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The paper is concerned with Carathéodory approximate solutions for a class of
infinite-dimensional stochastic evolution equations with time delays. In addition to
the second moment convergence, it is shown that, under suitable conditions, the
approximate solution converges almost surely to the mild solution of a given
stochastic evolution system.  © 1998 Academic Press

1. INTRODUCTION

There is a wide literature on procedures for approximating the solution
of a stochastic differential equation. We first mention the classical Picard
and Euler procedures for approximating the solution of a finite-dimen-
sional stochastic differential equation (see Ikeda and Watanabe [4]). In the
finite-dimensional situation, we also mention, for instance, the
Cauchy—Maruyama approximation (see G. Maruyama [10] and J. Mashane
[11]D and the Carathéodory approximation (see D. R. Bell and S. E. A.
Mohammed [1] and X. Mao [6]). On the other hand, the discretization of
infinite-dimensional stochastic evolution equations is still a subject which
has received a great deal of attention recently. For instance, the classical
Euler’s approximation procedure is considered for the mild solution of a
class of stochastic evolution equations in P. L. Chow and J. L. Jiang [3].
For the time delay case, X. Mao [7, 8] and K. Liu [5] treat the Carathéodory
approximation scheme for the strong solutions for a class of stochastic
evolution equations.
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This paper is concerned with the Carathéodory successive approxima-
tion mild solution properties for a class of stochastic evolution equations in
infinite dimensions with time delays. Precisely, consider a class of delay
stochastic evolution equations in Hilbert space of the form

dx(t) = [AX(t) + F(X(t), X(t — 7(1)))] dt
+G(X(t), X(t — 7(1))) dW(t), t>0,
X(t) = ¢(1), -7<t<0,

where A, generally unbounded, generates a strongly continuous semigroup
S(#), t = 0, over a real separable Hilbert space H, and W(¢) is a certain
Hilbert space-valued Q-Wiener process. The terms F(x, y), G(x, y), x,y €
H, are nonlinear and satisfy certain given Lipschitz conditions and linear
growth conditions. That is, F and G are regarded as bounded perturba-
tions. The (¢) is a proper H-valued stochastic process on [—7,0], 7 is a
positive constant, and 7(¢) is an appropriate non-negative time delay
function defined over R*. The Carathéodory scheme is to define the
approximation solution, for each n = 1,2,..., via a delay equation (see
the next section for the details). In fact, the proof of the convergence of
the Carathéodory approximation represents an alternative to the standard
procedure for establishing the existence and uniqueness of the solution to
the stochastic delay differential equation.

In this paper, we shall present two results on the Carathéodory conver-
gence of the mild approximation solution. In particular, in Section 2, a
constructive way of proving the existence theorem is presented. The other
approximation procedure for the mild solution will be discussed in detail
elsewhere. Firstly, we get our convergence results proved in the sense of
the second moment. Next, as another major result it is shown that under
suitable conditions the approximate solution converges almost surely to
the mild solution of the given equation.

2. THE MAIN RESULTS

The objective of this paper is to show that the Carathéodory approxima-
tion procedure is applicable to a class of delay stochastic evolution equa-
tions in Hilbert space. Assume H is a real separable Hilbert space with
inner product (-,-) and norm ||-|l. Let K be another real separable
Hilbert space and W(t), t > 0, be a K-valued Wiener process with mean
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zero and covariance operator Q with tr Q < « (tr denotes the trace of
operator) defined by

EW(t), e{W(s), ) = (t As){Qg,h), Vg heK,

where { -, - ) denotes the inner product on the space K. For convenience,
we introduce a subspace KIQ C K, the closure of Q2K with respect to the
norm |||l defined by QK3 = (Q* %k, QY%k), = (k. k), k € K. Let
V' C H be a densely imbedding Banach subspace. Suppose that A:V — I'*,
the dual of V, is bounded. F: H X H — H and G: H X H » Z(K,, H),
the space of all linear bounded operators from K, into H, are two
measurable mappings. As an abuse of notation, we also use || - || for the
norm in the linear continuous operator space Z(K,, H). Let 7(-) be a
continuous non-negative function on R* and define

T=sup{7(t) —t:t >0} <
Let M2([—7,0], H) denote the family of all continuous H-valued stochas-

tic processes i(¢) defined on [—7,0] such that (), —T<t <0, are all
Fy-measurable and

sup {Elw(n)l’, -7 <t <0} <.

—7<t<0

Consider a class of delay stochastic evolution equations in Hilbert space of
the form

dX(t) = [AX(t) + F(X(t), X(t — 7(t)))] at
+G(X(t), X(t — 7(t))) dW(t), t>0,
X(t) = ¢(1), -7<t<0. (2.1)

Throughout this paper we assume F, G satisfy the following conditions:

(A.1) There exists a positive constant L such that
IG(x, )| VIIF(x, p) I < L(L + lIxll + 1Iyl),  Vx,y € H (2.2)
and

IF(x,y) = F(Z,9) [ vIG(x,y) = G(Z.7)||
< L(lx = 71 + lly - 31) (23)
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for all x,y, X,y € H, and the following assumptions are also made:

(A2) A: V- V* is coercive such that it generates an analytic
semigroup {S,,¢t > 0} on H.

(A.3) For arbitrarily given T > 0, there exist constants § = 6(T) > 0
and K(T) > 0 such that for any positive integer n large enough

K(T)

’
nO

1
,u{t:0<7(t)<—,0stsT}s
n

where u is the Lebesgue measure on R*.

The definition of the mild solution for the infinite-dimensional stochas-
tic delay differential equation is given as follows:

DEerINITION 2.1. For any T > 0, an H-valued stochastic process X(¢), ¢
e [—7, T], defined on some given probability space (Q, %, %, P), is a mild
solution of (2.1) if

(1) X(¢) is adapted to 7.

(2) X(¢) is measurable and almost surely /7 | X(s)[|* ds < =. More-
over,

X(t) = S,X, + fots,,sF(X(s), X(s —1(s))) ds

+fots,,sG(X(s),X(s = 7(s))) dW(s)

forall t €[0,T] a.e., and

X(t) =¢(1), -7<t<0.

On the other hand, the Carathéodory approximate solution is defined as
follows: Fix T > 0, for arbitrary v > 1, () € M?>((—7,0], H) and all
n > 2/7, we define

X"(t) = ¢(1), -7<t<0,
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X"(1)

— S (0) + fotlD;(u)S;tu (X”(u - ni) X"(u - T(u))) du
+[ 1pe (u) 8P uG(X"(u - ni) X"(u - T(u)))dW(u)

+[o‘1D”(u)s;1_u ( (u—%),X”(u—T( )—i))du

+f0tan(u)Sl”_u (X(u nl ),X"(u - 7(u) - ni)) aw(u),
(2.4)

where S/ =S, ./, and
1
Dn={t:7(t)<—y,05tsT}, Di=[0,T]-D,,0<t<T.
n

Here 1, denotes the indicator function on the set B < R™. Note that each
X"(t) can be determined by stepwise iterated ItG integrals over the
intervals [0,1/n"],[1/n",2/n"],..., etc. Let C;(H) = C(0,T], H) de-
note the space of H-valued continuous functions on [0, T'] with the norm
w7 = supg ., < pllu@Il.

We shall show the sequence {X"(¢)} of approximate solutions converges
a.s. in the space C,([0, T], H) to the mild solution X(¢) of Eq. (2.1). To
this end, we need the following theorem which is interesting in its own
right.

THEOREM 2.1.  Under conditions (A.1) to (A.3), there exists a unique mild
solution X(t) to Eq. (2.1). Moreover, forany T > 0, and 0 < a < 1/2, there
exist positive constants C,(T), C(T), Cy(a, T), C(T), and C,(T) such that

sup || X(s)?) < C(T) e, 0<t<T,  (25)

O<s<t

EIX(0) =X()I" = Co(a T)(t =)+ CDI( =9) 0
O<s<t<T, 0<ax<l/2
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and

E( sup x(9) = x"(5)[]

0<s<T

SC5(T)(%+ M{t:0<7(t)<%,05tsT}), (2.7)

nD(l/

where the X"(t) are defined by (2.4) and . stands for the Lebesgue measure
on R*.
Proof.
Step 1. Fix ¢ € M*([—7,0], H) and T > 0. We first claim
E( sup ||X"(s)||2) <Cp-e, 0<t<T. (2.8)

O<s<t

Indeed, noticing that there exist constants M > 1, w € R’ such that
IIS,]l < Me®" and using a Burkholder type of inequality for the stochastic
evolution integral (see [16]), we have

£ sup x"(5)[]

O<s<t

< CyT) + Cy(T) /O’lD,e,(Lo

2
X

1
1 +EHX”(L£ - —V)
n

B )|

2

1
1+ EHX”(u - —V)
n

+Cy(T) [[1p,(w)

+E

‘X”(u — 7(u) - ni) 2) du

1
< CYT) +2Cy(T)T + C’Z’(T)fOtEHX"(u - ;) du

HCUT) [ () E| X" = 7 () [

2

du

+c;<T)f0’1D"<u>EHX"(u A i)
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< C(T) + C4(T) [CELX" () | du
’ c !
+C(T)| w(Df) + [ 1p(0)E
0 O<s<u

+Cy(T)

O<s<u

< Cy(T) + cz(T)fo’E( sup ||X”(s)||2) du.

O<s<u

This implies, by the well-known Gronwall’s lemma, that

E( sup ||X"(s)||2) <C(T)-eCT",  0<t<T.

O<s<t

Step 2. On the other hand, the well-known Burkholder—Davis—
Gundy inequality and conditions (A.1), (A.2) imply that there exist positive
constants K,(T), K,(T),..., such that if 0 <s <t < T, we have

Ell X"(t) = X"(s)|’

< E|(S! = S1) ¢ (0) | + Ky(T) / "1, (u)

2

XE du

s (xefu = o) = |
+K1(T)/OS 1 (1)

XE

‘[(St_s - I)Sg_u]F(X”(u - %),X”(u - T(u)))

+K,(T)E

/ 1,0 (u)S],

2
xXG

X”(u - %),X"(u = T(u))) AW (u)

+K2(T)EH/: 1Df,(u)[(St—s 18]

sup | X7(5)]°)

2

|

u(D) + [ 1,0 E( sup 13°(5) ) a

du
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2

XG

X"(u - ni)X(u - T(u))) AW (u)

+K(T) [1p,(w)

2

XE du

St"_uF(X"(u - i)x( () - i))
+K(T) [ 1Dn<u)EH[(s,_s ~1)st]

o P P |

t
o oo,
N

2

du

2

ol (o= 2)orefu- e - ) arto

(DB [ 1, (5, - DS

2
XG

1 1
X"u——|, X"\u- — — || aw
(i o) (= w0 = ) awt
Furthermore, an estimate in Pazy [13, p. 74] implies that forany 0 < « < 1,
E|lx"(1) = X"(s) I
t
<E[(s7 = SO w(O) | + K(T) [ 1o ()lISi I
N

2

X E du

PP p—

e ol e ]

n’
2

XE du

F(X(u - %),X”(u = T(u)))

t
+Ko(T) [ 1o () lIS7- |1
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2
xXE ‘ du

G(X”(u - %),X”(u - T(u)))
+K,(T)(1 — s)“[oslm(u)(s —u+ ni)_

XE G(X”(u = %),X”(u = T(u)))H2 du

+Ky(T) [ 15 (w)lIS7, 1P
N

XE

+Ky(T)(1 — s)ajlen(u)(s —u+ ni

XE

t
+K(T) [ 1p, (w)lIS7 I

XE

+K(T)(t ~ S)afolen(”)(s e %)_a

XE

E||(Sr = S w(0) | + Ks(T) /S L (w)lISe, I

1+E

X

1
X”(u i
n

AR [ ofs )

1
x[1+E X”(u——y)
n

ol 2o - 2
ol 2o -2
ol 2)rfe- - o
ofe- 2)rfe- - o

+Mqu—ammjw

+MX«u—wwij
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t

Ko (T) [ 15 ()18
s

X1+ E

b X - 7<u>>||2) ”

1
X”(u— —
n

+Ky(T)(1 — s)“[oleﬁ(u)(s —u+ ni)_

|1+ E X”(u— ni) 2+E||X”(u—7(u))||2) du
+Ko(T) [ "1, (w)lISr, I

o P | IR P PR H) .
DY) [ s —u )
el ][ e (_ [
KA (T) [ 1 (IS

O P O RS |

+K8(T)(f_s)afole”(u)( o 1)_“

o=t =)

2
X1+ E + E||X

1
X”(u I
n

<(t—s )“fs( - i)_adu

<<<<<

< Cy(a, T)(t - )+C(T)(t s), O<s<t<T,
(2.9)
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Step 3. We next show that {X"(¢)} converges to a limit in L2(Q, H)
for each t € [0, T]. To do so, letting m > n > 2 /7 and noticing [|S(2)|| <
Me®T for all ¢+ € [0,T] and conditions (A.1) to (A.3), we easily see that
there exist positive constants M,(T), M,(T), ..., such that

£ sup 1x7(s) = x"(s)[]

O<s<t

< M(T)pu(D, = D,,) + My(T)

el ) e )

+ M(T) [ (W) EJ X" (4 = 7)) = X" (u = 7)) |

2
du

+ My(T) [1,(w)

2

><EHX’”(u — r(u) — mi) —X”(u — r(u) - ni) du

(- 2)

mV

On the other hand, we have, noting (2.9),

(et 2] w3
cofecfe- 2] w2
o)l

< ZfOtEllX’”(u) — X"(u) | du

1 1"
+M6(a,T)T[;— H

2MTT1 !
5() n’ m’

mV
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and
[ o0 EL X" = () = X7 = 7(w)) | d
< fotE(oiljgullX'"(s) —X"(s)llz) du
and
fotlum(u)E X’”(u - 7(u) - mi) —X”(u — 7(u) — ni) zdu

< 2[0’1Dm(u)E‘ X”’(u — 7(u) — mi)

2

du

el - )

+—2A:1Dm(u)l?H)(”(u<— 7(u) —-;%;)

2

du

—X”(u — r(u) - ni)

szfo’E( sup || X7(s) —X”(s)||2) du

O<s<u

+2

n' m’ n' m’

1
Ms(T)T[

1 11”
+M,;(a, T)T — |
Hence we easily obtain

£ sup [1x7(s) = x"(s)[]

O<s<t

= Ml(T)/‘L(Dn - Dm)

+

14

n” m

1
M8(T)T[

1 11”
+M7(a,T)T[; - W:| )

+My(7) ['E( sup [1X7(5) = X7(5) )

O<s<u
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which immediately implies that

E( sup [x7(5) - X"(9)F)

0<s<T

< {Ml(T):u'(Dn - D,)

—+

14

MTTl !
8()nv m

1 11
+M7(a,T)T[;— m”} )}
-exp{M,(T)T}. (2.10)

Noticing w(D, — D,)) = 0 as n, m — o, we immediately see that {X"(¢)}
is Cauchy in L*(Q; C(0, T], H)). Denote the limit by X(¢) in
L2(Q; C(0,T], H)). A Borel-Cantelli argument easily gives that there
exists a subsequence, say {X™(z)}, which converges to X(¢) uniformly in
t €[0,T] almost surely. Therefore X(¢) is an {¥}-adapted continuous
H-valued process. Moreover, letting m — o in (2.10) we see

B[ sup_[1X(s) = X(5)]F )

0<s<T

1 1 1
< Cy(T) ;+F+M{t:0<7(l‘) <;,O$t£T}).

Now letting n — o in (2.8), (2.9), we can immediately obtain our conclu-
sion.

Step 4. We next extend X(¢) to [—7, T'] by defining X(¢) = (¢) on
[—7,T]. We see that, to conclude the remainder of the proof, it suffices to
show that X(¢) is the unique mild solution of Eq. (2.1) on [—7, T]. Indeed,
for0<t<T,

EHX(t) —X”(t - %) 2

2

< 2B X(1) - X"(0)|* + ZEHX”(t) _ Xn(t _ ni)

< 2C4(T)

1 1
— +M{t:0<7(t)<—v,0$t$T})
n

_V_|_
n n

2C(T 2C5(T
L 26(T)  264(T)

av

v

n n

- 0, n — oo,
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We can easily see that

Ii_r;rLE 1D;(t)F(X”(t - %),X"(z - T(t)))
—1p(t)F(X(t), X(t — 7(1)))| =0
and
"_r,'lE 1D;(t)G(X”(t - %),X"(r - T(t)))
—1,(t)G(X(t), X(t — 7(t)))|| =0

forall 0 <t < T, where D¢ ={¢t: 7(t) > 0,¢ € [0, T]}. Therefore we also
have

JmE 1Dn(t)F(X”(t - ni)X(t —7(t) - ni))
—1p(0)F(X(1), X(1 = 7(1))) 2 =0
lim E 1D”(t)G(X"(t - ni)X(t — (1) — ni))

2

—1p(NG(X(1), X(1 = 7(1))) | =0

forall 0 <t < T, where D=1{t: 7(¢r) =0,¢r € [0, T]}. Hence, we can let
n — < in (2.4) to obtain

X(1) = $:4(0) + '8, F(X(u), X(u = 7(u))) du
+ (S, G(X(), X(u = 7(u))) aW(u)
0

on0 <t < T.Thatis, X(¢)is a mild solution of Eq. (2.1) over [-7,T1].
The unigueness of Eq. (2.1) can be obtained similarly by a Gronwall
lemma argument. The proof is complete.
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THEOREM 2.2.  For arbitrarily given T > 0, assume the assumptions (A.1)
to (A.3) hold with 6 > 1 in (A.3). Let v > 2 in the Caratheodory approxi-
mate solution (2.4). Then the sequence {X"(¢)} of approximate mild solutions
converge in C;(H) almost surely to the solution X(t) of Eq. (2.1). That is,

lim sup [[X(¢) —X"(¢)ll=0 a.s.

h=2 0<t<T

Proof. When v> 2, 6> 1, by virtue of (2.7) and a Borel-Cantelli
Lemma argument, we can easily prove our results.
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