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Abstract

We connect the attractor equations of a certain class of N = 2, d = 5 supergravities with their (1,0),
d = 6 counterparts, by relating the moduli space of non-BPS d = 5 black hole/black string attractors to the
moduli space of extremal dyonic black string d = 6 non-BPS attractors. For d = 5 real special symmetric
spaces and for N = 4,6,8 theories, we explicitly compute the flat directions of the black object potential
corresponding to vanishing eigenvalues of its Hessian matrix. In the case N = 4, we study the relation to
the (2,0), d = 6 theory. We finally describe the embedding of the N = 2, d = 5 magic models in N = 8,
d = 5 supergravity as well as the interconnection among the corresponding charge orbits.
© 2007 Elsevier B.V. All rights reserved.

1. Introduction

Recently the study of the attractor equations for extremal black holes (BHs) [1–5] in four
dimensions received special attention, especially in relation with new results on non-BPS, non-
supersymmetric solutions [6–48].

Not much is known about non-BPS attractors in five dimensions, although general results
for symmetric special geometries in BHs (and black strings) backgrounds were derived in [49].
More recently, it has been shown [36] that real special symmetric spaces have, in the non-BPS
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case, a moduli space of vacua, as it was the case for their d = 4 special Kähler descendants [21].
In four dimensions, massless Hessian modes for generic cubic geometries were shown to occur
for the non-BPS case with non-vanishing central charge in [10,34]. Some additional insight on
the correspondence among (the supersymmetry preserving features of) extremal BH attractors
in four and five dimensions have been gained in [40], by relating the d = 4 and 5 BH potentials
and the corresponding attractor equations. In particular, it was shown that the moduli space of
non-BPS attractors in d = 5 real special symmetric geometries must be in the intersection of
the moduli spaces of non-BPS Z �= 0 and non-BPS Z = 0 attractors in the corresponding d = 4
special Kähler homogeneous geometries.

Aim of the present investigation is to perform concrete computations of the massless modes
of the non-BPS d = 5 Hessian matrix, and further relate the d = 5 BH (or black string) potential
to the d = 6 dyonic extremal black string potential and its BPS and non-BPS critical points,
following the approach of [49] and [50]. This analysis reveals a noteworthy feature of the relation
between d = 5 and d = 6. Namely, the moduli space of d = 6 non-BPS (with vanishing central
charge1) dyonic string [51] attractors is a submanifold of the moduli space of d = 5 non-BPS
attractors of symmetric real special geometries. The only exception is provided by the cubic
reducible sequence of real special geometries, for which the non-BPS d = 6 and d = 5 moduli
spaces actually coincide. It is worth pointing out that moduli spaces also exist, for particular non-
BPS-supporting charge configurations, for all real special geometries with a d = 6 uplift [52].
This is the case for the homogeneous non-symmetric real special geometries studied in [53].
For N = 2, d = 5 magic supergravities, with the exception of the octonionic case, the non-BPS
moduli spaces can also be obtained as suitable truncations of the moduli space of BPS sttractors
of N = 8, d = 5 supergravity. In all cases, the Hessian matrix is semi-positive definite.

It is worth pointing out that in this work we consider only extremal black p-extended objects
which are asymptotically flat, spherically symmetric and with an horizon geometry AdSp+2 ×
Sd−p−2 [54]. Thus, we do not deal with, for instance, black rings and rotating BHs in d = 5,
which however also exhibit an attractor behaviour (see, e.g., [55]).

The paper is organized as follows.
In Section 2 we recall some relevant facts about N = 2, d = 6 self-dual black string attractors

and the properties of the black string effective potential in terms of the moduli space spanned
by the tensor multiplets’ scalars. In Section 3 we discuss the d = 5 effective potential in a six-
dimensional language for the d = 5 models admitting a d = 6 uplift (including all homogeneous
real special geometries classified in [53]), in the absence (Section 3.1) or presence (Section 3.2)
of d = 6 vector multiplets. In Section 3.2.1 we perform an analysis of the attractors in d = 5,
N = 2 magic supergravities, and comment on the moduli spaces of attractor solutions for such
theories. Thence, in Sections 4.1, 4.2 and 4.3 we recall a similar analysis of the attractors re-
spectively in d = 5, N = 8, 6 and 4 supergravities [49,56,57]. The analysis holds for all N = 2
symmetric spaces, as well as for homogeneous spaces by considering particular charge con-
figurations. In Section 5 we comment on the conditions to be satisfied in order to obtain an
anomaly-free (1,0), d = 6 supergravity by uplifting N = 2, d = 5 theories. Section 6 is devoted
to final remarks and conclusions.

Appendix A discusses some group embeddings, relevant in order to elucidate the relation be-
tween the N = 8, d = 5 BPS unique orbit and the non-BPS orbits of the N = 2, d = 5 theories

1 This means that non-BPS dyonic strings are neutral with respect to the central extension of the (1,0), d = 6 super-
symmetry algebra.
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obtained as consistent truncations of N = 8 supergravity. Such N = 2 theories include the magic
supergravities based on the Jordan algebras JH

3 , JC

3 , JR

3 with nH = 0,1,2 hypermultiplets, re-
spectively.

2. (1,0), d = 6 attractors for extremal dyonic strings

In d = 6, (1,0) and (2,0) chiral supergravities2 there are no BPS BH states, because the
central extension of the corresponding d = 6 superalgebras does not contain scalar central
charges [59]. However, there are BPS (dyonic) string configurations, as allowed from the su-
peralgebra, and extremal black string BPS attractors exist [49,50]. Such attractors preserve 4
supersymmetries, so they are the d = 6 analogue of d = 5 and d = 4 1

2 -BPS extremal BH at-
tractors. Interestingly enough, extremal black string non-BPS attractors also exist in such d = 6
theories [49], as it is the case for (extremal BH attractors) in d = 5 and d = 4. The next sections
are partially devoted to such an issue.

Let us start by recalling the general structure of the minimal supergravity in d = 6, the chiral
(1,0) theory. The field content of the minimal theory is:

• Gravitational multiplet3:

(2.1)
(
V a

μ,ψAμ,B+
μν

)
(μ = 0,1, . . . ,5;A = 1,2).

• Tensor multiplets:

(2.2)
(
B−

μν,χ
A,φ

)i
(i = 1, . . . , q + 1).

The scalar fields in the tensor multiplets sit in the coset space [60]

(2.3)
G

H
= O(1, q + 1)

O(q + 1)
.

They may be parametrized in terms of q + 2 fields XΛ, (Λ = 0,1, . . . , q + 1), contstrained
by the relation

(2.4)XΛXΣηΛΣ ≡ XΛXΛ = 1,

where ηΛΣ = diag[1,−1, . . . ,−1]. The kinetic matrix for the tensors is:

(2.5)GΛΣ = 2XΛXΣ − ηΛΣ,

whose inverse matrix is:

(2.6)GΛΣ = 2XΛXΣ − ηΛΣ.

As for any d = 6 theory, the field strengths of the antisymmetric tensors HΛ = dBΛ have
definite self-duality properties:

(2.7)GΛΣ
	HΣ = ηΛΣHΣ.

2 In the literature they are sometimes referred to as (2,0) and (4,0) respectively [58].
3 Here and below the SU(2) indices A up and down denote opposite chiralities.
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As a consequence, there is no distinction between the associated electric and magnetic
charges

(2.8)eΛ = ηΛΣeΣ =
∫
S3

HΛ.

• Vector multiplets:

(2.9)(Aμ,λA)α (α = 1, . . . ,m).

The kinetic matrix for the vector field strengths is given in terms of a given constant matrix
CΛ

αβ by [61]:

(2.10)Nαβ = XΛCΛ
αβ.

• Hypermultiplets:

(2.11)
(
ζA,4q

)�
(� = 1, . . . , p).

The hypermultiplets do not play any role in the attractor mechanism, and will not be dis-
cussed further here.

Since the vector multiplets do not contain scalar fields, the only contribution to the black
string effective potential comes from the tensor multiplets, and reads [50]:

(2.12)V (6) = GΛΣeΛeΣ = 2
(
XΛeΛ

)2 − eΛeΛ

or equivalently, in terms of the dressed central and matter charges Z = (XΛeΛ) and Zi = PiΛeΛ

(where P ΛΣ , P ΛΣXΣ = 0, is the projector orthogonal to the central charge):

(2.13)V (6) = Z2 + ZiZ
i.

The criticality conditions for the effective black string potential (2.13) reads

(2.14)∂iV
(6) = 0 ⇔ ZZi = 0, ∀i,

and therefore two different extrema are allowed, the BPS one for Zi = 0 ∀i, and a non-BPS one
for Z = 0, both yielding the following critical value of V (6):

(2.15)V (6)
∣∣
extr = ∣∣eΛeΛ

∣∣.
3. N = 2, d = 5 attractors with a six-dimensional interpretation

In the absence of gauging, the minimal five-dimensional theory generally admits the following
field content (omitting hypermultiplets):

• Gravitational multiplet:

(3.1)
(
V a

μ,ψAμ,Aμ

)
(μ = 0,1, . . . ,4;A = 1,2).

• Vector multiplets:

(3.2)
(
Aμ,χA,φ

)a
(a = 1, . . . , n).



432 L. Andrianopoli et al. / Nuclear Physics B 795 (2008) 428–452
The scalar fields do not necessarily belong to a coset manifold, but their σ -model is described
by real-special geometry. In particular, the scalar manifold is described by the locus

(3.3)V(L) = 1

where LI (φ), I = 0,1, . . . , n are function of the scalars and V is the cubic polynomial:

(3.4)V(L) = 1

3!dIJKLILJ LK,

written in terms of an appropriate totally symmetric, constant matrix dIJK . Note that in order to
have a d = 6 uplift the real special geometry must have a certain structure, as discussed in [63].
Namely

(3.5)V = zXΛηΛΣXΣ + XΛCΛαβXαXβ.

This is always the case for the homogeneous spaces discussed in [53], where CΛαβ is written in
terms of the γ -matrices of SO(q + 1) Clifford algebras.

The kinetic matrix for the vector field-strengths has the general form:

(3.6)aIJ = −∂I ∂J logV|V=1.

The BH effective potential in five-dimensions is given by

(3.7)V (5) = aIJ qI qJ ,

where qI = ∫
S3

∂L
∂F I are the electric charges and aIJ the inverse of (3.6).

3.1. No d = 6 vector multiplets

We are interested in finding the relation of the six-dimensional attractor behavior to the five-
dimensional one. Let us first consider the simplest case of a six-dimensional supergravity theory
only coupled to q + 1 tensor multiplets (no vector multiplets). In this case, n = q + 1 and the
scalar content is given by the six-dimensional scalars XΛ plus the Kaluza–Klein (KK) dilaton z.
The five-dimensional scalar fields are related by the constraint (3.3), where the surface expression
(3.4) takes here the simple form4:

(3.1.1)V(L) = V(z,X) = 1

2
zXΛXΣηΛΣ.

The constraint (3.3) then becomes:

(3.1.2)
1

2
XΛXΛ = z−1.

The components of the kinetic matrix are in this case:

(3.1.3)aIJ =

⎧⎪⎨
⎪⎩

azz = z−2,

azΛ = 0,

aΛΣ = zG̃ΛΣ,

4 This corresponds to the d = 5 symmetric real spaces of the “generic sequence” SO(1,1) × SO(1,q+1) [62].
SO(q+1)
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where the matrix G̃

(3.1.4)G̃ΛΣ(X) = 2
XΛXΣ

XΓ XΓ

− ηΛΣ

is related to G in (2.5) by

(3.1.5)G̃ΛΣ

∣∣
XΛXΛ=1 = GΛΣ.

More precisely, setting:

(3.1.6)X̂Λ ≡ XΛ√
XΛXΛ

(
X̂ΛX̂Λ = 1

)
,

we have:

(3.1.7)G̃ΛΣ(X) = GΛΣ(X̂).

The matrix (3.1.3) is easily inverted giving:

(3.1.8)aIJ =
⎧⎨
⎩

azz = z2,

azΛ = 0,

aΛΣ = z−1G̃ΛΣ.

Then, in this case the BH effective potential takes the form:

(3.1.9)V (5) = z2e2
z + z−1G̃ΛΣ(X)eΛeΣ = z2e2

z + z−1V (6)(X̂),

where (ez, eΛ) ≡ qI denote the electric charges and, to obtain the last expression, we made use
of (3.1.7). The physical interpretation of the charges ez and eΛ is the following: ez is the Kaluza–
Klein charge and eΛ are the charges of dyonic strings [51]wrapped around S1.

The extrema of V (5) are found for:

(3.1.10)
∂V (5)

∂z
= 0 ⇒ 2ze2

z − 1

2
z−2V (6)(X̂) = 0,

which is the stabilization equation for the KK dilaton, solved by:

(3.1.11)z =
(

V (6)|extr

2e2
z

) 1
3

and for:

(3.1.12)
∂V (5)

∂X̂Λ
= 0 ⇒ ∂V (6)

∂X̂Λ
= 0,

which shows that in this case the attractor solutions of the five-dimensional theory are precisely
the same of the parent six-dimensional theory.

The BH entropy is now given by [49]:

(3.1.13)
(
S

(5)
BH

)4/3 = V (5)
∣∣
extr = 3

(
1

2
ezV

(6)
∣∣
extr

) 2
3 = 3

(
1

2
eze

ΛeΛ

) 2
3

.

The solution of Eq. (3.1.12) depends on whether the d = 6 attractor is BPS or not. As previ-
ously mentioned, the d = 6 BPS attractors correspond to Zi = 0 ∀i, whereas the non-BPS ones
are given by Z = 0 (and Zi �= 0 for at least some i) [49,50]. Thus, all q + 1 d = 6 BPS moduli



434 L. Andrianopoli et al. / Nuclear Physics B 795 (2008) 428–452
are fixed, while there are q non-BPS flat directions, spanning the d = 6 non-BPS moduli space
SO(1,q)
SO(q)

[49].
The supersymmetry-preserving features (BPS or non-BPS) of the d = 6 attractors solutions

depend on the sign of eΛeΛ: it is BPS for eΛeΛ > 0 and non-BPS for eΛeΛ < 0. In this latter
case, also the d = 5 solution is non-BPS, because in a given frame [52] eze

ΛeΛ = eze+e− (with
e± ≡ e1 ± e2), and if e+e− < 0 the three charges cannot have the same sign [40]. On the other
hand, if eΛeΛ > 0 one can have both BPS and non-BPS d = 5 solutions [40].

Thus, we can conclude that for the “generic sequence” of d = 5 symmetric real special spaces
the non-BPS moduli space, predicted in [36], does indeed coincide with the above mentioned
d = 6 (tensor multiplets’) non-BPS moduli space, found in [49].

3.2. Inclusion of d = 6 vector multiplets

Let us now generalize the discussion to the case where s extra vector multiplets:

(3.2.1)
(
Aμ,λA,Y

)α
, α = 1, . . . , s,

corresponding to the dimensional reduction of six-dimensional ones, are present [63]. The re-
duction may be done preserving the SO(1, q + 1) symmetry when the number s of d = 6 vector
multiplets coincides with the dimension of the spinor representation of SO(1, q + 1):

(3.2.2)s = dim
[
spin SO(1, q + 1)

]
.

This implies that the kinetic matrix of the d = 6 vector fields is positive definite and no phase
transitions, as discussed in [63,64], occur in this class of models.

The extra scalars contribute to the general relations (3.6) and (3.7) via a modification of the
cubic form V into [53]:

(3.2.3)V = 1

2
zXΛXΣηΛΣ + 1

2
XΛYαYβΓ Λ

αβ.

The total number of five-dimensional scalars is then q + 2 + s. Of particular interest are the four
magic models which are associated with the simple Jordan algebras having an irreducible norm
form (displayed in Table 4 of [36]). In these cases q = 1,2,4,8 and s = 2q . Also the “generic
sequence” L(0,P ) can be viewed as a particular case of Eq. (3.2.3) with q = 0 and s = P .

The d = 6 origin of the second term in Eq. (3.2.3) is the kinetic term of the d = 6 vector fields,
which reads [61,63] (Λ = 0,1, . . . , q + 1, α = 1, . . . , s, CΛ

αβ = CΛ
βα)

(3.2.4)XΛCΛ
αβFα ∧∗ Fβ.

Thus, in the presence of d = 6 BH charges Qα , it originates an effective d = 6 BH potential of
the form

(3.2.5)V
(6)
BH = XΛCΛ

αβQαQβ.

Such a potential has run-away extrema at d = 6 [58]. This can be seen for instance in the case
nT = 1 ⇔ q = 0, where Eq. (3.2.5) reduces to (α = 1, . . . ,P , X0 = coshφ, X1 = sinhφ)

(3.2.6)V
(6)
BH (φ) = coshφC0

αβQαQβ + sinhφC1
αβQαQβ = eφQαQα



L. Andrianopoli et al. / Nuclear Physics B 795 (2008) 428–452 435
(in the last step we used the fact that in the nT = 1 case we may set C0
αβ = C1

αβ = δαβ without
loss of generality). Consequently

(3.2.7)
∂V

(6)
BH (φ)

∂φ
= 0 ⇔ V

(6)
BH (φ) = 0 ⇔ φ = −∞.

We then conclude that non-BPS extremal BH attractors are excluded in (1,0) supergravity in six
dimensions. However, we can have a 0-dimensional black object by an intersection of a d = 6
BH with a d = 6 black string. Its reduction to d = 5 gives a BH which carries both the string
charge and the BH charge, with cubic invariant of the form [65]

(3.2.8)I3 = eze
ΛeΛ + eΛCΛ

αβQαQβ,

and the d = 5 resulting BH entropy S
(5)
BH ∼ √|I3|. Thus, even if the KK charge ez vanishes, one

gets a contribution from the second term of Eq. (3.2.8). This is in contrast with the case of the
d = 6 dyonic extremal black string treated in Section 3.1, where the non-vanishing of the KK
charge ez was needed in order to get a non-vanishing entropy for the corresponding d = 5 BH,
obtained by wrapping the d = 6 string on S1.

The inclusion of extra multiplets corresponding to d = 6 vector multiplets entails a signi-
ficative complication in the model. In particular, the moduli space of the non-BPS attractors
drastically changes with respect to the case described in Section 3.1. As we shall prove below,
in the magic models the number of moduli becomes equal to s = 2q instead of q as it was in the
absence of these extra multiplets.

Before entering into the detail of the magic models, let us argue the existence, at least for the
homogeneous spaces L(q,P ) (and, for q = 4m, L(q,P,P ′)) [53], of particular non-BPS critical
points where the same results of Section 3.1 may still be directly applied. Indeed, it turns out that
for the four magic models the non-BPS attractor moduli spaces of dimension 2q always contain
as a subspace precisely the coset SO(1,q)

SO(q)
(that is the moduli space of d = 6 non-BPS attractors

for q +1 strings, as discussed above). Such submanifold of the moduli space may be obtained by
considering the particular critical point where Yα = 0. This critical point may always be reached
because, as (3.2.3) and (3.6) show, the Y coordinates always appear quadratically in the effective
potential (3.7). Then, for Yα = 0 the effective potential reduces to the one previously considered
(Eq. (3.1.9)), whose non-BPS attractor solution is known to have q flat directions belonging to
the coset SO(1,q)

SO(q)
. This is in fact only half the total number of flat directions for these solutions. It

may be understood because the non-compact stabilizer of the non-BPS orbit (that is for example
F4(−20) ⊃ SO(1,8) for q = 8 [66,67]), mixes the X with Y variables, so that the restriction
{Yα} = 0 implies the reduction of the orbit to its subgroup SO(1, q). The same considerations
may be directly extended, for charge configurations where the spinorial charges are set to zero, to
the series of homogeneous non-symmetric spaces L(q,P ) (and, for q = 4m, L(q,P,P ′)) [53],
which always admit a non-BPS attractor point where all the spinorial moduli are zero. As before,
this condition selects the submanifold SO(1,q)

SO(q)
of the non-BPS attractor moduli space, with the

only difference that in this case the number q is not directly related to the number of spinorial
moduli.

3.2.1. N = 2 magic models
For N = 2 supergravity, one can apply the general relations of real special geometry [49,62],

so that the effective potential

(3.2.1.1)V (φ,q) = aIJ qI qJ
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takes a simpler form. Indeed, for N = 2 supergravity the vector kinetic matrix aIJ is related to
the metric gxy of the scalar manifold via

(3.2.1.2)aIJ = hIhJ + 3

2
hI,xhJ,yg

xy,

aIJ = hIhJ + 3
2hI

,xh
J
,yg

xy or conversely

(3.2.1.3)gxy = 3

2
hI,xhJ,ya

IJ .

In terms of these quantities the central charge is

(3.2.1.4)Z = qIh
I

and we can write the potential as

(3.2.1.5)V (q,φ) = Z2 + 3

2
gxy∂xZ∂yZ,

where ∂xZ = qIh
I
,x = P a

x Za are the matter charges. The index x = 1, . . . , nV is a world index
labelling the scalar fields while a is the corresponding rigid index. P a

x denotes the scalar vielbein.
The matter charges obey the differential relations:

∇Z = P aZa,

(3.2.1.6)∇Za = 2

3
gabP

bZ −
√

2

3
TabcP

bgcdZd.

To make explicit computations of the attractor points of the potential and of the corresponding
Hessian matrix, let us use the property that both Tabc and gab , written in rigid indices, are in-
variants of the group SO(q + 1), where q = 1,2,4,8 for the magic models, corresponding to the
symmetric spaces L(q,1). The H -representation R of the scalar fields branch with respect to
SO(q + 1) in the following way

(3.2.1.7)R → 1 + (q + 1) + Rs,

where Rs is the real Clifford module of SO(q + 1) of dimensions dim(Rs) = 2,4,8,16 cor-
responding to the four values of q . The index a split into the indices 1,m,α, where m =
1, . . . , q + 1 and α = 1, . . . ,dim(Rs). Let us write the general form for Tabc and gab:

g11 = α, gmn = βδmn, gαβ = γ δαβ,

T111 =
√

α

2
g11, T1mn = −

√
α

2
gmn, T1αβ = 1

2

√
α

2
gαβ,

(3.2.1.8)Tnαβ = −1

2
γ

√
3

2
βΓnαβ,

where Γn are the (symmetric, real) SO(q + 1) gamma matrices in the Rs representation. The
coefficients of Tabc are determined in terms of the coefficients of gab by the following relation:

(3.2.1.9)Ta(bcT
a
ef ) = 1

2
g(bcgef ).

The potential V can be written in the following useful form:

(3.2.1.10)V = Z2 + 3
gabZaZb = Z2 + 3(

Z1Z
1 + ZnZ

n + ZαZα
)
,

2 2
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where the following short-hand notation is used: Za ≡ gabZb . Let us now compute the extrema
of V . Using Eqs. (3.2.1.6) we find

(3.2.1.11)

∇V = P 1
[

4ZZ1 − √
3α

(
Z1Z

1 − ZnZ
n + 1

2
ZαZα

)]

+ P n

(
4ZZn + 2

√
3

α
Z1Zn + 3

2γ

√
βΓnαβZαZβ

)

+ P α

(
4ZZα − 3

2

√
3

α
Z1Zα + 3√

β
ΓnαβZnZβ

)
.

It is straightforward to see that the above expression has two zeroes corresponding to the two
attractors:

• BPS attractor: Zn = Zα = Z1 = 0 and the potential at the extremum reads V0 = Z2.

• Non-BPS attractor: Zn = Zα = 0, Z = 1
4

√
3
α
Z1 and the potential at the extremum reads

V0 = 9Z2.

Let us now compute the Hessian matrix:

(3.2.1.12)

∇2V = (
P 1)2

{
8α

3

[(
Z − 2

1

4

√
3

α
Z1

)2

+ 8

(
1

4

√
3

α
Z1

)2]
+ 2

α

β
Z2

n + α

2γ
Z2

α

}

+ P 1P n

(
8Z1Zn + 16

√
α

3
ZZn −

√
3αβ

γ
ΓnαβZαZβ

)

+ P 1P α

(
11Z1Zα − 8

√
α

3
ZZα +

√
3α

β
ΓnαβZnZβ

)

+ P nP m

{
6ZnZm +

[
8β

3

(
Z + 2

1

4

√
3

α
Z1

)2

+ 3β

2γ
Z2

α

]
δmn

}

+ P nP α

(
6ZnZα + 8

√
βΓnαβZZα +

√
3β

α
ΓnαβZβZ1 + 3(ΓmΓn)αβZmZβ

)

+ P αP β

[
8

3
γ

(
Z − 1

4

√
3

α
Z1

)2

δαβ + 3γ

2β
Z2

nδαβ + 4γ√
β

ΓnαβZZn

− γ

√
3

αβ
ΓnαβZ1Zn + 3

2
ΓnαδΓnβγ ZδZγ + 9

2
ZαZβ

]
.

At the BPS critical point it is straightforward to check that:

(3.2.1.13)∇2V = 8

3
Z2gabP

aP b.

As expected, the BPS critical point is a stable attractor. At the non-BPS attractor the Hessian
reads:

(3.2.1.14)∇2V = 24Z2[g11
(
P 1)2 + gmnP

nP m
]
.

The moduli space is therefore spanned by the scalar fields in the Rs representation. These can be
regarded as particular coordinates of the moduli spaces of the N = 2, d = 5 non-BPS solutions of
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the magic models J
O

3 , JH

3 , JC

3 and JR

3 , which respectively are F4(−20)

SO(9)
, USp(4,2)

USp(4)×USp(2)
, SU(2,1)

SU(2)×U(1)

and SL(2,R)
SO(2)

(see Table 4 of [36]). It is worth pointing out that, with the exception of J
O

3 , all such
spaces can be obtained as consistent truncations of the N = 8, d = 5 BPS attractor moduli space

F4(4)

USp(6)×USp(2)
(quaternionic Kähler), by performing an analysis which is the d = 5 counterpart

of the d = 4 analysis exploited in [33]. Since for JC

3 and JR

3 the N = 8 → N = 2 reduction
preserves nH = 1 and nH = 2 hypermultiplets respectively, the following inclusions must hold:

(3.2.1.15)

JC

3 : F4(4) ⊃ (
SU(2,1)

)2 ⇒ F4(4)

USp(6) × USp(2)

⊃ SU(2,1)

SU(2) × U(1)
× SU(2,1)

SU(2) × U(1)
,

(3.2.1.16)

J R

3 : F4(4) ⊃ SL(2,R) × G2(2) ⇒ F4(4)

USp(6) × USp(2)

⊃ SL(2,R)

SO(2)
× G2(2)

SO(4)
.

The two group embeddings given by Eqs. (3.2.1.15) and (3.2.1.16) are discussed in Appendix A.
On the other hand, the truncation generating J H

3 implies

(3.2.1.17)JH

3 : F4(4) ⊃ USp(4,2) ⇒ F4(4)

USp(6) × USp(2)
⊃ USp(4,2)

USp(4) × USp(2)
.

In this case, the 42 of USp(8) decomposes along USp(6) × USp(2) as 42 → (14,1) ⊕ (14′,2).
The 14 and 14′ of USp(6) further decompose with respect to USp(4) × USp(2) (maximal com-
pact subgroup of the stabilizer USp(4,2) of the non-BPS orbit) as follows:

14 → (1,1) ⊕ (5,1) ⊕ (4,2),

(3.2.1.18)14′ → (5,2) ⊕ (4,1).

Thus, the decomposition of the (14,1) and (14′,2) of USp(6)×USp(2) with respect to USp(4)×
USp(2) × USp(2) read:

massive: (14,1) → (1,1,1) ⊕ (5,1,1) ⊕ (4,2,1),

(3.2.1.19)massless: (14′,2) → (5,2,2) ⊕ (4,1,2).

Since in the non-BPS case the N = 2 R-symmetry is the USp(2) ∼ SU(2) inside USp(6) (i.e.,
the first USp(2) in the decomposition (3.2.1.19)) one obtains 8 massive and 20 massless hy-
permultiplets’ degrees of freedom, and 6 massive and 8 massless vectors’ degrees of freedom.
Notice that, since in the BPS case the N = 2 R-symmetry is the USp(2) ∼ SU(2) commuting
with USp(6) (i.e., the second USp(2) in the decomposition (3.2.1.19)), the non-BPS case differs
from the BPS case only by an exchange of the (4,2,1) representation with the (4,1,2) one.

4. Purely five-dimensional analysis of attractors in N -extended theories

For any extended supergravity in five dimensions the BH potential can be written in terms of
the dressed charges in the following form [56,57]:

(4.1)V (φ,q) = 1

2
ZABZAB + X2 + ZIZ

I
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where ZAB (A,B = 1, . . . ,N ) are the antisymmetric, Sp(N)-traceless graviphoton central
charges, X the trace part while ZI (I = 1, . . . , n) denote the matter charges (which only ap-
pear for N � 4 theories). For all the models with a scalar sector spanning a symmetric space, the
dressed charges obey some known differential relations in moduli space which allow to explicitly
find the attractor condition as an extremum for the scalar potential in moduli space:

(4.2)
∂V

∂φi
= 0.

We are going to study in the following the BPS and non-BPS attractors for the various cases.

4.1. N = 8, d = 5 and (2,2), d = 6

The scalar manifold is the coset

(4.1.1)G/H = E6(6)

Sp(8)

and the BH potential takes the form:

(4.1.2)V = 1

2
ZABZAB.

The differential relations among the 27 central charges ZAB (satisfying ZABΩAB = 0), are:

(4.1.3)∇ZAB = 1

2
ZCDPABCD,

where the vielbein PABCD = PABCD,idφi satisfies the conditions

(4.1.4)P ABCD = P [ABCD], P ABCDΩAB = 0.

The extremum condition is then

(4.1.5)∇V = ZAB∇ZAB = 1

2
P ABCDZABZCD = 0.

To explicitly find the solution, it is convenient to put the central-charge matrix in normal form:

(4.1.6)ZAB =

⎛
⎜⎜⎜⎝

e1 0 0 0

0 e2 0 0

0 0 e3 0

0 0 0 −e1 − e2 − e3

⎞
⎟⎟⎟⎠ ⊗

(
0 1

−1 0

)
,

and to truncate the theory to the “charged” submanifold spanned by the vielbein components that
couple to the dressed charge in normal form, that is:

P1 ≡ P1234 = P5678, P2 ≡ P1256 = P3478,

(4.1.7)while P3456 = P1278 = −P1 − P2.

In this way, the covariant derivatives of the charges (4.1.3) become:

∇e1 = (e1 + 2e2 + e3)P1 + (e1 + e2 + 2e3)P2,

∇e2 = (e1 − e3)P1 + (−e1 − e2 − 2e3)P2,

(4.1.8)∇e3 = (−e1 − 2e2 − e3)P1 + (e1 − e2)P2.
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Using these relations, the extremum condition of V becomes

(4.1.9)∇V = 4
{
P1(e1 − e3)(e1 + 2e2 + e3) + P2(e1 − e2)(e1 + e2 + 2e3)

} = 0.

It admits only one solution with finite area, which breaks the symmetry Sp(8) → Sp(2) × Sp(6).
Up to Sp(6) rotations it is:

(4.1.10)e2 = e3 = −1

3
e1, Vextr = 4

3
e2

1 = 4

3
M2

extr.

This is a BPS attractor, supported by the unique BPS orbit [49] E6(6)

F4(4)
, and the maximum amount

of supersymmetry preserved by the solution at the horizon is 1/4 (N = 8 → N = 2).
As mentioned above, the two vielbein-components P1 and P2 span the submanifold of the

moduli space which couples to the proper values of the central charge. This automatically
projects out, in the N = 2 reduced theory, the 28 scalar degrees of freedom corresponding to
the hypermultiplets.

The Hessian matrix reads

(4.1.11)Hij ≡ ∇i∇jV = 1

4
PABLMP CDLMZABZCD.

To have the complete spectrum of massive plus flat directions, we have to consider in (4.1.11)
the complete vielbein PABCD . On the solution, where Sp(8) → Sp(2) × Sp(6) (A → (α, a),
α = 1,2, a = 1, . . . ,6), the vielbein degrees of freedom decompose as

42 → (14,1) + (14′,2),

(4.1.12)PABCD → Pαβab + Pαabc,

where Pαβab = εαβPab (satisfying PabΩ
ab = 0) is the vielbein of the SU∗(6)

Sp(6)
N = 2 vector mul-

tiplet sigma model, while Pαabc (satisfying PαabcΩ
ab = 0) spans the N = 2 hyperscalar sector.

Note that, at the horizon, from (4.1.6) and (4.1.10) we find, for the central charge in normal form:

(4.1.13)ZAB → (Zab = eΩab; Zαβ = −3eεαβ).

The Hessian matrix (4.1.11) is then:

(4.1.14)

Hij = 1

4

(
PabLMZab + PαβLMZαβ

)(
P cdLMZcd + P γδLMZγδ

)
= 9e2PLM,iP

LM
,j .

The hyperscalar vielbein Pαabc do not appear in (4.1.14) so that the corresponding directions do
not acquire a mass. The moduli space of the solution is then [36] F4(4)

USp(6)⊗USp(2)
.

The N = 8, d = 5 theory has an uplift to (2,2), d = 6 supergravity, whose scalar manifold is
SO(5,5)

SO(5)×SO(5)
[50]. In such a theory, the unique orbit with non-vanishing area is the 1

4 -BPS orbit
SO(5,5)
SO(5,4)

[68], specified by an SO(5,5) charge vector eΛ with non-vanishing norm eΛeΛ �= 0. The

corresponding moduli space of 1
4 -BPS attractors is SO(5,4)

SO(5)×SO(4)
, and it is indeed contained [67] in

the N = 8, d = 5 1
8 -BPS moduli space F4(4)

USp(6)×USp(2)
, as implied by our analysis. Note that the

two non-compact forms of F4 which occur in N = 2 and N = 8, d = 5 supergravities precisely
contain the two non-compact forms of SO(9) present in the corresponding moduli spaces [67]:
F4(−20) ⊃ SO(1,8) and F4(4) ⊃ SO(5,4).



L. Andrianopoli et al. / Nuclear Physics B 795 (2008) 428–452 441
4.2. N = 6 (N = 2, J H

3 )

The scalar manifold is the coset

(4.2.1)G/H = SU∗(6)

USp(6)
,

the BH potential takes the form:

(4.2.2)V = 1

2
ZABZAB + 1

3
X2

and the differential relations among the 14 + 1 central-charges ZAB (satisfying ZABΩAB = 0)
and X, are:

∇ZAB = ΩCDZC[APB]D + 1

6
ΩABZCDP CD + 1

3
XPAB,

(4.2.3)∇X = 1

2
ZABP AB,

where PAB = PAB,idφi is the Ω-traceless vielbein of G/H satisfying the conditions

(4.2.4)P AB = P [AB], P ABΩAB = 0.

To study the attractors, it is convenient to put the central-charge matrix in normal form:

(4.2.5)ZAB =
⎛
⎝ e1 0 0

0 e2 0

0 0 −e1 − e2

⎞
⎠ ⊗

(
0 1

−1 0

)
,

so that the BH potential takes the form

(4.2.6)V = e2
1 + e2

2 + (e1 + e2)
2 + 1

3
X2.

The vielbein components that couple to the dressed charges in normal form are:

P1 ≡ P12, P2 ≡ P34,

(4.2.7)while P56 = −P1 − P2.

In this way, the covariant derivatives of the charges (4.2.3) become:

∇e1 = 1

3
(−e1 + e2 + X)P1 + 1

3
(e1 + 2e2)P2,

∇e2 = 1

3
(2e1 + e2)P1 + 1

3
(e1 − e2 + X)P2,

(4.2.8)∇X = (2e1 + e2)P1 + (e1 + 2e2)P2.

Using these relations, the extremum condition of V becomes

(4.2.9)

∇V = 2

3
XZABP AB + ΩCDZCAZABPBD

= 2

{
P1(2e1 + e2)

(
e2 + 2

3
X

)
+ P2(e1 + 2e2)

(
e1 + 2

3
X

)}
= 0.

Two inequivalent solutions with finite area are there:
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1. e1 = e2 = − 2
3X, giving for the Bekenstein–Hawking entropy Vextr = 3X2.

This is the N = 6 1/6-BPS solution and breaks the symmetry of the theory to Sp(4)× Sp(2).
2. e1 = e2 = 0, with Bekenstein–Hawking entropy Vextr = 1

3X2.
It is a non-BPS attractor of the N = 6 theory, and leaves all the Sp(6) symmetry of the theory
unbroken.

Since the bosonic sector of this theory coincides with the one of an N = 2 theory based on the
same coset space [49], these are also the attractor solutions of the corresponding N = 2 model.
In the N = 2 version, however, the interpretation of the attractor solutions as BPS and non-BPS
are interchanged.

To study the stability of the solutions, let us consider the Hessian matrix

(4.2.10)

Hij ≡ ∇i∇jV

= PABPCD

[
ZACZBD + 2

9
X2ΩACΩBD − 4

3
XZACΩBD + ZALZLMΩBCΩMD

]

= PABPCD

(
ZAC − 1

3
XΩAC

)(
ZBD − 1

3
XΩBD

)

− PABP DB

(
ZAC − 1

3
XΩAC

)(
ZCD − 1

3
XΩCD

)
and evaluate it on the two extrema. In the first case (BPS N = 6, non-BPS N = 2) the solution
breaks the symmetry to Sp(4) × Sp(2), (A → (α, a), α = 1,2, a = 1, . . . ,4), since at the horizon
we find, for the central charge in normal form:

(4.2.11)ZAB →
(

Zab = −2

3
XΩab; Zαβ = 4

3
Xεαβ

)
,

so that

(4.2.12)ZAB − 1

3
XΩAB →

{
Zab − 1

3XΩab = −XΩab,

Zαβ − 1
3Xεαβ = Xεαβ.

Corresponding to the group decomposition of the degrees of freedom:

14 → (5,1) + (1,1) + (4,2),

(4.2.13)PAB → (Pab;P ;Paα),

the scalar vielbein decomposes as

(4.2.14)PAB →

⎧⎪⎨
⎪⎩

εαβP,

Pαa ≡ −Paα,

Pab − 1
2ΩabP,

where Pab is the SO(1,5)
SO(5)

vielbein, satisfying PabΩ
ab = 0.

On the solution, the Hessian matrix (4.2.10) is then:

(4.2.15)Hij = 2X2(P abPab + 3P 2).
As expected, the directions corresponding to the scalars in the (4,2) of Sp(4,2)

Sp(4)×Sp(2)
are flat. When

the theory is interpreted as an N = 6 one, this is the BPS solution whose states, regarded as
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N = 2 BPS multiplets, have flat directions corresponding to the hyperscalar sector. On the other
hand, in the N = 2 interpretation this is instead the non-BPS solution, and now the flat directions
correspond to degrees of freedom in the vector multiplets’ moduli space.

The second solution (non-BPS N = 6, BPS N = 2) leaves all the Sp(6) symmetry unbroken
since the horizon value of the central charge matrix in normal form is now:

(4.2.16)ZAB → 0.

Now the vielbein degrees of freedom do not decompose at all

14 → 14,

(4.2.17)PAB → PAB

and correspondingly all the scalar degrees of freedom become massive.
Let us end this section by writing the quantities used here in the N = 2 formalism adopted in

Section 3.2.1. In this case the rigid index a labelling the tangent space directions are replaced by
the antisymmetric traceless couple [AB] (recall that we use the convention that any summation
over an antisymetrized couple always requires a factor 1/2):

TA1A2,B1B2,C1C2 = 2

√
3

2

(
ΩA1B1ΩB2C1ΩC2A1 − 1

6
ΩA1A2ΩB1C1ΩB2C2

− 1

6
ΩB1B2ΩA1C1ΩA2C2 − 1

6
ΩC1C2ΩB1A1ΩB2A2

+ 1

18
ΩA1A2ΩB1B2ΩC1C2

)
,

(4.2.18)gA1A2,B1B2 = ΩB1A1ΩB2A2 − 1

6
ΩA1A2ΩB1B2,

where antisymmetrization in the couples (A1,A2), (B1,B2), (C1,C2) is understood. As far as
the central charges are concerned, we have the following correspondence:

(4.2.19)Z = 1√
3
X, P aZa = 1

2
√

3
P ABZAB.

4.3. N = 4, d = 5 and (2,0), d = 6

The scalar manifold is the coset

(4.3.1)G/H = O(1,1) × SO(5, n)

Sp(4) × SO(n)
,

spanned by the vielbein dσ , PIAB (A,B = 1, . . . ,4, I = 1, . . . , n), where dσ = ∂iσdφi is the
vielbein of the O(1,1) factor while PIAB = PIAB,i dφi is the Ω-traceless vielbein of SO(5,n)

Sp(4)×SO(n)
satisfying the conditions

(4.3.2)PIAB = PI [AB], P IABΩAB = 0.

The bare electric charges are a SO(5, n)-singlet e0 and a SO(5, n)-vector eΛ (the weight with
respect to SO(1,1) is +2 for e0 and −1 for eΛ).

The BH potential reads:

(4.3.3)V = 1
ZABZAB + 4X2 + ZIZ

I ,

2
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and the differential relations among the 5 central charges ZAB (satisfying ZABΩAB = 0), the
singlet X and the n matter charges ZI are [56]:

(4.3.4)∇ZAB = ZIPIAB − ZABdσ,

(4.3.5)∇X = 2Xdσ,

(4.3.6)∇ZI = 1

2
ZABPIAB − ZIdσ,

yielding

(4.3.7)∇V = 2PIAB

(
ZABZI

) + 2dσ

(
8X2 − 1

2
ZABZAB − ZIZ

I

)
.

The central charge matrix may be put in normal form:

(4.3.8)ZAB =
(

e1 0

0 −e1

)
⊗

(
0 1

−1 0

)
,

so that the BH potential takes the form

(4.3.9)V = 2e2
1 + 4X2 + ZIZ

I

and the differential relations among the dressed charges become (dσ and PI ≡ PI12 = −PI34
are the components of the scalar vielbein coupling to the charges in normal form):

(4.3.10)∇e1 = ZIPI − e1 dσ,

(4.3.11)∇X = 2X dσ,

(4.3.12)∇ZI = 2e1PI − ZI dσ.

Then the extremization of the BH potential takes the form

(4.3.13)∇V = 8PI

(
e1Z

I
) + 2dσ

(
8X2 − 2e2

1 − ZIZ
I
) = 0.

Two inequivalent solutions with finite area are there:

1. ZI = 0; e1 = 2X.
This is the N = 4 1/4-BPS solution and breaks the Sp(4) R -symmetry of the theory to
Sp(2) × Sp(2), leaving the SO(n) symmetry unbroken. It corresponds to an SO(5,n)

SO(4,n)
orbit of

the charge vector.
2. ZAB = 0; ZIZ

I = 8X2.
It is a non-BPS attractor of the N = 4 theory, corresponding to choose the vector ZI to point
in a given direction, say 1, in the space of charges: ZI = 2

√
2δ1

I . This solution breaks the

symmetry of the theory to Sp(4) × SO(n − 1), and corresponds to an SO(5,n)
SO(5,n−1)

orbit of the
charge vector.

In both cases the Bekenstein–Hawking entropy turns out to satisfy [56]

(4.3.14)S
(5)
BH = (

V |extr
)3/4 =

√∣∣e0eΛeΛ

∣∣.
To study the stability of the solutions, let us consider the Hessian matrix

(4.3.15)Hij≡1∇i∇jV

4
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=P IAB
,i PJCD,j

(
1

4
ZABZCDδI

J + 1

2
ZIZJ δCD

AB

)

(4.3.16)− 2P IAB
,(i ∂j)σZABZI + ∂iσ∂jσ

(
1

2
ZABZAB + ZIZ

I + 16X2
)

and evaluate it on the two extrema.
On the BPS attractor solution, the R-symmetry Sp(4) is broken to Sp(2)× Sp(2) (A → (αα̃))

and the dressed charges in normal form become

(4.3.17)ZAB → 2X

(
εαβ 0

0 −εα̃β̃

)
, ZI → 0.

Correspondingly, the vielbein P IAB decomposes to (P I εαβ,−P I εα̃β̃ ,P Iαα̃) where P I and
P Iαα̃ are the vielbein of the submanifold SO(1,n)

SO(n)
(spanning N = 2 vector multiplets) and

SO(4,n)
Sp(2)×Sp(2)×SO(n)

(spanning N = 2 hypermultiplets) respectively. Since on the solution
1
2ZABP IAB → 4XP I , the Hessian matrix (4.3.15) then becomes:

(4.3.18)Hij = 8X2(2P I
,iPI,j + 3∂iσ∂jσ

)
,

showing that the 4n scalars parametrized by P Iαα̃ , which correspond to N = 2 hypermultiplets,
have massless Hessian modes.

On the other hand, the non-BPS solution breaks the symmetry SO(n) to SO(n− 1) (I → 1, k;
k = 1, . . . , n − 1) so that the vielbein PIAB decomposes into (P1AB,PkAB). The Hessian matrix
on the solution is:

(4.3.19)Hij = 8X2
(

1

2
P 1AB

,i P1AB,j + 3∂iσ∂jσ

)
.

Note in particular that the 5(n − 1) scalars corresponding to the vielbein PkAB , spanning the
submanifold SO(5,n−1)

SO(5)×SO(n−1)
, are flat directions.

For the N = 4 theory it is easy to find a six-dimensional uplift in terms of the IIB , (2,0)

chiral d = 6 theory coupled to n tensor multiplets [50] (at least for the anomaly-free case n = 21)
on similar lines as performed in Section 3. Indeed, similarly to the dimensional reduction of
the N = 2 theory coupled to tensor multiplets only, in the dimensional reduction of the IIB

theory from six to five dimensions the scalar content is incremented only by the KK-dilaton,
which provides a O(1,1) factor commuting with the SO(5,n)

SO(5)×SO(n)
coset. Moreover, the vector

content in the gravitational multiplet is also incremented by one graviphoton (whose integral
corresponds to the singlet charge X). Since the KK-dilaton is stabilized on the attractor solutions,
then the five-dimensional attractors are in one to one correspondence with the six-dimensional
ones: on the BPS attractor there are 4n flat directions (corresponding to the quaternionic manifold

SO(4,n)
SO(4)×SO(n)

), while on the non-BPS solution there are 5(n−1) flat directions (spanning the coset
SO(5,n−1)

SO(5)×SO(n−1)
).

5. Anomaly-free (1,0), d = 6 supergravity with neutral matter

In this section we comment on the constraints that an N = 2, d = 5 supergravity should satisfy
in order to be uplifted to an anomaly-free N = (1,0), d = 6 theory.

It is well known that in a (1,0) supergravity with neutral matter the absence of the gravita-
tional anomaly demands a relation among the triple nT , nV , nH of possible matter multiplets
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(tensor, vector and hyper multiplets, respectively), namely [69,70]

(5.1)nH − nV + 29nT = 273.

Moreover, the consistency of the gauge invariance of tensor and (Abelian) vector multiplets
requires that the gauge vector current is conserved, i.e., [52,63,71–73]

(5.2)d∗Jα = ηΛΣCΛ
αβCΣ

γδF
β ∧ Fγ ∧ Fδ = 0,

implying that (CΛ
αβ = CΛ

(αβ))

(5.3)ηΛΣCΛ
(αβCΣ

γδ) = 0.

Such a condition holds true for all symmetric real special manifolds [53], with the exception
of the sequence L(−1,P ), P > 0 (whose corresponding Kähler and quaternionic sequences are
not symmetric [74]). Disregarding such a sequence, among all homogeneous real special spaces
(see, e.g., the Table 2 of [53]) the symmetric spaces are L(q,0) = L(0,P ), q,P � 0 (“generic
sequence”, extended to consider also the d = 5 uplift of the so-called d = 4 stu model), L(q,1)

for q = 1,2,4,8 (magic supergravities over J R

3 , JC

3 , JH

3 and J
O

3 , respectively) and L(−1,0)

(the d = 5 uplift of the so-called d = 4 st2 model).
The condition (5.1) for the magic models respectively gives the following allowed triples

(nT ,nV ,nH ) [52]:

JR

3 : (2,2,217), JC

3 : (3,4,190),

(5.4)JH

3 : (5,8,136), J
O

3 : (9,16,28).

Notice that for the J
O

3 -based supergravity nH = 28, so its corresponding quaternionic manifold

could be identified with the exceptional quaternionic Kähler coset [75] E8(−24)

E7×SU(2)
(which is the

quaternionic reduction—or equivalently the hypermultiplets’ scalar manifold—of the d = 4 J
O

3 -
based supergravity [53,75]).

On the other hand, for the “generic sequence” there are two possible uplifts to d = 6, depend-
ing whether one starts with L(q,0) or L(0,P ). Indeed, starting from L(q,0) the condition (5.1)
implies

(5.5)nH = 244 − 29q,

which demands 0 � q � 8, whereas starting from L(0,P ) the same anomaly-free condition
yields

(5.6)nH = 244 + P,

which always admits a solution.
The (1,0), d = 6 theory obtained by uplifting the real special symmetric sequence L(q,0)

has nV = 0 and nT = q + 1, and thus 1 � nT � 9. On the other hand, the anomaly-free (1,0),
d = 6 uplift of the real special symmetric sequence L(0,P ) has nT = 1 and nV arbitrary, thus it
may be obtained from the standard compactification of heterotic superstrings on K3 manifolds
(see, e.g., [76]).

The model L(−1,0) admits an anomaly-free uplift to d = 6, having nV = nT = 0 and nH =
273.
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All other homogeneous non-symmetric real special spaces do not fulfill the condition (5.2)–
(5.3) in presence of only neutral matter, so they seemingly have a d = 6 uplift to (1,0) supergrav-
ity which is not anomaly-free, unless they are embedded in a model where a non-trivial gauge
group is present, with charged matter [77,78].

6. Conclusion

There are three theories with eight supercharges which admit black hole/black string attrac-
tors, namely N = 2 supergravity in d = 4, 5, 6 dimensions. For symmetric special geometries,
the entropy is respectively given by the quartic, cubic and quadratic invariant of the correspond-
ing U -duality group in the three diverse dimensions. In this paper we extend previous work [40]
on the investigation of the BPS and non-BPS attractor equations of such theories, by relating
them as well as the corresponding moduli spaces of (non-BPS) critical points.

Furthermore, we related the moduli space of the N = 8, d = 5 BPS unique orbit to the moduli
space of N = 2, d = 5 non-BPS orbit for all magic supergravities, as well as for the “generic
sequence” of real special symmetric spaces. This latter is directly related to the d = 6 tensor
multiplets’ non-BPS moduli space, which describes a neutral dyonic superstring in d = 6.

We also considered N = 4, d = 5 supergravity, and related its 1
4 -BPS and non-BPS attractors

to the ones of (2,0), d = 6 theory. Also in this case the moduli space of non-BPS attractors is
spanned by the d = 6 non-BPS flat directions, studied in [50].

We stress that our analysis is purely classical and it does not deal with quantum corrections to
the entropy, so it should apply only to the so-called “large” black objects. We leave the study of
the quantum regime to future work.
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Appendix A. Relevant embeddings

Let us first fix the notations to be used in the this appendix. If α is a root of a complex Lie
algebra g, the normalizations of the corresponding non-compact Cartan generator Hα and of the
shift generators E±α will be defined as follows [79]:

Hα = 2

(α · α)
αiHi, (Hi,Hj ) = δij ,

(A.1)E−α = (Eα)†, (Eα,E−α) = 2

(α · α)
,
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where (·, ·) is the Killing form. The above normalizations imply the following commutation
relations

(A.2)[Hα,Eβ ] = 〈β,α〉Eβ, [Eα,E−α] = Hα, 〈β,α〉 = 2

(α · α)
β · α.

JC

3 , d = 5: The SU(2,1)2 ⊂ F4(4) embedding

The simple roots of the sl(3,C)2 subalgebra of f4 over C are defined in terms of the simple
roots of the latter αk (k = 1, . . . ,4, α1, α2 being long roots) as follows

(A.3)a1 = α4, a2 = α3, b1 = α1, b2 = α1 + 3α2 + 4α3 + 2α4.

The real form f4(4) contains an sl(2,R)4 subalgebra defined by the following mutually orthogonal
roots:

(A.4)a2, b2, c = α1 + α2 + α3, d = α1 + α2 + 2α3 + 2α4.

We can define the roots of f4(4) using a Cartan subalgebra h0 generated by two non-compact
Ha2 ,Hb2 and two compact iHc, iHd generators, the latter corresponding to the so(2) generators
inside sl(2,R)c ⊕ sl(2,R)d . In terms of the generators of h0, we can choose a basis of Cartan
generators for sl(3,C)2 to consist of Ha2,Hb2 as well as of

(A.5)Ha1 = −1

2
(Ha2 + iHc − 2iHd), Hb1 = −1

2
(Ha2 − iHc − iHd).

These generators define the Cartan subalgebra of an su(2,1)2 subalgebra of f4(4). Indeed one can
verify that the sl(3,C)2 root system defined by the simultaneous eigenvalues of the h0 generators,
is stable with respect to the conjugation σ relative to f4(4), namely that

(A.6)aσ
2 = a2; aσ

1 = −(a1 + a2); bσ
2 = b2; bσ

1 = −(b1 + b2).

The su(2,1)2 generators are thus defined by σ -invariant combinations of the sl(3,C)2 shift gen-
erators. The fact that this construction defines an su(2,1)2 subalgebra of f4(4) and not an sl(3,R)2

algebra is proven by the existence in each factor of a compact Cartan subalgebra, defined by the
generators {Ea2 − E−a2 , i(Hc − 2Hd)} for the first factor and {Eb2 − E−b2 , i(Hc + Hd)} for the
second.

JR

3 , d = 5: The SL(2,R) × G2(2) ⊂ F4(4) embedding

Denoting by a the sl(2,R) root and by b1, b2 the simple roots of g2(2), the SL(2,R) × G2(2)

generators can be written in terms of the F4(4) generators as follows:

Hb1 = Hα1+α2 + Hα4; Hb2 = Hα2+2α3 = Hα2 + Hα3; Eb1 = Eα1+α2 + Eα4,

Eb2 = Eα2+2α3; Eb1+b2 = −Eα1+2α2+2α3 + Eα2+2α3+α4,

E2b1+b2 = −Eα1+2α2+2α3+α4 + Eα2+2α3+2α4; E3b1+b2 = −Eα1+2α2+2α3+2α4 ,

E3b1+2b2 = Eα1+3α2+4α3+2α4 ,

(A.7)Ha = 2(Hα3+α4 + Hα1+α2+α3); Ea = √
2(Eα3+α4 + Eα1+α2+α3).
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Matrix representation of f4 generators

For the sake of completeness, let us give below an explicit realization of the generators
Hαi

,Eαi
and f4, in the fundamental representation.

f4 generators:

Hα1 = diag(−1,1,0,0,0,0,0,0,0,−1,0,0,0,−1,1,−1,−1,1,1,1,0,−1,1,0,0,0,0),

Hα2 = diag(0,0,1,−1,0,0,0,1,1,−1,−1,0,0,0,0,1,1,−1,−1,0,0,0,1,−1,0,0),

Hα3 = diag(0,1,−1,1,−1,1,0,−1,0,1,2,−1,0,0,1,−2,−1,0,1,0,−1,

1,−1,1,−1,0),

Hα4 = diag(1,−1,0,0,1,0,−1,1,−1,1,−1,2,0,0,−2,1,−1,1,−1,1,0,

−1,0,0,1,−1),

Eα1 = I4,6 + I5,8 + I7,9 + I18,20 + I19,22 + I21,23,

Eα2 = I3,4 + I8,10 + I9,11 + I16,18 + I17,19 + I23,24,

Eα3 = I2,3 + I4,5 + I6,8 + I10,12 + c1I11,13 + c2I11,14 + c1I13,16 + c2I14,16

+ I15,17 + I19,21 + I22,23 + I24,25,

(A.8)

Eα4 = I1,2 − I5,7 − I8,9 − I10,11 + c2I12,13 + c1I12,14 + c2I13,15 + c1I14,15 − I16,17

− I18,19 − I20,22 + I25,26,

where c1 = (1 + √
3)/2, c2 = (1 − √

3)/2 and (II,J )KL = δIKδJL. The Killing form is
(M1,M2) = 1

6 Tr(M1M2).
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