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Abstract

PX-478 is a new agent known to inhibit the hypoxia-

responsive transcription factor, HIF-1A, in experimental

tumors. The current study was undertaken in prepa-

ration for clinical trials to determine which noninvasive

imaging endpoint(s) is sensitive to this drug’s actions.

Dynamic contrast-enhanced (DCE) and diffusion-

weighted (DW) magnetic resonance imaging (MRI)

were used to monitor acute effects on tumor hemo-

dynamics and cellularity, respectively. Mice bearing

human xenografts were treated either with PX-478 or

vehicle, and imaged over time. DW imaging was per-

formed at three b values to generate apparent diffu-

sion coefficient of water (ADCw) maps. For DCE-MRI,

a macromolecular contrast reagent, BSA-Gd-DTPA,

was used to determine vascular permeability and vas-

cular volume fractions. PX-478 induced a dramatic

reduction in tumor blood vessel permeability within

2 hours after treatment, which returned to baseline by

48 hours. The anti-VEGF antibody, Avastin, reduced

both the permeability and vascular volume. PX-478 had

no effect on the perfusion behavior of a drug-resistant

tumor system, A-549. Tumor cellularity, estimated from

ADCw, was significantly decreased 24 and 36 hours

after treatment. This is the earliest significant response

of ADC to therapy yet reported. Based on these pre-

clinical findings, both of these imaging endpoints will

be included in the clinical trial of PX-478.
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Introduction

Solid tumors with areas of hypoxia are the most aggres-

sive and difficult tumors to treat [1]. Even micrometastases

have areas of hypoxia at the growing edge where tumor

growth outstrips new blood vessel formation [2,3]. Hypoxic

cancer cells survive the hostile hypoxic environment by chang-

ing to a glycolytic metabolism [4], becoming resistant to

programmed cell death (apoptosis) [5] and producing fac-

tors such as vascular endothelial growth factor (VEGF) that

stimulate new blood vessel formation from existing vascula-

ture (angiogenesis), leading to increased tumor oxygenation

and growth [6]. The cancer cell response to hypoxia is medi-

ated through the hypoxia-inducible factor-1 (HIF-1) transcrip-

tion factor [7,8]. HIF-1 is a heterodimer consisting of HIF1-a

and HIF-1b subunits, both members of the basic–helix– loop–

helix Per-ARNT-SIM (PAS) family of transcription factors [9].

HIF-1a and HIF-1b associate in the cytosol prior to transport to

the nucleus [10] where they bind to hypoxic regulated element

(HRE) DNA sequences in the 3V and 5V regions of hypoxia-

regulated genes [11]. HIF-1b is constitutively expressed and

its levels are not changed by hypoxia [7]. HIF-1a is constitu-

tively expressed but, under aerobic conditions, it is rapidly

degraded by the ubiquitin–26S proteasome pathway so that

HIF-1a levels are almost nondetectable [12]. Under condi-

tions of hypoxia, HIF-1a degradation is inhibited and HIF-1a

protein levels increase, resulting in an increase in HIF-1 trans-

activating activity.

HIF-1a expression has been detected in the majority of

solid tumors examined including brain, bladder, breast, colon,

ovarian, pancreatic, renal, and prostate tumors [13], whereas
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no expression was detected in surrounding normal tissues,

nor was it detected in benign tumors [14]. Clinically, HIF-1a

overexpression has been shown to be a marker of highly

aggressive diseases and has been associated with poor

prognosis and treatment failure in a number of cancers in-

cluding breast, ovarian, cervical, oligodendroglioma, esopha-

geal, and oropharyngeal cancers [15–19]. HIF-1a presence

correlates with tumor grade as well as vascularity [20,21].

High-grade glioblastoma multiforme has significantly higher

levels of VEGF expression and neovascularisation com-

pared with low-grade gliomas [22,23]. Studies such as these

suggest that HIF-1 mediates hypoxia-induced VEGF expres-

sion in tumors, leading to highly aggressive tumor growth.

PX-478 (S-2-amino-3-[4V-N,N,-bis(2-chloroethyl)amino]-

phenyl propionic acid N-oxide dihydrochloride) is a novel

agent that suppresses both constitutive and hypoxia-induced

levels of HIF-1a in cancer cells [24]. The inhibition of tumor

growth by PX-478 is positively associated with HIF-1a levels

in a variety of different human tumor xenografts in scidmice.

Magnetic resonance imaging (MRI) is a noninvasive

technique that can be used to obtain information regarding

tumor vascularization, metabolism, and pathophysiology, and

allows early assessment of therapeutic effects of cancer

drugs [25,26]. One approach is dynamic contrast-enhanced

(DCE) MRI, which measures tumor vascular characteris-

tics after administration of a contrast medium [27,28]. MRI

enhanced with small-molecular-weight contrast agents is

extensively used in the clinic to differentiate benign from

malignant lesions, as well as to monitor tumor microvascular

characteristics during treatment. However, the advantage

of using large molecular agents (macromolecular contrast

media, or MMCM) designed for prolonged intravascular

retention has been demonstrated in several preclinical stud-

ies [29–32]. Correlations betweenMMCM-enhancedparame-

ters and angiogenic markers such as microvessel density and

VEGF levels have been studied [33,34]. Diffusion-weighted

(DW) MRI allows noninvasive characterization of biologic

tissues based on the random microscopic motion of water

proton measurement, referred to as the apparent diffusion

coefficient of water (ADCw) [35]. Preclinical studies have

shown that DWI allows early detection of tumor response to

chemotherapy [36–41]. Most likely, changes in the diffusion

characteristics are caused by a shift of water to the extra-

cellular space [42]. It is therefore anticipated that DW-MRI

will detect early changes in cellular volume fractions resulting

from apoptosis-associated cell shrinkage, necrosis, or vaso-

genic edema [43,44]. Because water is not as diffusionally

restricted in the extracellular space, compared to the intra-

cellular space, a decrease in cell volume fraction will result

in an overall increase in the ADCw. We have previously

characterized the capability of DWI to detect early changes

in tumor ADCw following antitumor therapy in preclinical

models [45,46] and in the clinical setting [47].

This study monitored the antitumor activity of PX-478,

an HIF-1a inhibitor soon to enter clinical testing, on HT-29

human colon xenografts using both DCE and DW-MRI and

assessed the use of these techniques as early and surrogate

endpoints for the antitumor response to the drug. These

noninvasive magnetic resonance techniques provide in-

sights on tumor microvessel characteristics, such as PSP

and vascular volume fraction, and on cellular volume ratios

(cellularity and necrotic fraction), which may be early markers

and even predictors of tumor response.

Materials and Methods

Cell Line and Tumor Implantation

HT-29, a tumorigenic nonmetastatic human colon carci-

noma cell line, and A-549, a non small cell human lung

cancer cell line, were obtained from the American Tissue

Type Collection (Rockville, MD). Cells were passaged twice

weekly with a 1:2 split and cultured in Dulbecco’s modified

Eagle’s medium (DMEM:F12) supplemented with 10% fetal

bovine serum (HyClone, Fort Collins, CO). For inoculation,

approximately 106 cells in 0.1 ml of media were injected

subcutaneously into the right flank of female severe com-

bined immunodeficient (SCID) mice of ages 5 to 6 weeks

(Arizona Cancer Center Experimental Mouse Shared Ser-

vices, Tucson, AZ). Mice developed palpable tumors within a

week of inoculation. Tumors were allowed to grow to 100 to

500 mm3 prior to imaging. All animal protocols were ap-

proved by the University of Arizona Institutional Animal Care

and Use Committee (IACUC; Tuczon, AZ).

Treatments

PX-478 was provided by Prolx Pharmaceuticals (Tucson,

AZ) and prepared fresh each day in 0.9%NaCl as a 10mg/ml

solution and administered intraperitoneally to the mice

within 30 minutes of preparation. Mice were treated with

either vehicle or 125 mg/kg PX-478, and were studied 2,

12, 24, or 48 hours later. A minimum of eight animals were

examined with MRI at each time point (four to six controls,

and four to six treated). An additional 36-hour time point

was included in the DW-MRI protocol. For imaging, mice

were anesthesized using 1.0% to 2.0% isoflurane carried

in oxygen. Body temperature was maintained at 37jC
with a circulating water blanket and was monitored using

a rectal Luxtron fluoroptic thermometer (Luxtron, Santa

Clara, CA). Contrast agent, Gd-DTPA, coupled to albumin

(Gd-BSA, 0.6 mg/g in 0.15 ml of saline), was injected by

a tail vein catheter comprising a 30-gauge needle connected

to PE-20 polyethylene tubing. The Gd-BSA was synthesized

by the Arizona Cancer Center Synthetic Chemistry Core

(Tucson, AZ). Chemical analysis indicated that there were

an average of 3.8 Gd bound per protein molecule. The

human anti-VEGF antibody Avastin (bevacizumab; Genen-

tech, San Francisco, CA) was administered intravenously at

a dose of 20 ml/30 g.

MRI

All imagings were performed on a 4.7-T horizontal

bore MR imager (Bruker, Billerica, MA). Mice were posi-

tioned into a 24-mm ID Litzcage coil (Doty Scientific, Colum-

bia, SC). Sagittal scout images were obtained to determine

the position of tumors.
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DW-MRI methodology. Contiguous axial 2.0-mm slices

covering the entire tumor were imaged as per the follow-

ing protocol. DW images were obtained using the DIFRAD

sequence [48], with the acquisition parameters: TR = 2 sec-

onds, TE = 36 milliseconds, D = 13 milliseconds, d = 5 milli-

seconds, matrix size = 128 � 128, and FOV = 4 � 4 cm,

where d and D represent the duration and separation of dif-

fusion gradients, respectively. At each slice location, images

were obtained at three b values (25, 500, and 950 sec/mm2),

with a time resolution of 13 minutes for a complete data set.

The b value is equal to c2Gd
2d2(D�(d/3)), where Gd is the

strength of the diffusion weighting gradient and c is the

gyromagnetic ratio for protons. Images were reconstructed

using a filtered backprojection algorithm of magnitude data

to minimize motion artifacts. ADCw maps were generated

by fitting the three b values to the Stejskal-Tanner equa-

tion, S = S0e
�bADCw, where S0 is the signal intensity in the

absence of diffusion weighting and S is the signal intensity

with diffusion weighting. ADCw maps were analyzed using

programs written in Interactive Data Language (Research

Systems, Boulder, CO). Hand-drawn regions of interest

(ROIs) corresponding to tumor localized on the scout scans

were cloned onto the ADCw maps, and ADCw distribution

histograms were obtained for each tumor. For each time

point (2, 12, 24, 36, and 48 hours after vehicle or PX-478

injection), two groups (one control and one treated) of four

to six mice were imaged. In addition, four mice were moni-

tored over the full time course, independently of the DCE-

MRI protocol, to confirm the pattern observed on separate

groups of mice.

DCE-MRI acquisition and analysis. Contiguous axial 2.0-mm

slices covering the entire tumor as well as a slice over the

kidneys were imaged in the following protocol. A proton

density–weighted (TR = 8 seconds, TE = 5.9 milliseconds,

NA = 2, and FOV = 4 � 4 cm) and a T1-weighted spin-echo

image (TR = 300milliseconds, TE = 5.9 milliseconds, NA = 8,

and FOV = 4 � 4 cm) were collected prior to injection of con-

trast. A dynamic series of spin-echo images (TR = 300 milli-

seconds, TE = 5.9 milliseconds, NA = 4, FOV = 4� 4 cm, and

NR = 19) were collected over 45 minutes, with the contrast

agent solution being injected during repetitions 2 to 5.

Signal enhancement in the DCE data was converted

to albumin–Gd-DTPA concentration using the relaxivity of

1.08 l/g s measured in vitro at 37jC. This can be converted to

64.8 mM albumin/sec, assuming a MW of 60 kDa. Enhance-

ment was converted to concentration by assuming a linear

relationship between Gd concentration and relaxation rate

enhancement. These [albumin–Gd-DTPA] versus time data

were fitted to a straight line for each pixel to obtain a slope

(related to vascular permeability times the vascular surface

area, PSP) and y-axis intercept (related to the vascular

volume). In the absence of vascular volume changes, the

PSP is referred to simply as ‘‘permeability.’’

The vascular volume (VV) parameter measured in tumor

pixels was normalized to the mean value obtained in an ROI

placed on a muscle in the same animal and multiplied

by 5% (fVV fraction of the muscle) to convert it to the

vascular volume fraction of the tumor. To be able to compare

values between different mice, the slope parameter was

normalized for Gd dose as follows for each mouse. The

mean slope parameter calculated from pixels falling within

the vena cava was used to normalize the slope determined

in the tumor. The vena cava was identified using a hand-

drawn ROI of approximately 5 to 10 pixels. Data analysis

was performed using programs written in Interactive Data

Language (Research Systems).

Antitumor Studies

The doses of PX-478 used for antitumor studies were

80 mg/kg daily for 5 days for the HT-29 colon cancer

xenograft mice and 100 mg/kg daily for 5 days for the

A-549 lung cancer xenograft mice. There were eight mice

in each group. Tumor volume was measured twice weekly

until the tumor reached 2000 mm3, or became necrotic,

at which point the animals were euthanized. Orthogonal

tumor diameters (dshort and dlong) were measured twice

weekly with electronic calipers and converted to volume

by the formula: volume = (dshort)
2(dlong)/2. Log10 cell kill was

calculated by the formula: log10 cell kill = (tumor growth

delay [day]) / (tumor doubling time [day] � 3.32). One-way

analysis of variance using the general linear model was

used to test for the effect of treatment on tumor growth rate

and growth delay.

HIF-1a Immunohistochemistry

Paraffin-embedded tumor sections were heated at

60jC for 30 minutes and rehydrated through xylene and

graded alcohols. Antigen retrieval was at 40 minutes at pH

9.0 for HIF-1a. The slides were blocked for 30 minutes in

4% milk, 1% goat serum, and 0.1% thimerosal in phosphate-

buffered saline (PBS). After blocking, the slides were

processed using a Ventana Medical Systems ES autoslide

stainer. Endogenous peroxidase activity was quenched

using a hydrogen peroxide–based inhibitor (DAB Basic

Detection Kit; Ventana Medical Systems, Tucson, AZ)

and endogenous biotin blocked using an AB Blocking Kit

(Ventana Medical Systems). The slides were incubated

for 32 minutes at 42jC with the mouse monoclonal

antihuman HIF-1a (Transduction Laboratories, Lexington,

KY) at 10 g/ml. A biotinylated universal secondary antibody,

which recognized mouse IgG/IgM, was applied, followed

by horseradish peroxidase–conjugated avidin, DAB/

hydrogen peroxide, and a copper enhancer. The slides

were dehydrated through graded alcohols, toluene and

xylene, and coverslipped using Vectamount (Vector Labo-

ratories, Burlingame, CA). HIF-1a staining was normalized

to the staining of an onslide control of hypoxic HT-29 colon

cancer cells.

VEGF Detection

Plasma was collected into EDTA tubes and tumors

were removed and immediately snap-frozen in liquid nitro-

gen. Tumors were then placed in buffer (10 mM Tris/HCl,

pH 7.4, and 100 mM NaCl) and homogenized using

a PowerGen 125 (Fisher Scientific, Pittsburg, PA). The
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suspension was then centrifuged twice at 8000g at 4jC
for 15 minutes. Protein was quantitated in a supernatant

using the Pierce (Rockford, IL) BCA assay. VEGF levels

were quantitated in plasma and tumor lysates using both

human (hVEGF) and mouse VEGF (mVEGF) ELISA (R&D

Systems, Minneapolis, MN), according to the manufac-

turer’s instructions.

Statistical Analysis

Data are presented as the mean and standard error of

the mean (SEM). Two-tailed Student’s t tests, ANOVA, or

Mann–Whitney rank sum tests were used where appropriate.

P < .05 was considered to be statistically significant.

Results

Effect of PX-478 on HT-29 Tumor ADCw

DW-MRI was used to detect the early response of HT-29

tumor xenografts to the antitumor agent, PX-478. A single

gradient direction was used in this study because previous

studies have shown the absence of anisotropy in extracra-

nial tumor models [46,49]. ADC maps from representative

animals at different times posttherapy are shown in Figure 1.

Changes in mean tumor ADCw values over time, posttreat-

ment, are presented in Figure 2. No change in ADC distri-

bution was observed in sham-treated animals (Figure 2).

At early time points (2 and 12 hours), ADCw values were

not significantly different between control and treated

groups. A substantial increase in mean relative tumor ADCw

was observed for the treated groups at 24 and 36 hours

posttreatment (94.5 ± 4.8%, P = .005, and 38.4 ± 4.9%,

P = .01, respectively) before returning to pretreatment mean

ADCw values by 48 hours posttreatment (nonsignificant

change of 2.5% ± 6.7%, P = .38). ROIs defining the tumor

were used to generate histograms of tumor ADCw values.

ADCw histograms of individual tumors were then summed

for each time point (Figure 2). A right shift in tumor water

diffusion beginning by 24 hours after therapy is shown in

Figure 2. Water diffusibility was still increased by 36 hours

posttreatment and appeared to return to pretreatment values

by the second day after therapy. This significant change in

ADC (by 24 hours) occurs sooner than in other reports.

Effects of PX-478 on HT-29 Tumor DCE-MRI Parameters

Extravasation of the Gd-BSA was assumed to be describ-

able by a PSP-limited two-compartment model with uni-

directional transport of contrast agent on the timescale of

our DCE-MRI experiments.

Parameter maps of ‘‘permeability’’ and vascular volume

fraction were created to visualize the heterogeneity of tumor

hemodynamic parameters. Heterogeneities in the distribu-

tions of pharmacokinetic parameters have previously been

shown in experimental as well as in human tumors. Typical

permeability (P ) and vascular volume fraction (VV) maps

at each time point are shown in Figure 3. Tumors were iden-

tified on proton density–weighted images and delineated

by hand-drawn ROIs. Tumor vascular PSP is dramatically

decreased in the PX-478 group 2, 12, and 24 hours after

treatment in comparison with the control group (Figure 3A).

Figure 1. DW images at a b value of 25 (up) and corresponding diffusion maps (bottom) of an HT-29 tumor-bearing mouse before, 24 hours, and 48 hours after

PX-478 injection. Each image represents an axial slice of the mouse with the tumor area encircled and indicated by an arrow.
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This decrease is no longer observed by 48 hours after

treatment. Although some individual changes (positive or

negative) in tumor vascular volume fraction were sometimes

observed (Figure 3B; 2 and 24 hours posttreatment), the

mean change between groups was not statistically signifi-

cant. Hence, we conclude that the mechanism underlying the

change in PSP is due to alterations in permeability, with little

or no change in surface area, because surface area changes

will also be reflected in the vascular volume estimation.

Time courses of mean normalized values and mean

VV fraction values are presented in Figure 4 (relative

data) and Table 1 (normalized values). A rapid decrease

in tumor blood vessel permeability was observed within

2 hours after drug administration compared to control

tumors, with a mean reduction of 73.3 ± 13.9% (P = .012).

The decrease in permeability was still 72.4 ± 6.9% at

12 hours after treatment (P = .003). The effect progressively

decreased in later time points, with a mean reduction of

55.0 ±10.3% (P = .02) at 24 hours posttreatment and a

return to control values at 48 hours (3.9 ± 10.9 %, P = .71,

not significant). By contrast, the vascular volume fraction

of the tumor was not significantly modified at any time

point and remained unchanged between control and

treated tumors.

Histogram analyses of these data lose spatial informa-

tion yet retain the distribution of values for quantitative

analyses. Figure 5 shows histogram data summed for all

animals in each group. Control tumors at each time point

(filled bars in each plot) were characterized by hetero-

geneous and broad distributions of ‘‘permeability’’ values

at all time points. In contrast, treated tumors showed more

homogeneous and narrow histograms centered around

much lower values at 2, 12, and 24 hours (open bars).

Note that the range of median of the distribution of perme-

ability values returned to control levels at 48 hours. These

data can also be further reduced to median values (dashed

vertical lines in each population), which were significantly

decreased in the treated groups 2, 12, and 24 hours

after treatment.

Effects of Anti-VEGF Antibodies on HT-29 Tumor

DCE Parameters

To assess the ability of the MMCM DCE technique to

detect acute changes after treatment with an antitumor

agent aimed at decreasing VEGF in this tumor model, human

anti-VEGF antibody (Avastin) was administered to HT-29

tumor-bearing mice. A 75.0 ± 4.0 % decrease in vascular

PSP was observed within an hour of injection of the anti-

body (P < .0001), similar to the changes observed 2 and

12 hours after PX-478 administration (Figure 6A, Table 1).

The anti-VEGF antibody treatment also induced a signifi-

cant 31.5 ± 2.6 % (P = .023) decrease in vascular volume

fraction, unlike treatment with PX-478 (Figure 6A, Table 1).

Hence, in this case, the PSP changes may not be entirely

due to permeability, and may also involve alterations in the

vascular surface area.

Figure 2. Top: Full time course of average tumor ADCw following PX-478 administration (control mice, full line; treated mice, dotted line). A significant increase in

average tumor ADCw is observed at 24 and 36 hours posttreatment. Bottom: Summed ADCw histograms of control (filled bars) and treated tumors (open bars) at

each time point. A right shift in tumor ADCw is observed at 24 and 48 hours posttreatment.
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Effects of PX-478 on A-549 Tumor DCE Parameters

A-549 non small cell lung tumors are resistant to PX-

478 (Antitumor Studies section and Ref. [24]) and were

therefore used as negative controls for the DCE-MRI proto-

col. No significant change was observed for either tumor

permeability or vascular volume fraction (Figure 6B, Table 1).

These data suggest that the changes observed on HT-29

xenografts after administration of PX-478 are connected to

the sensitivity of this tumor model to the drug. Notably, the

untreated PSP values of A-549 tumors were lower than the

control values obtained in HT-29 tumors, suggesting that

baseline PSP values may be prognostic for the antitumor

effects of PX-478, although further investigation is required.

Antitumor Effect of PX-478 on HT-29 and A-549 Xenografts,

HIF-1a Staining, and VEGF Detection

HT-29 colon cancer xenografts exhibited staining for

HIF-1a, whereas A-549 non small cell lung cancer xeno-

grafts showed very little staining (Figure 7). The A-549 lung

cancer xenografts showed no growth inhibition when treated

with PX-478 (100 mg/kg, i.p.) daily for 5 days, whereas the

HT-29 colon cancer xenografts exhibited a tumor growth

delay of 16 days with a calculated log cell kill of 1.6 (P < .05).

The lack of responsiveness to PX-478 by A-549 tumors is

probably due to the lack of HIF-1a expression in these

tumors compared to HT-29 xenografts (Figure 7). The lower

permeability observed is probably explained by the lower

expression of VEGF-A, an HIF-1 target gene. Levels of

VEGF-A are also markedly lowered in A-549 tumors versus

HT-29 tumors (50.12 ± 12.09 vs 1.81 ± 0.23 pg/mg, P = .012,

Mann–Whitney rank sum test) as measured by ELISA.

Discussion

The activity of PX-478, an inhibitor of HIF-1a in experimental

tumors, was evaluated on HT-29 human colon xenografts

using both DCE and DW-MRI. PX-478 induced a substantial

reduction in tumor blood vessel permeability as early as

2 hours after a single dose of 125 mg/kg, which persisted

until 24 hours posttreatment, and had returned to control

values by 48 hours. The tumor vascular volume fraction

was not significantly altered over the same time course.

Although the time course of response was different for

diffusion MRI, tumor ADCw was also shown to be an early

marker of tumor response. No change in tumor ADCw could

be observed at very early time points, but a significant in-

crease was shown 24 and 36 hours after treatment, having

returned to control values by 48 hours posttreatment.

Tumor vessel permeability to MMCM has been used

in the preclinical setting to assess the efficacy of differ-

ent antiangiogenic therapies [27,30,32,34,50]. MMCM-

enhanced MRI has been demonstrated to be capable of

monitoring the direct antivascular effects of anti-VEGF anti-

body treatment in xenografts [51–53]. Changes in tumor

vascular parameters have been measured by DCE-MRI

using clinically approved small molecule contrast agents in

Figure 3. (A) Permeability maps of tumors 2, 12, 24, and 48 hours after either vehicle (control) or drug (PX-478) injection. Each image represents an axial slice

of the mouse with the tumor area encircled. A substantial reduction in tumor vascular permeability is observed as soon as 2 hours after PX-478 injection and until

24 hours, in comparison with the control situation. This is no longer observed by 48 hours after treatment. (B) Vascular volume fraction (VV) maps of tumors 2, 12,

24, and 48 hours after either vehicle (control) or drug (PX-478) injection. Each image represents an axial slice of the mouse with the tumor area encircled. Some

individual positive or negative changes can be observed, but these were not significant between groups.
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animal human tumor xenograft models following treatment

with the small molecule VEGF receptor tyrosine kinase

inhibitors ZD6474 [54] and PTK787/ZK222584 [55,56], and

anti-VEGF antibody [57–59]. DCE-MRI studies in patients

with colon cancer receiving PTK 787/ZK222584 as part of

Phase I trials, while showing heterogeneity in tumor vascular

response, have shown a significant correlation between

tumor perfusion and the dose of PTK 787/ZK222584, with

patients with stable disease having a significantly greater

reduction in the transfer constant, K
trans

, which is related to

flow, permeability, and vascular surface area [55]. Patients

receiving anti-VEGF antibody as part of Phase I trial have

also exhibited a reduction in tumor K
trans

measured by DCE-

MRI after the first treatment [60]. In the present study, we

observed acute changes within an hour following anti-

VEGF antibody therapy using the large molecular contrast

agent, Gd-BSA. This suggests that the reductions in vas-

cular permeability parameters measured by DCE-MRI were

related to changes in tumor VEGF levels. In this context, PX-

478 has been shown to decrease both HIF-1a and VEGF

staining in HT-29 tumors [24]. However, the time course for

the decrease in HIF-1a and VEGF was different from the

changes in PSP measured by DCE-MRI. In our previous

study, both HIF-1a and VEGF decreased within 2 hours

and returned to control values by 8 hours after treatment.

In contrast, in the current study, the vascular permeability

estimated from MMCM kinetics was still reduced 24 hours

after treatment. Also, Avastin led to changes in both vas-

cular volume and PSP, whereas PX-478 affected only PSP,

which is interpreted to be due to permeability changes alone.

The differences between these responses are unknown,

but may also indicate that the effect of PX-478 on hemo-

dynamics is not mediated through VEGF. However, it also

remains possible that the hemodynamics is affected by

localconcentrations or threshold values of VEGF, and these

cannot yet be measured. In patients, increased VEGF ex-

pression has been correlated with the progression of colon

carcinoma [61] and with the development of colon cancer

metastasis [62]. In node-negative primary colon cancer,

elevated tumor VEGF has been correlated with decreased

patient survival [63]. Also, increased tumor VEGF expres-

sion has been associated with increased tumor angiogenesis

and metastasis of human gastric cancer [64]. However, the

estimation of VEGF levels is now more controversial as an

accurate marker of therapeutic efficacy. Clinical studies

focused on the relation between angiogenic markers (micro-

vascular density or VEGF levels), and quantitative DCE-MRI

enhancement data have shown mixed results [33,34].

Su et al. [33] concluded that the lack of correlation could

be partly due to the inability of DCE-MRI with low-molecular-

weight agents to reveal the true vascular function within

the tumor. Bhujwalla et al. [34] recently described the

Figure 4. Full time course of average vascular permeability (A) and vascular

volume fraction (B) following administration of PX-478 (control mice, full line;

treated mice, dotted line). Blood vessel permeability was estimated from the

slope of the enhancement curves, and tumor vascular volume (VV) fraction

was estimated from the ordinate. A significant reduction in permeability is

observed 2, 12, and 24 hours after treatment with PX-478, whereas no

changes are observed in the VV fraction.

Table 1. Absolute Values of DCE-MRI Enhancement Parameters after Treatment with PX-478 or Avastin.

Tumor Model Tx 1 hr Post-Tx 2 hr Post-Tx 12 hr Post-Tx 24 hr Post-Tx 48 hr Post-Tx

nP (�10�4) VVf (%) nP (�10�4) VVf (%) nP (�10�4) VVf (%) nP (�10�4) VVf (%) nP (�10�4) VVf (%)

HT-29 Control 0.65 ± 0.04 6.4 ± 0.7 0.62 ± 0.07 6.5 ± 1.2 0.62 ± 0.06 6.0 ± 0.5 0.62 ± 0.01 6.0 ± 0.8 0.60 ± 0.01 5.8 ± 0.9

PX-478 n.d. 0.17 ± 0.09* 7.5 ± 1.8 0.17 ± 0.04** 5.7 ± 0.3 0.28 ± 0.06* 6.6 ± 0.8 0.62 ± 0.05 6.6 ± 0.7

Avastin 0.16 ± 0.03** 4.4 ± 0.2* n.d.

A-549 Control n.d. 0.35 ± 0.01 6.3 ± 0.4 n.d.

PX-478 0.34 ± 0.01 6.0 ± 0.7

Normalized permeability (nP) and vascular volume fraction (VVf) values (mean ± SEM) for control (carrier injection), PX-478 (125 mg/kg, i.p.), and Avastin (20 l/

30 g, i.v.) groups. Note that the permeability is significantly decreased 2, 12, and 24 hours after treatment with PX-478 and within 1 hour after treatment with the

anti-VEGF antibody Avastin, and that the VVf is only affected by Avastin.

*P < .05 relative to the control group (t-tests).

**P < .01 relative to the control group (t-tests).
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antiangiogenic effect of the fumagillin derivative, TNP-470,

by MMCM DCE-MRI. They observed a heterogeneous re-

sponse, with some regions of decreased PSP and some

regions with increased PSP values resulting in an apparent

lack of overall response, based on the average value of

tumor PSP, whereas ELISA assays detected an increase

of tumor VEGF. DCE-MRI was shown to be a more reliable

marker by taking into account tumor heterogeneity. Our

results suggest that DCE-MRI might be a more sensitive

measure of functional tumor permeability, or that perme-

ability factors other than VEGF might be involved in the

response to PX-478.

Importantly, a lack of change in the PSP of A-549 tumors

between control and treated tumors was observed in this

study. This correlates well with the inability of PX-478 to

induce growth delays in A-549 tumors. In this case, the lack

of an effect may be due to the lower baseline PSP values

in A-549 compared to HT-29 tumors. It also implies that the

effect of this drug on vascular parameters is mediated

through the tumor cells themselves and not the host vascu-

lature, which was the same in both tumor settings.

It has been suggested in the past that DCE-MRI could be

used to monitor clinical response to anti-VEGF and inhibition

of angiogenesis [54–57,65]. The current findings suggest

that DCE-MRI may also be useful to assess the response to

inhibition of HIF-1. However, it should be acknowledged that

the current study used MMCM, which are currently unavail-

able in a clinical setting. These results emphasize the need

to develop MMCM for monitoring antivascular therapies. Our

finding that a tumor with low HIF-1a staining, which was not

responsive to anti–HIF-1 therapy, also had a very low vas-

cular PSP as measured by MMCM DCE-MRI suggests that

DCE-MRI may also be useful clinically for screening and

preselecting patients for therapy with anti–HIF-1 and other

antiangiogenic therapies.

DW-MRI is able to detect early changes in the morpho-

logy and physiology of tissues after antineoplastic therapies.

An increase in tumor ADCw could result from changes in cell

membrane permeability, cell shrinkage, or vasogenic edema.

Vasogenic edema results from high vessel permeability that

results in the movement of osmotically active proteins and

associated water to the interstitium. This mechanism is

unlikely to be the cause of increased ADC in the current

system because vessel permeability decreased in response

to PX-478. Both of these are associated with cell death and

result in the modification of the intracellular to extracellular

water populations ratio [43]. Parameters such as cell density

and necrotic fraction have indeed been monitored with

diffusion MRI [49,66]. In this study, we observed an increase

in tumor ADCw that is consistent with other studies using

other tumors and drugs [37–41,44,46,67]. In these studies,

Figure 5. Summed permeability histograms of control (open, n = 4) and treated tumors (plain, n = 4) at each time point. Note that the median (dotted line) of the

treated tumors is lower than the median value of the controls. It is progressively shifted to the median of the controls over time, and is back at control values

48 hours posttreatment.

Figure 6. (A) Relative change in HT-29 tumor vascular permeability and

vascular volume fraction 1 hour after treatment with anti-VEGF antibody

(Avastin). A significant reduction in permeability as well as in VV fraction is

observed with this positive control. (B) Relative change in A-549 tumor

(resistant to the antitumor activity of PX-478, negative control) vascular

permeability, and vascular volume fraction 2 hours after treatment with

PX-478. No significant change is observed in DCE parameters.
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an increase in ADCw is correlated with ultimate tumor re-

sponse, whether by apoptosis or other means of cell death.

Notably, the current data document the earliest significant

increase in chemotherapy-induced ADCw. Previous reports

have indicated that the earliest significance was not reached

until 48 hours following therapy [36,39].

The combination of dynamic and DWMRI in the follow-up

of chemotherapy has been used in the past [68,69] and has

been proven to be of good predictive value for therapy

outcome in patients with primary rectal carcinoma [70]. In

this study, the acquisition of both DW and DCE images in a

single protocol on the same animal allowed us to coregister

these data and compare the two techniques. We define the

dynamic range (DR) as the maximum change relative to the

variance of controls. For these studies, the DR was higher

for DW-MRI (maximum effect at 24 hours, DR = 8.7) than

for DCE-MRI (maximum effect at 2 hours, DR = 3.2). Tumor

ADCw was thereby shown to be a sensitive and early marker

of tumor response in this study. Nonetheless, the DCE-MRI

response preceded the diffusion response and opened up

the possibility of monitoring acute effects of drug in vivo. The

combination of the two techniques gives unique insights

into the complex response of HT-29 tumors to PX-478 by

showing very early changes in vascular permeability fol-

lowed by large changes in cellularity. Considering the mag-

nitude of response of HT-29 xenografts to PX-478 observed

with early and sensitive markers, we can speculate that

noninvasive monitoring of PX-478 by DCE and/or diffusion

MRI will be of particular interest in the clinic.
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