in

spontaneously hypertensive rats found that concomitant

neprilysin inhibition and angiotensin receptor blockade low-

ered blood pressure (BP) to a similar extent as neprilysin-ACE

inhibition with omapatrilat, but had no effect on tracheal
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plasma extravasation (a bradykinin-dependent surrogate for

upper airway angioedema), whereas neprilysin-ACE inhibi-

tion with omapatrilat increased tracheal plasma extravasa-

tion [43]. These experimental data highlight the potential for

concomitant neprilysin inhibition and AT1 receptor blockade

for producing beneficial cardiovascular effects without

increasing the risk of angioedema.

LCZ696, a novel angiotensin receptor neprilysin

inhibitor (ARNI): pharmacological profile,

experimental and clinical results

ARNIs represent a novel class of drugs being developed for the

treatment of HF whose multimodal mode of action involves

neprilysin inhibition and AT1 receptor blockade. ARNIs

enhance the beneficial physiological response of NPs while

blocking the harmful effects of RAAS activation (Fig. 1).
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ulate two counter-regulatory neurohormonal systems in HF: the renin–

G: angiotensin; ARNI: angiotensin receptor neprilysin inhibitors; AT1:

iphosphate; HF: heart failure; NP: natriuretic peptide (e.g. atrial natriuretic

; RAAS: renin–angiotensin–aldosterone system; zIn vitro evidence.
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Pharmacokinetic and pharmacodynamic profile of LCZ696

LCZ696 is the first in class ARNI in clinical development.

LCZ696 is a new chemical entity comprising anionic moieties

of the neprilysin inhibitor prodrug AHU377 and the ARB

valsartan [44]. Oral administration of LCZ696 provides con-

comitant systemic exposure to AHU377, which is metabo-

lized to the active neprilysin inhibitor LBQ657, and valsartan

[45].

The pharmacokinetics of LCZ696 have been well charac-

terized. Oral administration of single and multiple ascending

doses of LCZ696 to 41 healthy volunteers resulted in rapid,

approximately dose proportional systemic exposure to both

the ARB and neprilysin inhibitor moieties of LCZ696 [45].

Following multiple dose administration, the systemic expo-

sures of valsartan and the active neprilysin inhibitor LBQ657

occurred rapidly, with maximum plasma concentration

(Cmax) for valsartan achieved within 1.6–4.9 hours, and for

LBQ657 within 1.8–2.7 hours [45].

Experimental studies have demonstrated that LCZ696

inhibits both neprilysin and the RAAS. Sprague–Dawley rats

infused with ANP (450 ng/kg/min) exhibited a dose-depen-

dent augmentation of plasma ANP immunoreactivity in

response to LCZ696, indicating neprilysin inhibition

(Fig. 2). The antihypertensive effects of LCZ696 were stu-

died in conscious chronically instrumented double trans-

genic rats expressing the genes for human renin and

angiotensinogen [45]. In this model of Ang-II-induced

hypertension, oral administration of LCZ696 resulted in a

dose-dependent and long-lasting reduction in mean arterial

pressure (Fig. 2).
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A study in healthy human subjects confirmed that LCZ696

provides concurrent neprilysin inhibition and AT1 receptor

blockade [45]. Following multiple dose administration of

LCZ696, 24-hour mean plasma cGMP (the NP effector signal-

ing messenger) was increased compared with placebo, which

is consistent with neprilysin inhibition. Dose-dependent

increases in plasma cGMP compared with placebo were

observed as early as 4 hours post-dose, with levels returning

to baseline by 24 hours (Fig. 3; [45]). LCZ696 also resulted in

dose-dependent increases in plasma renin concentration,

plasma renin activity (PRA) and Ang II levels, which is con-

sistent with AT1 receptor blockade (Fig. 3; [45]). The max-

imum concentrations of the RAAS biomarkers were reached

by 4 hours after administration of multiple doses of LCZ696.

Furthermore, the sustained pharmacodynamic effects follow-

ing LCZ696 administration, together with the long observed

plasma t1/2 for both valsartan and LBQ657, indicate the

suitability of LCZ696 for once- or twice-daily dosing.

LCZ696 pharmacodynamics, clinical efficacy and safety in patients

with hypertension

A study in patients with hypertension (mean systolic BP

139.6 � 9.2 (standard error) mmHg at baseline) has examined

the effect of LCZ696 compared with valsartan on natriuresis,

diuresis and urinary cGMP [46]. LCZ696 (400 mg once daily

for 7 days) was associated with increases in natriuresis,

diuresis and fractional sodium excretion compared with

valsartan. For each of these measures, the natriuretic

effect of LCZ696 was greatest on the first day of drug

administration and diminished with continued dosing, likely
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Figure 3. Effect of oral administration of LCZ696 200 mg on (a)

geometric mean change in plasma cGMP; (b) renin concentration; (c)

plasma renin activity; (d) angiotensin II in healthy volunteers (n = 42)

[45]. NB: In this dose-escalation study, patients received multiple

doses of LCZ696 (50, 200, 600 and 900 mg). Data shown are for the

200 mg dose, which gave the greatest increase in cGMP. *p < 0.05

versus placebo. cGMP: cyclic guanosine monophosphate.
due to counter-regulatory mechanisms in response to the

cumulative negative sodium balance. The study also showed

that LCZ696 provided sustained neprilysin inhibition as

indicated by increased urinary cGMP excretion throughout

the study [46]. Treatment with LCZ696 in this study was

further associated with larger reductions in both systolic

BP and diastolic BP compared with valsartan. The clinical

efficacy of LCZ696 has also been studied in a randomized,

double-blind, placebo-controlled study in 1328 patients with

mild-to-moderate hypertension [47]. LCZ96 (200 and

400 mg) provided significantly greater BP reductions than

comparable exposure to valsartan (160 mg and 320 mg,

respectively). LCZ696 was well tolerated, with no reported

cases of angioedema and no serious adverse events judged to

be related to LCZ696 [47]. A study in Asian patients with

mild-to-moderate hypertension has confirmed the BP-low-

ering effect and favorable safety profile of LCZ696 [48].
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LCZ696 pharmacodynamics, clinical efficacy and safety in patients

with HFrEF

LCZ696 has been studied in patients with HFrEF. In an open-

label, non-controlled study of 30 patients with stable chronic

HF and left ventricular ejection fraction (LVEF) �40%,

LCZ696 100 mg titrated to 200 mg twice daily was shown

to increase plasma cGMP and urinary ANP after 7 and 21 days

of drug administration, confirming inhibition of neprilysin

[49]. Furthermore, administration of LCZ696 led to signifi-

cant increases in PRA and plasma renin concentration, indi-

cative of AT1 receptor blockade. In addition, plasma

aldosterone and ET-1 levels were reduced, confirming clini-

cally relevant RAAS inhibition [50]. Importantly, LCZ696

significantly decreased plasma NT-proBNP (p < 0.001) [49].

No serious adverse events occurred during the study. These

effects support further studies of LCZ696 in chronic HF.

LCZ696 is currently being investigated in the Prospective

comparison of ARNI with ACEI to Determine Impact on

Global Mortality and morbidity in Heart Failure trial (PARA-

DIGM-HF), a Phase III randomized, double-blind, parallel-

group study comparing the long-term safety and efficacy of

LCZ696 versus enalapril in patients with chronic HF and

reduced LVEF (�40%). The primary endpoint is the compo-

site of cardiovascular death or HF hospitalization. The sec-

ondary endpoints include assessment of changes in HF

symptoms, physical limitations on quality of life, new onset

of atrial fibrillation, and development/progression of renal

dysfunction [51]. PARADIGM-HF is an event-driven trial and,

as of January 17, 2013, the study is fully enrolled, with 8436

randomized patients at 985 centers in 47 countries [51].

LCZ696 pharmacodynamics, clinical efficacy and safety in patients

with HFpEF

LCZ696 has also been investigated in patients with HFpEF.

HFpEF is characterized by abnormal left ventricular diastolic

function with associated increases in ventricular filling pres-

sures, increased vascular stiffness and impairments in systolic

function despite preserved ejection fraction [52]. HFpEF is

associated with an impaired NP response and renal endocrine

response to volume overload [52]. As a result, it is hypothe-

sized that LCZ696, by augmenting the effects of NPs, would

be of clinical benefit in these patients.

PARAMOUNT was a Phase II, randomized, double-blind

multicenter trial in patients with HFpEF (LVEF �45%) [52].

The primary endpoint was change from baseline to Week 12

in levels of NT-proBNP [52], a marker of left ventricular wall

stress that is associated with adverse outcomes in patients

with HFpEF [53]. Patients were randomized to receive LCZ696

200 mg twice daily or valsartan 160 mg twice daily (dose

equivalent) for 36 weeks. At 12 weeks, LCZ696 reduced NT-

proBNP from baseline by 23% compared with valsartan

(p = 0.005; Fig. 4). PARAMOUNT also assessed the effect of

LCZ696 on left atrial structure and function by measuring left
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Figure 4. Effect of LCZ696 200 mg twice daily versus valsartan 160 mg twice daily (dose equivalent) in patients with chronic HF with preserved ejection

fraction (NYHA class II–III, LVEF �45%, NT-proBNP >400 pg/mL). (a) NT-proBNP concentration (pg/mL) (geometric mean [95% CI]); (b) left atrial width,

volume and volume index (mean SD) [52]. *p = 0.005; #p < 0.01 versus valsartan. CI: confidence interval; HF: heart failure; LVEF: left ventricular ejection

fraction; NT-proBNP: N-terminal pro-B-type natriuretic peptide; NYHA: New York Heart Association; SD: standard deviation.
atrial width, volume and volume index [52], parameters that

have been shown to be predictors of outcome in chronic HF,

with and without reduced LVEF [54,55]. After 36 weeks of

treatment, left atrial width, volume, and volume index were

significantly reduced from baseline to a greater extent with

LCZ696 compared with valsartan (Fig. 4). LCZ696 was also

shown to have beneficial effects on renal function, with

smaller mean decreases in estimated glomerular filtration

rate from baseline compared with valsartan (�1.6 mL/min/

1.73 m2 versus �5.2 mL/min/1.73 m2; p = 0.007) over 36

weeks [52]. LCZ696 had a favorable safety profile similar to

that observed with valsartan.

An outcomes study (Prospective comparison of ARni with

ARB Global Outcomes in heart failure with preserved ejectioN
fraction [PARAGON-HF]) is currently planned to determine

whether the promising biomarker results of LCZ696 in

patients with HFpEF will translate into clinical benefit as

measured by cardiovascular mortality and HF hospitaliza-

tions compared with valsartan.

Conclusion and future directions

The NP system has been shown to play an important cardiac

and renal protective role. As a result it has been hypothesized

that enhancing NPs may be beneficial in HF. Neprilysin

inhibition enhances NP levels by reducing their enzymatic

degradation. However, the utility of neprilysin inhibition

requires management of the activation of the RAAS, which

occurs with neprilysin inhibition alone. LCZ696, the first
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ARNI in clinical development, meets this requirement since

the compound enhances the actions of the NP system by

inhibiting neprilysin while concurrently suppressing the

activity of the RAAS by blocking the angiotensin AT1

receptor.

Results from the clinical trial program of LCZ696 show that

LCZ696 improves hemodynamics and cardiorenal biomarkers.

Ongoing studies will determine whether these effects translate

to improvements in outcomes of patients with chronic HF with

either reduced or preserved LVEF. Additional studies of the NPs

and of LCZ696 will be needed to further elucidate the mechan-

isms of its potential cardiorenal protection and the clinical

relevance of the metabolic effects of the NPs.
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