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Abstract

In this paper, we compare the computability and complexity of a continuous real function F
with the computability and complexity of the graph G of the function F . A similar analysis will
be carried out for functions on subspaces of the real line such as the Cantor space, the Baire
space and the unit interval. In particular, we de1ne four basic types of e"ectively closed sets C
depending on whether (i) the set of closed intervals which with nonempty intersection with C is
recursively enumerable (r.e.), (ii) the set of closed intervals with empty intersection with C is
r.e., (iii) the set of open intervals which with nonempty intersection with C is r.e., and (iv) the
set of open intervals with empty intersection with C is r.e. We study the relationships between
these four types of e"ectively closed sets in general and the relationships between these four
types of e"ectively closed sets for closed sets which are graphs of continuous functions. c© 2002
Elsevier Science B.V. All rights reserved.

Keywords: Computable analysis

1. Introduction

Computable analysis studies the e"ective content of theorems and constructions in
analysis. In this paper, we study two of the most basic objects of computable analysis,
namely continuous functions and their graphs over four natural spaces, the reals �, the unit
interval [0; 1], the Cantor space {0; 1}!, and the Baire space !!. The papers of Gregorczyk
[11, 12] and Lacombe [21, 22] which initiated the study of computable analysis provide the
starting point of our study since those papers provide careful de1nitions of computably
closed sets of reals and computable real functions. More recently, Weihrauch [34–36]
has provided a comprehensive foundation for computability theory on various spaces,
including the space of compact sets and the space of continuous real functions.
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In this paper, we examine the complexity and computability of a continuous real
function F as compared with the complexity and computability of the graph G of
F . Of course, the graph of a continuous function is always a closed set and, for
functions on a compact space such as the unit interval, any function with a closed
graph is automatically continuous. We will give e"ective versions of these results,
as well as counterexamples where the e"ective versions do not hold. Of course, it
is 1rst necessary to have a 1rm notion of an “e"ectively” closed set. Brattka and
Weihrauch [2] identi1ed three di"erent types of e"ectively closed sets of Euclidean
space �n, namely, recursively enumerable (r.e.), co-recursively enumerable (co-r.e.),
and recursively closed sets. Let {In}n∈! be some e"ective enumeration of the products
of open rational intervals of �n. Let ! denote the set of natural numbers and for each
n, let In denote the closure of In. Then Brattka and Weihrauch de1ned a closed set K
contained in �n to be
(a) r.e. if {n : In ∩K �= ∅} is r.e.,
(b) co-r.e. if {n : In ∩K = ∅} is r.e. and
(c) recursive if K is both r.e. and co-r.e.
In �n, these notions can be characterized in several other natural ways, (see [2]). For
example, a closed set K of �n is r.e. if and only if the distance function dK to the set
is upper semi-computable and is co-r.e. if and only if dK is lower semi-computable.
Similarly, a closed set K of �n is co-r.e. if and only if �n − K =

⋃
n∈B In for some

r.e. set B ⊆ !. These notions can easily be extended to the spaces [0; 1], {0; 1}!,
and !!.

This given, a number of natural questions arise. First, it is natural to ask about
the relation between the computability of a continuous function F from � to � and
computability of its graph G as a closed set. For example, we show that for any
computably continuous function on either the real line or the Baire space !!, the
graph of F is a r.e. closed set. On the other hand, the set of closed intervals missed
by the graph is r.e. for computably continuous real functions, but not necessarily r.e.
for functions on !!. One can also ask how the various equivalent formulations of r.e.,
co-r.e., and computably closed sets on the reals extend to our three other spaces. We
shall show that not all of these types of results extend to our three other spaces. For
example, we show that for subsets of !!, the set of intervals missed by K is r.e. if
and only if dK is lower semi-computable, but these conditions are not equivalent to
having the complement of K be the union of a r.e. set of intervals.

Moreover, the de1nitions of Brattka and Weihrauch given above suggest that there
are four natural notions of e"ectively closed sets that one can consider in each of our
four spaces. In each of our spaces, there is a natural e"ective enumeration of the basic
open sets {In : n∈!}. Again we let In denote the closure of In. Then for each of our
four spaces X , we say that a closed set K ⊆ X is
1. open interval recursively enumerable (OIr.e.) if {n : In ∩K �= ∅} is r.e.,
2. open interval co-recursively enumerable (OIco-r.e.) if {n : In ∩K = ∅} is r.e.,
3. closed interval recursively enumerable (CIr.e.) if {n : In ∩K �= ∅} is r.e., and
4. closed interval co-recursively enumerable (CIco-r.e.) if {n : In ∩K = ∅} is r.e.
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Thus OIr.e. closed sets are just r.e. closed sets and CIco-r.e. closed sets are co-r.e.
closed sets. We shall study the relationships between these four types of closed sets
in each of our four spaces. Of course, for the spaces !! and 2!, each open interval
In is clopen so that OIr.e. = CIr.e. and OIco-r.e = CIco-r.e. However for the reals �
and the unit interval [0; 1], we shall show that the only implications which hold among
these four types of sets is that OIco-r.e ⇒ CIco-r.e and CIr.e. ⇒ OIr.e.

Weihrauch has demonstrated that the two notions of open interval recursively enu-
merable and closed interval co-recursively enumerable are the most reasonable, since
the other two notions depend on the speci1c basis of intervals chosen (see Theorem
5:1:14 of [36]). On the other hand, the notions of r.e. and co-r.e. closed sets are stable
in that the choice of the (recursive) basis, with modest restrictions, does not a"ect the
family of e"ectively closed sets so de1ned (see also p. 76 of [2]).

We shall also study the relationships between these four types of e"ectively closed
sets on closed sets which are graphs of a continuous functions.

Finally, it is natural to study the same questions with regard to complexity theory.
That is, the study of polynomial time computable functions on the reals was initiated
by Friedman and Ko [10, 20] and the complexity theoretic study of analysis has be
extensively developed, see Ko’s book [18]. One can give natural complexity theoretic
analogues of the notions of OIr.e., OIco-r.e., CIr.e., and CIco-r.e. closed sets by roughly
replacing the occurrences of r.e. in the de1nitions by NP (nondeterministic polynomial
time). We postpone the formal de1nitions of these notions until Section 5 because the
notions are sensitive to the exact coding of the basic open intervals. However, one can
then ask a similar set of questions about the relationships between the complexity of
continuous function F and the complexity of its graph G as a closed set.

We should note that the study of e"ectively closed sets have a long history in
computability theory. That is, our CIco-r.e. closed set are also called 0

1 classes in the
literature of computability theory, and recursive closed sets are called decidable 0

1

classes. Just as closed sets are central to the study of computable analysis, 0
1 classes

play a fundamental role in computability theory. For example, 0
1 classes have played

an important role in computability theory going back to the Kleene basis theorem [17].
Many of the fundamental results about 0

1 classes and their members were established
by Jockusch and Soare [14, 15]. For a short course on 0

1 classes, see [4].
0

1 classes occur naturally in the application of computability to many areas of
mathematics. See the recent survey of Cenzer and Remmel [7] for many examples.
One important example of a CIco-r.e. closed set in Euclidean space is the set of zeroes
of a computably continuous function. This leads easily to related examples of the
appearance of CIco-r.e. closed sets as the set of 1xed points or the set of extrema
of a computably continuous function. That is, for any continuous function F , it is
easy to see that the set of zeroes of F , the set of 1xed points of F , and the set of
points where F attains an extremum, are all closed sets. For a computably continuous
function F , the corresponding closed sets are all CIco-c.e. In fact, Nerode and Huang
[26] showed that any CIco-r.e. closed set of reals may be represented as the set of
zeroes of a computably continuous function. Ko extended the Nerode–Huang results
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[18] to show that any CIco-r.e. closed set may be represented as the set of zeroes of a
polynomial time computable function. Thus CIco-r.e. closed sets also appear naturally
in the theory of polynomial time computable functions on the reals. Computable aspects
of dynamical systems and Julia sets have been studied by Cenzer [4], Ko [19] and by
Cenzer and Remmel [7]. In particular, the Julia set of a computably continuous real
function is a 0

1 class.
Subsets of the Baire space are investigated as so-called !-languages in theoretical

computer science. The theory of !-languages accepted by Turing machines has been
developed in a series of papers [9, 30–33]. These papers develop connections between
acceptance, representability by computable or r.e. languages and classi1cation in the
arithmetical hierarchy. In particular, a 0

1 class may be viewed as the !-language
accepted by a deterministic Turing machine M in the sense that the in1nite sequence
x(0); x(1); : : : is accepted if every initial segment x(0); : : : ; x(n) is accepted by M . This
notion was introduced in [23].

The notion of index sets for 0
1 classes in !! has been developed by Cenzer and

Remmel [6], which builds on the work of Lempp [24] and others. The main idea is
that the complexity of a problem, such as computing the measure of a closed set, may
be measured by the complexity of its index set in the arithmetic hierarchy.

For example, it is shown in [8] that the index set of the computably continuous
functions which have a computable zero is a �0

3 complete set. This greatly strength-
ens the well-known fact that a computably continuous real function need not have a
computable zero. It is also shown in [8] that for any computable real r, the set of
indices e such that the eth 0

1 class in {0; 1}! has measure r is a 0
2 complete set.

This greatly strengthens the well-known fact that the measure of a 0
1 class need not

be computable. We will prove a number of index set type results in the this paper. For
example, we shall show the set of CIco-r.e. sets which are OIco-r.e. is a �0

4 complete
set.

The outline of this paper is as follows. Section 2 is devoted to preliminaries. In Sec-
tion 3, we shall study the relationships between our four types of e"ectively closed sets
in each of the four spaces, �, [0; 1], 2!, and !!. We shall also study how the equiv-
alent characterizations for OIr.e. and CIco-r.e. closed sets of �n given in [2] extend
to the Cantor Space, the Baire Space and the unit interval. In Section 4, we examine
the relationship of our four types of e"ectively closed sets for closed sets which arise
as graphs of continuous functions and the relationships between the e"ectiveness of
the graph as closed set and the computability of the function. Finally, in Section 5,
we shall give some preliminary results on the relationships between OINP, OIco-NP,
CINP, and CIco-NP closed sets.

2. Preliminaries

We begin with some basic de1nitions. Let != {0; 1; 2; : : :} denote the set of nat-
ural numbers. For each n∈!, let bin(n) denote the binary representation of n and
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tal(n) = 1n denote the tally representation of n. We then let Bin(!) = {bin(n) : n∈!}
and Tal(!) = {tal(n) : n∈!}. For any set �, �¡! denotes the set of 1nite strings
(�(0); : : : ; �(n − 1)) of elements from � and �! denotes the set of countably in1-
nite sequences from �. For any set A, we let card(A) denote the cardinality of the
set A.

For a string � = (�(0); �(1); : : : ; �(n− 1)), |�| denotes the length n of �. The empty
string has length 0 and will be denoted by ∅. A string of n k’s will be denoted
kn. For m¡|�|, ��m is the string (�(0); : : : ; �(m − 1)). We say � is an initial seg-
ment of � (written �≺ �) if � = ��m for some m. Given two strings � and �, the
concatenation of � and �, denoted by �˙� (or sometimes � ∗ � or just ��), is de-
1ned by �˙�= (�(0); �(1); : : : ; �(m − 1); �(0); �(1); : : : ; �(n − 1)); where |�|=m and
|�|= n. We write �˙a for �˙(a) and a˙� for (a)˙�. For any x∈�! and any 1nite
n, the initial segment x�n of x is (x(0); : : : ; x(n − 1)). For a string �∈�¡! and any
x∈�!, we write �≺ x if � = x�n for some n. For any �∈�n and any x∈�!, we have
�˙x = (�(0); : : : ; �(n− 1); x(0); x(1); : : :).

A tree T over �¡! is a set of 1nite strings from �¡! which contains the empty
string ∅ and which is closed under initial segments. We say that �∈T is an immediate
successor of a string �∈T if �= �˙a for some a∈�. We will assume that � ⊆ !,
so that T ⊆ !¡!. Such a tree is said to be !-branching since each node has poten-
tially a countably in1nite number of immediate successors. Let 〈 ; 〉 :!×!→! be a
computable 1 : 1 onto pairing function. We can then inductively extend 〈 ; 〉 to code
n-tuples for n¿3 by de1ning 〈x1; : : : ; xn〉= 〈x1; 〈x2; : : : ; xn〉〉. We shall sometimes iden-
tify T with the set {〈�〉 : �∈T}. Thus we say that T is recursive, r.e., etc., if {〈�〉 : �∈
T} is recursive, r.e., etc.

For a given function g :!¡!→!, a tree T ⊆ !¡! is said to be g-bounded if for
every �∈!¡! and every i∈!, if �˙i∈T , then i¡g(�). Thus, for example, if g(�) = 2
for all �, then a g-bounded tree is simply a binary tree. T is said to be 9nitely
branching if T is g-bounded for some g, that is, if each node of T has 1nitely many
immediate successors. Observe that this is equivalent to the existence of a bounding
function h such that �(i)¡h(i) for all �∈T and all i¡|�|. T is said to be recursively
bounded (r.b.) if it is g-bounded for some recursive function g. As above, this is
equivalent to the existence of a recursive bounding function h such that �(i)¡h(i)
for all �∈T and all i¡|�|. If T is recursive, then this is also equivalent to the
existence of a partial recursive function f such that, for any �∈T , � has at most
f(�) immediate successors in T . A recursive tree T is said to be highly recursive if it
is also recursively bounded. For any tree T , an in9nite path through T is a sequence
(x(0); x(1); : : :) such that x�n∈T for all n. We let [T ] denote the set of in1nite paths
through T .

A subset P of !! is a 0
1 class if P = [T ] for some recursive tree T ⊆ !¡!. If the

tree T is g-bounded, we will say that P is g-bounded and similarly for other notions
of boundedness. For example, this means that the 0

1 class P is bounded, if P = [T ]
for some recursive 1nitely branching tree T . It is possible that there be another tree
S which is not 1nitely branching such that P = [S] also (just let S include T together
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with all paths (i) of length 1). We say that P is a strong 0
2 class if there is a tree

T recursive in 0′ such that P = [T ].
It is important to note here that we consider a 0

1 set to signify a subset of ! and
in general a 0

n, �
0
n or '0

n set is a subset of ! with the appropriate form of de1nability
in the arithmetical hierarchy (see [13]).

A node � of the tree T ⊆ !¡! is said to be extendible if there is some x∈ [T ] such
that �≺ x. The set of extendible nodes of T is denoted by Ext(T ). Ext(T ) may be
viewed as the minimal tree S such that [S] = [T ]. A node �∈T is said to be a dead
end if � =∈ Ext(T ), that is, if � has no in1nite extension in [T ].

As stated in the introduction, we shall study e"ectively closed sets and e"ectively
computable functions over four spaces, {0; 1}! (the Cantor space) and !! (the Baire
space), the real line � and the interval [0; 1]. We note that the Cantor space may be
represented as a closed subset of the interval [0; 1] in the usual manner by mapping
x∈{0; 1}! to the real rx =

∑
i 2x(i)=3i and the Baire space can be represented as the

space of irrational reals in [0; 1] under the relative topology.
We may de1ne a distance function for each space as follows. For � and [0; 1],

d(x; y) = |x− y| is the usual metric. De1ne the distance d(x; y) between two elements
of !! or {0; 1}! to be 2−n if n is the least such that x(n) �=y(n) and 0 if x =y.
Then for any closed subset K of the space X and any x∈X , de1ne dK (x) to be the
minimum of the set d(x; y) for y∈K .

Each of our four spaces has a natural countable basis of basic open sets or intervals
I0; I1; : : : which we shall describe below. Thus a topology on each of our four spaces is
determined by de1ning an open set to be a (1nite or countable) union of intervals and
a closed set is the complement of an open set. It is important to specify a computable
enumeration of the basic open sets or intervals in each of our spaces so that our various
notions of r.e. and co-r.e. closed sets can be made precise. Thus we shall specify such
an enumeration {Ie = IXe }e∈! for each of our spaces X .

First consider the Baire space X =!!. The topology on !! is determined by a
basis of intervals {I(�) : �∈!¡!} where I(�) = {x∈!! : �≺ x}. Notice that each in-
terval is also a closed set and is therefore said to be clopen. The 1nite sequences
�∈!¡! may be enumerated in order �0; �1; : : : by enumerating those elements of
smallest weight 1rst, where the weight of � equals |�| + �(0) + · · · + �(|�| − 1), and
then by enumerating those elements of the same weight lexicographically. We then let
In = I(�n).

Next consider the Cantor space X = {0; 1}!. The topology on {0; 1}! is determined
by a basis of intervals {I(�) : �∈{0; 1}¡!} where I(�) = {x∈{0; 1}! : �≺ x}. Notice
that each interval is a clopen set. The 1nite sequences �∈{0; 1}¡! may be enumer-
ated as ∅; (0); (1); (00); : : : ; so that in general bin(n + 1) = 1˙�n. Then we simply let
In = I(�n).

For the space [0; 1], there is a basis of open intervals (q; r) where q¡r are rationals,
as well as the half-open intervals [0; r) and (q; 1]. Let q0; q1; : : : e"ectively enumerate
(without repetition) the rationals in [0; 1]. To be explicit, let q0 = 0, q1 = 1 and order
the rationals p=q, with p and q relatively prime, 1rst by the sum p+q and then by p.
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Then we may de1ne In for n= 〈i; j〉 to be (qi; qj) if qi¡qj, to be [0; qi) if qj = 0¡qi,
to be (qj; 1] if qi = 1¿qj and to be (0; 1) otherwise.

For the space R, there is a basis of rational intervals and, for convenience, we will
also include in1nite open intervals. Thus if q′0; q

′
1; : : : e"ectively enumerates the rationals

Q (as above) plus {−∞;∞}, then we de1ne In for n= 〈i; j〉 to be (qi; qj) if qi¡qj

and to be (−∞;∞) otherwise.
For any of our four spaces X and any 1nite k¿0, we can de1ne a set of basic

open sets or intervals for X k by taking sets of the form In1 × · · · × Ink where each Inj
is a basic interval for X . These basic open sets may be enumerated via our e"ective
pairing function by de1ning I〈n1 ;:::; nk〉 = In1 × · · · × Ink .

This given, we can formally de1ne our various notions of e"ectively closed sets for
each of spaces X .

De�nition 2.1. Let K be a closed set in the space X where X is either !!, {0; 1}!,
R, or [0; 1].

(i) K is open interval recursively enumerable (OIr.e.) if {w : Iw ∩K �= ∅} is recur-
sively enumerable.

(ii) K is open interval co-recursively enumerable (OIco-r.e.) if {w : Iw ∩K = ∅} is
recursively enumerable.

(iii) K is closed interval recursively enumerable (CIr.e.) if {w : Iw ∩K �= ∅} is recur-
sively enumerable.

(iv) K is closed interval co-recursively enumerable (CIco-r.e.) if {w : Iw ∩K = ∅} is
recursively enumerable.

(v) K is recursive if K is both OIr.e. and CIco-r.e.
(vi) K is open interval decidable if {w : Iw ∩K �= ∅} is recursive.
(vii) K is closed interval decidable if {w : Iw ∩K �= ∅} is recursive.

(viii) K is decidable if K is both open interval decidable and closed interval decidable.

The most natural notions are (i) and (iv). The open interval r.e. closed sets are called
r.e. closed sets and the closed interval co-r.e. sets are called co-r.e. closed sets in [2],
where a recursive closed set is de1ned to be one satisfying both conditions, which
agrees with our de1nition of recursive closed set. For the real line and the Cantor
space, the CIco-r.e. sets are the usual 0

1 classes studied in computability theory [4, 7].
For the Cantor space and the Baire space, Iw = Iw, so that (i) is equivalent to (iii), (ii)
is equivalent to (iv), and (vi)–(viii) are all equivalent.

A uniform approach to the notion of a continuous function and a computably con-
tinuous function may be given via the concept of representing functions. We say that
f :!→! is a representing function for a function F :X →Y if the following condi-
tions hold:

(i) For each a and b, if IXa ⊂ IXb , then IYf(a) ⊂ IYf(b).
(ii) For each x∈X and for any decreasing sequence {IXek }k∈! of intervals with

⋂
k I

X
ek =

{x},
⋂

k I
Y
f(ek ) = {F(x)}.



286 D. Cenzer, J.B. Remmel / Theoretical Computer Science 284 (2002) 279–318

In the case where F has a representing function f, we may view the input element
x∈X as being given to F as list of the intervals to which x belongs. It is easy to see
that a function F :X →Y is continuous if and only if F has a representing function f.
We then de1ne a function F :X →Y to be computably continuous if and only if F
has a computable representing function f.

A function F is said to be partial computable if it has a partial computable repre-
senting function f which satis1es (i) and (ii) whenever f is de1ned and such that,
whenever IXa ⊂ IXb and f(a) is de1ned, then f(b) is de1ned. Then the domain dom(F)
is the set of x such that there is a decreasing sequence of intervals with

⋂
k I

X
ek = {x}

and f(ek) de1ned for all k. The partial computable function F is said to be strongly
computable if dom(g) is computable.

Next, we discuss the e"ective versions of rational and real numbers. The set Q of
rational numbers is countable and may clearly be viewed, via a numbering as given
above, as a recursive set equipped with a recursive ordering and recursive operations
of addition, subtraction, multiplication and division. A real number x has a (lower)
Dedekind cut L(x) = {q∈Q : q¡x} and also an upper Dedekind cut U (x) = {q : x¡q}.
A real x is said to be lower semi-computable if and only if L(x) is r.e. and is said to
be upper semi-computable if and only if U (x) is r.e.

These notions are related to the notions of e"ectively closed sets as follows. The real
x is lower semi-computable if and only if the closed set (−∞; x] is OIr.e. and if and
only if [x;∞) is CIco-r.e. Similarly x is upper semi-computable if and only if (−∞; x]
is CIco-r.e. and if and only if [x;∞) is OIr.e. We observe that if x is lower semi-
computable, then we can obtain x as the limit of a computable, increasing sequence
{qn} of rationals by letting qn be the largest rational which has been enumerated into
L(x) after stage n. Conversely, if x is the limit of a computable increasing sequence qn,
then we have q∈L(x) if and only if there is some n such that q¡qn, so that L(x) is
r.e. Similarly, x is upper semi-computable if and only if it is the limit of a computable,
decreasing sequence of rationals.

More generally, a real function F :Rn→R is said to be lower (upper) semi-computable
if there is a uniformly computable, increasing (decreasing) sequence {Fi}i∈! of real
functions whose limit is F , that is, for all i¡j and x∈X , Fi(x)¡Fj(x) (Fi(x)¿
Fj(x)) and limi Fi(x) =F(x).

Lemma 2.2. Let F : Rn →R. Then
(a) F is lower semi-computable if and only if {(q; r)∈Qn+1 : q¡F(r)} is recursively

enumerable.
(b) F is lower semi-computable if and only if {(q; r)∈Qn+1 :F(r)¡q} is recursively

enumerable.

Proof. (a) Suppose 1rst that {Fi}i∈! is a uniformly computable increasing sequence of
functions with limit F in the sense that there exists a uniformly computable sequence
of functions fi :!→! such that fi is a representing function for Fi for all i∈!. Then
for any rationals q and r, q¡F(r) if and only if there is an i such that q¡Fi(r) which,
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in turn, is if and only if there exists n and c¡d¡r such that Iw = (q − 1=n; q + 1=n)
Ifi(w) = (c; d). This shows that {(q; r)∈Qn ×Q : q¡F(r)} is recursively enumerable.

Conversely, suppose that L= {(q; r)∈Qn ×Q : q¡F(r)} is recursively enumerable.
Then let Li be the set of (q; r) of L enumerated after i steps. Let r ¡i x denote that
the rational r is known to be ¡x after checking the 1rst i bits of information about x.
Now let Fi(x) be the largest q such that for some rational r ¡i x, (q; r)∈Li. It is clear
that Fi is uniformly computable with increasing limit F .

The proof of (b) is similar.

3. E�ectively closed sets

In this section, we shall completely analyze the relationships between our four basic
types of e"ectively closed sets in each of our four spaces.

We begin by recalling some alternative characterizations of OIr.e. and CIco-r.e. sets
in Rn given by Brattka and Weihrauch [2]. We shall then consider how these charac-
terizations extend to our other three spaces, {0; 1}!, !! and [0; 1] since these charac-
terizations will be useful in our later proofs.

Theorem 3.1 (Brattka and Weihrauch [2]). Let K ⊂Rn be a closed set.
(1) The following statements are equivalent:

(a) K is OIr.e.
(b) {w :K ∩ Iw �= ∅} is recursively enumerable.
(c) dK is upper semi-computable.
(d) K = ∅ or range(f) is dense in K for some computable f :!→Rn.

(2) The following statements are equivalent:
(a) K is CIco-r.e.
(b) {w :K ∩ Iw = ∅} is recursively enumerable.
(c) dK is lower semi-computable.
(d) K =F−1{0} for some computably continuous function F : Rn →R.
(e) K = dom(G) for some computable f : Rn →!.
(f ) Rn − K =

⋃
w∈B Iw for some recursively enumerable B⊂!.

Note that Theorem 3.1 implies that a closed set K is recursive if and only if dK is
computable.

The assumption that K is a closed set is crucial in several of the implications. For
example, we may de1ne the distance function dK (x) as the in1mum of d(x; y) for
y∈K even for sets K which are not closed. Then dK is simply dcl(K), so that dK is
computable if and only if cl(K) is a recursive closed set. Similar statements hold for
dK being upper or lower semi-computable. Also, the condition that range(f) is dense
in K for a computable function f :!→R could be modi1ed to say that K is the
closure of the range of such a function, and thus to imply that K is closed. As it is,
of course any open rational interval has a dense countable subset of rationals, which
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can be given as the range of a computable function. In contrast, conditions (2)(d)–(f)
all imply that K is a closed set, since any computable function must be continuous.

The characterization in terms of intervals which are met (or missed) likewise does not
imply closure of itself. For example, consider the open interval (0; 1). Iw = (p; q) meets
(0; 1) if and only if either p or q is in (0; 1), which is clearly a recursive condition.
Similarly, Iw = [p; q] misses (0; 1) if and only if either p¡q6 0 or 1 6 p¡q which
is again a recursive condition.

We note that such distinctions will be more important when we want to prove similar
kinds of equivalence for closed sets which are the graph of the function F . In particular,
we will want to 1nd conditions on the graph of F which imply that F is computable
without the assumption of continuity.

Since the space [0; 1] is a (recursive) closed subset of R and the space {0; 1}!
is e"ectively homeomorphic to a recursive closed subset (the Cantor set) of R, the
characterizations of Theorem 3.1 clearly carry over to these two spaces and their 1nite
powers. The only di"erence is that for the space {0; 1}!, Iw = Iw, which simpli1es item
(2b). Thus we focus on the space !!. Recall that the distance d(x; y) between two
elements of !! is de1ned to be 2−n if n is the least such that x(n) �=y(n) and 0 if
x =y.

Theorem 3.2. Let K ⊂!! be a closed set.
Then the following statements are equivalent:

(a) K is OIr.e.
(b) {w :K ∩ Iw �= ∅} is recursively enumerable.
(c) dK is upper semi-computable.
(d) K = ∅ or range(f) is dense in K for some computable f :! → !!.

Proof. Of course, (a)⇔ (b) is just the de1nition.
(b)⇒ (d): Suppose that K is nonempty and that {w :K ∩ Iw �= ∅} is recursively enu-

merable. Then let I(�0); I(�1); : : : be an e"ective enumeration of the intervals I(�) such
that K ∩ I(�) �= ∅.

We de1ne a uniformly computable sequence xn which will be dense in K by making
each xn the unique member of a decreasing intersection In; k of intervals, de1ned as
follows. In;0 = I(�n) and for each k, In; k+1 = I(�t), where I(�t) is the 1rst interval in
the sequence {I(�i)}i∈! which is a proper subset of In; k . Note that since K ∩ In; k �= ∅,
there must be such a proper subset in the enumeration. We should observe that since
!! is not compact, we cannot use compactness to see that

⋂
k¡! In; k �= ∅ and in fact

contains an element xn of K . Nevertheless, the unique element xn of
⋂

k¡! In; k �= ∅
is de1ned and can be computed since each In; k = I(�n; k) for a computable list �n; k

of 1nite sequences such that �n; k+1 a proper extension of �n; k for each k. Thus we
simply de1ne xn(k) = �n; k+1(k) for each k. Furthermore, for each k there is an element
yn; k ∈K ∩ In; k which extends �n; k , so that limk→∞ yn; k = xn. Thus the assumption that
K is closed is enough to ensure that xn ∈K .
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It is clear that the sequence xn is uniformly computable, so that there is a computable
function f :!→!! with f(n) = xn. Since we have xn ∈K ∩ I(�n) for each n, it follows
that {xn}n¡! is dense in K .

(d)⇒ (c): Suppose that {xn}n¡! is a uniformly computable sequence which is dense
in K . Then for any x and any rational q,

d(x; K) ¡ q ⇔ (∃n)d(x; xn) ¡ q ⇔ (∃i; n)[x�i = xn�i & 2−1−i 6 q]:

It then easily follows that dK is upper semi-computable.
(c)⇒ (b): Suppose that dK is upper semi-computable and let dK be the limit of a

decreasing sequence {fn} of computable functions from !! into [0; 1]. Observe that
the set of triples 〈�; n; q〉, with �∈!¡!, n¡! and q∈Q, such that fn(�˙0!)¡q, is
recursively enumerable. This is because fn(�˙0!)¡q if and only if, at some stage in
the computation of fn(�˙0!), we have an estimate which is good enough to imply
that the value of fn(�˙0!) is ¡q. The result now follows from the fact that if |�|= ‘,
then

I(�) ∩ K �= ∅ ⇔ dK (�˙0!) ¡ 2−1−‘:

To see this, suppose 1rst that I(�)∩K �= ∅, which is if and only if ∃y∈K with �≺y.
Thus the least n where such a y di"ers from �˙0! is at least ‘. But this means that
d(y; �˙0!) 6 2−‘¡21−‘. Each step of this argument may be reversed to get the other
direction.

For the CIco-r.e. closed sets of !!, only some of the statements are equivalent. Note
that clause (f) is the usual de1nition of a 0

1 class.

Theorem 3.3. Let K⊂!! be a closed set.
(1) The following statements are equivalent:

(a) K is CIco-r.e.
(b) {w :K ∩ Iw = ∅} is recursively enumerable.
(c) dK is lower semi-computable.

(2) The following statements are equivalent:
(d) K =F−1{0!} for some computably continuous function F :!! → !!.
(e) K = dom(G) for some partial computable function G :!! → !.
(f ) !! − K =

⋃
I(�) : �∈B for some recursively enumerable B⊂!¡!.

(3) Each of the 9rst set of statements implies each of the second; but the converse
does not hold.

Proof. (1) Once again (a)⇔ (b) is just the de1nition.
(c)⇒ (b): Assume that dk is lower semicomputable. It follows from our argument

of the previous theorem that

I(�) ∩ K = ∅ ⇔ dK (�˙0!) ¿ 2−‘:

Thus if dK is lower semicomputable, then (b) holds.
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(b)⇒ (c): Suppose that W = {w :K ∩ Iw = ∅} is recursively enumerable. We can ex-
press the function dK as the limit of a computable, increasing sequence of functions
Fn as follows. Let Fn(x) = 2−m where m is the least k such that the code w for I(x�k)
has been enumerated into W after n steps if there are such k and w and let Fn(x) = 0
otherwise. For each x, it is easy to see that F0(x); F1(x); : : : is an increasing sequence
so that {Fn}n∈! is uniform increasing sequence of computable functions. It is clear
that limn→∞ Fn(x) will be 2−m, where m is the least such that K ∩ I(x�m) �= ∅ if there
is such an m and is 0 otherwise. Thus limn→∞ Fn(x) =dK (x) and hence dK is lower
semicomputable.

(2) (d)⇒ (e): Let F be a computable function with computable representing func-
tion f such that K =F−1{0!}. Then the desired computable function G will have a
partial computable representing function g where for all �∈!¡!, g(�) =f(�) if f(�)
consist of all 0’s and is unde1ned otherwise. Thus G(x) =F(x) if F(x) = 0! and is
unde1ned otherwise. Thus the domain of G equals K .

(e)⇒ (f): Suppose that K = dom(G) for some partial computable function G with
partial computable representing function g. Since g is partial computable, the set of �
such that g(�) is de1ned is r.e. and !! − K =∪{I(�) : � =∈ dom(g)}.

(f)⇒ (d): Let �1; �2; : : : be a recursive list such that !! − K =
⋃

n I(�n). De1ne a
representing function f of a computable function F by setting f(�) = 0n if |�|= n and
there is no i¡n such that �i ≺ � and setting f(�) = 0 j1n−j if j is the least k such that
��k = �i for some i¡n. It is clear that f is computable and satis1es the conditions
needed to be representing function of a continuous function F . It is easy to check that
our de1nition ensures that K =F−1{0!}.

(3) It is immediate that (b) implies (f). On the other hand, it is known from classical
descriptive set theory that {� :K ∩ I(�) �= ∅} can be a �1

1 complete set for some 0
1

class K . For example, it was shown in the recent paper of Cenzer and Remmel [8],
that the set of indices e such that Pe is nonempty is a �1

1 complete set where P0; P1; : : :
is a canonical enumeration of all 0

1 classes in !!. Thus if we de1ne the 0
1 class K

so that (e)˙x∈K if and only if x∈Pe, then {e :K ∩ I((e)) = ∅} is a 1
1 complete set

and is therefore not recursively enumerable.

For the remainder of this section, we examine the possible implications between
the four fundamental notions of e"ectively closed sets of reals, that is, open (closed)
interval r.e. (co-r.e.).

There are just two positive results.

Theorem 3.4. Let K be a closed subset of �.
(a) if K is open interval co-r.e.; then K is closed interval co-r.e. and
(b) if K is closed interval r.e.; then K is open interval r.e.

Proof. (a) Suppose that K is OIco-r.e., i.e., that {w : Iw ∩K = ∅} is recursively
enumerable. Now to test whether Iw ∩K = ∅, where Iw = [p; q], just observe
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that

[p; q] ∩ K = ∅ ⇔ (∃n)
(
p− 1

n
; q +

1
n

)
∩ K = ∅:

Thus if {w : Iw ∩K = ∅} is r.e., then {w : Iw ∩K = ∅} is r.e.
(b) Suppose that K is CIr.e., i.e., that {w : Iw ∩K �= ∅} is recursively enumerable.

The result now follows from the fact that

(p; q) ∩ K �= ∅ ⇔ (∃n)
[
p +

1
n
; q− 1

n

]
∩ K �= ∅:

Thus if {w : Iw ∩K �= ∅} is r.e., then {w : Iw ∩K �= ∅} is r.e.

It follows from Theorem 3.4 that there are at most two ways in which a closed set
K of � can satisfy exactly three of the four properties. Our next result will show that
both of these possibilities can be realized.

Theorem 3.5. (a) There is a closed set K of reals which is open interval decidable
but is not closed interval r.e.

(b) There is a closed set K of reals which is closed interval decidable but is not
open interval co-r.e.

Proof. Let C be a set of natural numbers which is r.e. but not recursive and let
C =

⋃
s Cs, where C0 = ∅, express C as the union of a uniformly computable increasing

sequence of recursive sets.
(a) De1ne K to contain 0 and let 2−n−1 ∈K if and only if n =∈C and to contain

2−n−1 + 2−n−1−s−1 as long as n =∈Cs. Note that 2−n−1 + 2−n−2 ∈K for all n and that,
if 2−n−1 + 2−n−1−s−2 ∈K , then 2−n−1 + 2−n−1−s−1 ∈K . K is not closed interval r.e.
since

n =∈ C ⇔ [2−n−1 − 2−n−3; 2−n−1] ∩ K �= ∅
so that K being CIr.e. would imply that C is recursive.

K is open interval decidable since we can test whether (p; q)∩K = ∅ by the fol-
lowing procedure. First, check to see whether (p; q) contains any points of the form
2−n−1 +2−n−2, in which case (p; q)∩K �= ∅. If not, then we must have (p; q)⊂ (2−n−2

−2−n−3; 2−n−1+2−n−2) for some n. Then if q6 2−n−1, then (p; q)∩K = ∅. Otherwise
let s be the smallest t such that 2−n−1 + 2−n−1−t−1 ∈ (p; q). Then we have

(p; q) ∩ K �= ∅ ⇔ 2−n−1 + 2−n−1−s−1 ∈ K ⇔ n =∈ Cs:

(b) De1ne K to contain 0 plus 2−n−1 for all n. Moreover, we put 2−n−2 +2−n−2−s−1

in K if and only if n∈Cs+1 − Cs. K is not open interval co-r.e. since

n =∈ C ⇔ (2−n−2; 2−n−1) ∩ K = ∅
so that K being OIco-r.e. would imply that C is recursive.
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K is closed interval decidable since we can test whether [p; q]∩K = ∅ by the fol-
lowing procedure. First, check to see whether [p; q] contains any points of the form
2−n−1, in which case [p; q]∩K �= ∅. If not, then we must have (p; q)⊂ (2−n−2; 2−n−1)
for some n. In this case, let s be the largest such that 2−n−2 +2−n−2−s−1 ∈ [p; q]. Then
we have

[p; q] ∩ K �= ∅ ⇔ n ∈ Cs+1:

We note that Weihrauch [36] also gives examples of recursive closed sets, one of
which is not closed interval r.e. and the other not open interval co-r.e.

Again Theorem 3.4 implies that there are only three possible ways that a closed set
K of � can have exactly two of our properties. Our next theorem will show that all
three of these possibilities can be realized.

Theorem 3.6. (a) There is a closed set K of reals which is open interval r.e. and
closed interval r.e.; but is neither closed interval co-r.e. nor open interval co-r.e.

(b) There is a closed set K of reals which is closed interval co-r.e. and open interval
co-r.e.; but is neither open interval r.e. nor closed interval r.e.

(c) There is a closed set K of reals which is recursive but is neither open interval
co-r.e. nor closed interval r.e.

Proof. Let C be a set of natural numbers which is recursively enumerable but not recur-
sive. (a) Let K = {0}∪ {2−n−1 : n∈C}. To check whether Iw ∩K �= ∅, where Iw = [p; q],
there are two cases. If p 6 0 and q¿0, then automatically Iw ∩K �= ∅. Otherwise, if
p¿0, just let {n1; : : : ; nt} list the 1nite set of elements of Iw of the form 2−n−1 and
check that ni ∈C for some i. Thus K is CIr.e and hence K is automatically OIr.e.

On the other hand, suppose by way of contradiction that K is CIco-r.e. Then for
any n, we have

n =∈ C ⇔ [2−n−1; 2−n−1 + 2−n−2] = ∅;
which would make C also co-r.e. and therefore recursive. Thus K is not CIco-r.e. and
hence K is automatically not OIco-r.e.

(b) Let K = {0}∪ {2−n−1 : n =∈C}. To check whether Iw ∩K = ∅ where Iw = (p; q)
note that if p6 0 and q¿0, then Iw ∩K �= ∅ and otherwise, if p¿0, there is a 1nite
set {2−n1 ; : : : ; 2−nt} of elements of the form 2−n−1 in (p; q) so that (p; q)∩K = ∅ if
and only if ni ∈C for each i. It follows that K is OIco-r.e. and hence K is automatically
CIco-r.e.

On the other hand, suppose by way of contradiction that K is OIr.e. Then for any
n, we have

n =∈ C ⇔ (2−n−1 − 2−n−2; 2−n−1 + 2−n−2) �= ∅;
which would make C also co-r.e. and therefore recursive. Thus K is not OIr.e. and
hence K is automatically not CIr.e.
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(c) Let K1 and K2 be given by parts (a) and (b) of Theorem 3.5. Now de1ne the
desired set K to be K1 ∪{x + 1

2 : x∈K2 ∩ [0; 1
2 ]}. Since both K1 and K2 are recursive

closed sets, it follows that K is also a recursive closed set. K is not closed interval
r.e. since K1 is not and K is not open interval co-r.e. since K2 is not.

Finally, we observe that there are two ways in which a set can satisfy exactly one
of the properties. (Of course, it is clear that we may have a closed set which is not
e"ectively closed in any sense.)

Theorem 3.7. (a) There is a closed set K of reals which is open interval r.e. but is
neither closed interval r.e. nor closed interval co-r.e.

(b) There is a closed set K of reals which is closed interval co-r.e. but is neither
open interval r.e. nor open interval co-r.e.

Proof. (a) By Theorem 3.6, let K1 and K2 be closed subsets of the real interval such
that K1 is open interval r.e. and closed interval r.e. but neither open interval co-r.e.
nor closed interval co-r.e. and K2 is closed interval co-r.e. and open interval r.e but
not closed interval r.e. nor open interval co-re. We de1ne the desired set K to be
K1 ∪{x + 1

2 : x∈K2 ∩ (0; 1]}. Since both K1 and K2 are open interval r.e., it follows
that K is also open interval r.e. K is not closed interval r.e. since K2 is not and K is
not closed interval co-r.e. since K1 is not.

(b) Proceed as in (a) where K1 is the same and K2 is open interval co-r.e. but is
not open interval r.e.

We can make a sharper distinction between the weaker notions of open interval
r.e. and closed interval co-r.e. and the other notions by using index sets. Recall that
given a standard enumeration of the partial recursive functions 70; 71; : : : ; we ob-
tain a standard enumeration of all r.e. sets of natural numbers W0; W1; : : : by setting
We = {n :7e(n)↓}. An index set is a set A of natural numbers such that whenever
Wa =Wb, then a∈A⇔ b∈A. An important type of question in computability theory is
to determine the complexity of various index sets. Index sets which have been studied
include the set Fin of indices for 1nite r.e. sets and the similar index sets Inf, Cof
and Coinf for in1nite, co1nite and coin1nite sets, as well as the set Rec of indices for
recursive sets. We say that a given set A of natural numbers is 0

n (�0
n) complete if

it is a 0
n (�0

n) set and for any other 0
n (�0

n) set B, there is a recursive function 7
such that, for all x, x∈B⇔7(x)∈A.

For our purposes, we shall need three index set results whose proofs can be found
in [29].

Proposition 3.8. (a) Inf is 0
2 complete.

(b) Coinf is 0
3 complete.

(c) Rec is �0
3 complete.
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For more details about index sets, see Soare’s book [29] or Cenzer and Remmel
[6, 8].

We now consider index sets for closed sets which are CIco-r.e. and OIr.e. Recall
from Theorem 3.1 that K is CIco-r.e if and only if the complement of K is the union
of a recursively enumerable set of intervals. That is, K is a 0

1 class in the language
of computability theory. Index sets for 0

1 classes of reals were studied by Cenzer and
Remmel [8]. An enumeration of the CIco-r.e. closed subsets of [0; 1] may be given as
follows. Let

Ke = [0; 1] −
⋃

{Iw : w ∈ We}:
Thus

x ∈ Ke ⇔ (∀w)(x ∈ Iw → w =∈ We):

Note that using compactness, we have that

Iw ∩ Ke = ∅ ⇔ ∃(w0; : : : ; wk)[Iw ⊂ Iw0 ∪ : : : ∪ Iwk & (∀i ¡ k + 1)wi ∈ We]:

For an enumeration of the OIr.e. sets, note that if a set V = {w : Iw ∩K �= ∅} for
some OIr.e. closed set of [0,1], then V has the following properties. First, if Iw ⊆ Iz
and w∈V , then z ∈V . Second, if w∈V , then there is a proper subset Iz of Iw such that
w∈V . Finally, if z ∈V , and Iz ⊂ Iv ∪ Iw, then either v∈V or w∈V . On the other hand,
if V satis1es these three properties, then V = {w : Iw ∩L �= ∅}, where L= [0; 1]−⋃

z =∈V Iz.
This leads us to the following. For each e, let Le = [0; 1] −⋃

z =∈We
Iz.

Theorem 3.9. The set OICLOSED; which is the set of all e such that We = {w : Iw ∩Le

�= ∅} is a 0
2 complete set.

Proof. As suggested above, we claim that e is in OICLOSED if and only if it satis1es
the following (where we combine the 1rst two properties into one):
(i) (∀w)[w∈We ⇔ (∃ z)(Iz ⊂ Iw & z ∈We)].
(ii) (∀n; w; z)[w = 〈n; z1; : : : ; zn〉& (Iz ⊂ Iz1 ∪ · · · ∪ Izn & z ∈We)→ (z1 ∈We ∨ · · · ∨ zn

∈We)].

That is, as we observed above, if We = {w : Iw ∩Le �= ∅}, then We satis1es proper-
ties (i) and (ii). Next suppose that We satis1es properties (i) and (ii). It is clear
that if w =∈We, then Le ∩ Iw = ∅. Now suppose that Le ∩ Iw = ∅. Then let Iv ⊂ Iw. Then
Iv ⊆

⋃
z =∈We

Iz. By compactness, there is a 1nite set {z1; : : : ; zn} with each zi =∈We such
that Iv ⊂ Iz1 ∪ : : : ∪ Izn . By property (ii), it follows that z =∈We. Thus whenever Iv ⊂ Iw,
v =∈We and hence by property (i), v =∈We. Thus We = {w : Iw ∩Le �= ∅}.

Since properties (i) and (ii) are 0
2 conditions, it follows that OICLOSED is a

0
2 set. To show that OICLOSED is 0

2 complete, we need only show that Inf is
1 : 1 reducible to OICLOSED. Given We, let Wf(e) be the set of all w such that
1
2 ∈ Iw and there is an n such that We has at least n elements and |Iw| ¿ 1=2n+2.
It is easy to see that if We is in1nite, then Wf(e) = {w : 1

2 ∈ Iw}. Thus Lf(e) = { 1
2}
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and Wf(e) = {w : Iw ∩Lf(e) �= ∅} and hence f(e)∈OICLOSED. Now if We is 1nite, say
|We|= k, then all w such that |Iw|¡1=2k+2 will not be in Wf(e) so that Lf(e) = ∅. But
then clearly Wf(e) �= {w : Iw ∩Lf(e) �= ∅} so that f(e) =∈OICLOSED. Thus f shows that
INF is 1 : 1 reducible to OICLOSED and hence OICLOSED is 0

2 complete.

Our goal is to show that the index sets {e : e∈OICLOSED &Le is CIr:e:} and {e :Ke

is OIco-r:e:} are �0
4 complete and that {e :Ke is CI-decidable} and {e :Le ∈OICLOSED

& is OI-decidable} are 0
3 complete. To prove these results, we need to prove some

new index set results plus a some coding results. We start with the new index set
results.

A 0
2 set P may be de1ned from an r.e. set W by having x∈P⇔ (∀n) (〈x; n〉 ∈W ).

Thus we may de1ne an enumeration of the 0
2 sets by de1ning

P2;e = {x : (∀n)(〈x; n〉 ∈ We)}:
Then an index set for 0

2 sets is just a set A such that whenever P2; a =P2; b, then
a∈A⇔ b∈A.

We can also enumerate the �0
2 sets by de1ning

S2;e = !− P2;e

and similarly de1ning the notion of an index set for �0
2 sets.

Theorem 3.10. The following index sets are all �0
4 complete:

(a) {e :P2; e is recursive};
(b) {e :P2; e is r:e:};
(c) {e :P2; e is �0

2};
(d) {e : S2; e is recursive};
(e) {e : S2; e is r:e:};
(f ) {e : S2; e is 0

2};

Proof. It is easy to check that each index set is indeed a �0
4 set. For example, P2; e is

�0
2 if and only if

(∃a)(∀x)[(∀n)(〈x; n〉 ∈ We) ⇔ ¬((∀n)(〈x; n〉 ∈ Wa))]

and P2; e is r.e. if and only if

(∃a)(∀x)[(∀n)(〈x; n〉 ∈ We) ⇔ x ∈ Wa]:

For the completeness of (a)–(c), let A be an arbitrary �0
4 set. The fact that Coinf is

a complete 0
3 set implies that there is a recursive function f such that

x ∈ A ⇔ (∃n)(f(x; n) ∈ Coinf):

Given x, we shall uniformly construct a 0
2 set Bx such that Bx is recursive if

∃n(f(x; n)∈Coinf ) and Bx is not �0
2 if ∀n(f(x; n) =∈Coinf ). Let T (e; n; c) be the
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recursive predicate which says that c codes a computation of eth Turing machine on
input n which gives an output 7e(n). Our indexing of 0

2 predicates is of the form
x∈P2; e ⇔∀n∃cT (e; 〈x; n〉; c). Moreover, it is easy to see that if we express a 0

2 set
B in the form x∈B⇔∀n∃mR(n; m; x) for some recursive predicate R(m; n; x), then
we can uniformly 1nd a 0

2 index for B by writing out the predicate R in terms
of the computation of some Turing machine using the predicate T (e; n; c). Thus our
construction of the Bx’s will imply that there exists a recursive function g such that
P2; g(x) =Bx for all x so that

x ∈ A⇔ P2; g(x) is recursive

⇔ P2; g(x) is r:e:

⇔ P2; g(x) is �0
2:

This given, we can de1ne Bx as follows. Let Bx; e = {〈e; n〉 : 〈e; n〉 ∈Bx}. For all i, if
Wf(x; i) is co1nite, then we let ni be the largest n such that n =∈Wf(x; i) if there is such
an n and ni = − 1 otherwise.
1. Let 〈0; n〉 ∈Bx;0 ⇔ (∀m¿ n)(∃c)(T (f(x; 0); m; c). Thus if Wf(x;0) is coin1nite, then

Bx;0 = ∅ and if Wf(x;0) is co1nite, then Bx;0 = {〈0; n〉 : n¿n0}.
2. For e¿0, let 〈2e; n〉 ∈Bx;2e ⇔ (∀m¿ n)(∀j 6 e)(∃c)(T (f(x; j); m; c). Thus if there

is a j 6 e such that Wf(x; j) is coin1nite, then Bx;2e = ∅. On the other hand, if Wf(x; i)

is co1nite for all i 6 e, then

Bx;2e = {〈2e; n〉 : n ¿ max{n0; : : : ; ne}}:

3. For e¿ 0, let 〈2e + 1; n〉 ∈ Bx;2e+1 if and only if
(a) (∀m¿ n)(∀j 6 e)(∃c)(T (f(x; j); m; c) and
(b) (∀j 6 n)(j∈P2; e)∨∃y; t¡m∀c(¬T (e; 〈t; y〉; c)):
Once again, if there is an i 6 e such that Wf(x; e) is coin1nite, then Bx;2e+1 = ∅. On
the other hand, suppose Wf(x; i) is co1nite for all i 6 e. Then Bx;2e+1 = {〈2e +
1; n〉 : n¿max{n0; : : : ; ne}} if S2; e = ∅. If S2; e �= ∅, then there is a least y∈ S2; e

and hence ∃t∀c(¬T (e; 〈t; y〉; c)). But in this case neither y∈P2; e nor (∃z; t¡y)
(∀c)(¬T (e; 〈t; y〉; c)) holds. Thus 〈2e+1; y〉 =∈Bx;2e+1. Thus if Wf(x; i) is co1nite for
all i 6 e, then our construction ensures that S2; e �= {y :y∈Bx;2e+1}.

It is easy to see that our de1nition ensures that {Bx}x∈! is a uniform sequence of
0

2 sets. Moreover, if ∃n(f(x; n)∈Coinf ), then for all but 1nitely many e, Bx; e = ∅
and if Bx; e �= ∅, then Bx; e is co1nite so that Bx is a recursive set. Now suppose that for
all n, Wf(x; n) is co1nite and that Bx is �0

2 . Then we can construct a uniform sequence
of �0

2 sets {Ce}e∈! by setting Ce = {y : 〈2e + 1; y〉 ∈Bx}. In particular, there will be a
recursive function h such that Ce = S2; h(e) = {y :∃t(〈t; y〉 =∈Wh(e)}. But then by the re-
cursion theorem, there is an e such that We =Wh(e) so that S2; e = S2; h(e) = {y : 〈2e +
1; y〉 ∈Bx;2e+1}. Our construction ensures that in this case, S2; e �={y : 〈2e + 1; y〉 ∈
Bx;2e+1} for all e so that Bx cannot be �0

2 .
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For the completeness of (d)–(f), once again assume A is �0
4 set such that

x ∈ A ⇔ (∃n)f(x; n) ∈ Coinf:

Given x we shall uniformly construct a �0
2 set Cx such that Cx is recursive if

∃nWf(x; n) ∈Coinf and Cx is not 0
2 if ∀Wf(x; n) =∈Coinf . Our construction of the Bx’s

will imply that there exists a recursive function g such that S2; g(x) =Bx for all x so
that

x ∈ A⇔ S2; g(x) is recursive

⇔ S2; g(x) is r:e:

⇔ S2; g(x) is 0
2 :

In this case, we can simply let Cx =!−Bx for all x. By our previous construction,
{Cx}x∈! is a uniform sequence of �0

2 sets such that if x∈A, the Cx is recursive since
Bx is recursive. Similarly, if x =∈A, then Bx is not �0

2 and Cx is not 0
2 .

Next we shall prove our required coding result.

Theorem 3.11. There exist recursive functions f; g; h; k; and l such that g(e) and
k(e) are in OICLOSED for all e and such that
(a) P2; e is r.e. if and only if Kf(e) is OIco-r.e.
(b) P2; e is r.e. if and only if Lg(e) is CIr.e.
(c) We is recursive if and only if Kh(e) is CIr.e. so that We is recursive if and only if

Kh(e) is closed interval decidable.
(d) We is recursive if and only if Lk(e) is OIco-r.e.
(e) Kl(e) is always CI and OI decidable and We is recursive and only if {q∈Q : q =∈

Kl(e)} is recursive.

Proof. (a) First one can use the proof of the 0
2 completeness of Inf to show that

there is a recursive function 7 such that

x ∈ P2;e ⇔ W7(e;x) is in1nite:

This given, we construct Kf(e) as follows. Let Be be the following r.e. set of intervals.
For each n∈!, we put

(
1

2n + 1
+

1
2n+k+3 ;

1
2n

− 1
2n+k+3

)

into Be if and only if |W7(e; n)| ¿ k. Clearly, there is a recursive function f such that
Wf(e) =Be for all e.

Now 1x e. First observe that our construction ensures that 0 and all elements of
the form 1=2n for n∈! are in Kf(e). Thus if Iw ∩Kf(e) = ∅ where Iw = (p; q), then we
must have (p; q)⊆ (1=2n+1; 1=2n) for some n. Next observe that if n∈P2; e, then W7(e; n)
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is in1nite and hence(
1

2n + 1
+

1
2n+k+3 ;

1
2n

− 1
2n+k+3

)
∩ Ke = ∅

for all k so that(
1

2n+1 ;
1
2n

)
∩ Kf(e) = ∅:

If n =∈P2; e, then
[

1
2n+1 ;

1
2n

]
−
(

1
2n+1 +

1
2n+k+3 ;

1
2n

− 1
2n+k+3

)
=

[
1

2n+1 ;
1
2n

]
∩ Kf(e);

where k = |W7(e; n)|. Thus P2; e = {n : (1=2n+1; 1=2n)∩Kf(e) = ∅}. Hence if Kf(e) is OIco-
r.e., then P2; e will be r.e. Vice versa, if P2; e is r.e., then we can enumerate the set
Ce = {w : Iw ∩Kf(e) = ∅} as follows. For each n, place an interval (p; q)⊆ (1=2n+1; 1=2n)
into Ce if either n∈P2; e or if |W7(e; n)|¿ k and

(p; q) ⊆
(

1
2n + 1

+
1

2n+k+3 ;
1
2n

− 1
2n+k+3

)
:

Thus P2; e is r.e. if and only if Kf(e) is OIco-r.e.
(b) Again let 7 be a recursive function such that

x ∈ P2;e ⇔ W7(e;x) is in1nite:

Given e, we construct a closed set Le as follows. First put 0 into Le and for all n∈!,
put 1=2n+1 + 1=2n+k+2 into Le if and only if |W7(e; n)|¿ k. Finally, we put 1=2n+1 into
Le if W7(e; n) is in1nite. First we claim that Le is OIr.e. That is, if Iw contains some
element of the form 3=2n+2, then Iw ∩Le �= ∅. Similarly if Iw ⊆ (3=2n+2; 1=2n) for some
n, then Iw ∩Le = ∅. Thus we are reduced to considering intervals Iw of the form (p; q)
where 3=2n+3¡p and 1=2n+1¡q¡3=2n+2. This given, there will be a least k such that
1=2n+1 + 1=2n+k+2 ∈ (p; q) in which case Iw ∩Le �= ∅ if and only if |We|¿ k, which is
an r.e. condition. It follows that Le is OIr.e. and there is recursive function g such that
Wg(e) = {w : Iw ∩Le �= ∅} so that Le =Lg(e) for all e.

Next observe that for all n, [3=2n+3 +1=2n+5; 1=2n+1]∩Lg(e) �= ∅ if and only if W7(e; n)

is in1nite. Thus if Lg(e) is CIr:e:, then P2; e is r.e. Vice versa, suppose that P2; e is r.e.
Then for any w, Iw ∩Lg(e) �= ∅ if Iw contains an element of the form 3=2n+2. Similarly
if Iw ⊆ (3=2n+2; 1=2n) for some n, then Iw ∩Le = ∅. Thus we are reduced to considering
interval Iw of the form (p; q) where 3=2n+3¡p and 1=2n+1 6 q¡3=2n+2. This given,
either q= 1=2n+1, in which case Iw ∩Lg(e) �= ∅ if and only if n∈P2; e, or there is a least
k such that 1=2n+1+1=2n+k+2 ∈ [p; q], in which case Iw ∩Le �= ∅ if and only if |We|¿ k.
These are both r.e. conditions. Thus if P2; e is r.e., then Lg(e) is CIr.e.

For (c), given We, let Ke = {0}∪ {1=2n+1 : n =∈We}. We claim that Ke is always
CIco-r.e. That is, if Iw = [p; q], then if p= 0, then Iw ∩Ke �= ∅. Otherwise, there are
only 1nitely many elements, {1=2n1+1; : : : ; 1=2np+1 of the form 1=2n+1 in [p; q]. Then



D. Cenzer, J.B. Remmel / Theoretical Computer Science 284 (2002) 279–318 299

Iw ∩Ke = ∅ if and only if {n1; : : : ; np}⊆We. Thus Ke is always CIco-r.e. and there is
a recursive function h such that Ke =Kh(e). Moreover, a similar argument shows that
Kh(e) is CIr.e. if and only if We is co-r.e. Thus We is recursive if and only if Kh(e) is
CI decidable.

For (d), given We, let Te = {0}∪ {1=2n+1 : n∈We}. We claim that Te is always OIr.e.
That is, Iw ∩Te �= ∅ if and only if Iw contains 0 or some element of the form 1=2n+1

where n∈We. Thus Te is always a closed OIr:e: set and there is a recursive function
k such that Te =Lk(e). Moreover, it is easy to see that if Lk(e) is OIco-.r.e. if and only
if We is co-.r.e. Thus We is recursive if and only if Lh(e) is OI decidable.

(e) We modify the example from (c) by adding 1=2n+1 ± 1=2n+1+s1 to Ke whenever
n =∈We; s where We; s is the set of elements of We that have been enumerated into We by
the end of stage s. Here is the procedure for checking whether K meets an interval [p; q]
and/or (p; q). If p= 0, then K meets both intervals. Since we have 1=2n+1+1=2n+2 ∈Ke

for all n, we know that if (p; q) or [p; q] contains an element of the form 1=2n+1 +
1=2n+2, then the intervals have non-empty intersection with Ke. Thus, we may assume
that 1=2n+2 + 1=2n+3 6 p¡q6 1=2n+1 + 1=2n+2 for some n and, for a closed interval
that the inequalities are strict. Then K meets the interval if and only if n =∈We; s, where
s is the least such that 1=2n+1 + 1=2n+1+s+1 or 1=2n+1 − 1=2n+1+s+1 is in the interval.
Thus Ke is always both CI and OI decidable, so that there is a recursive function l
such that Kl(e) =Ke. Of course, Kl(e) is recursive set of rationals if and only if We is
recursive. Thus a closed set of rationals K can be CI and OI decidable without being
recursive.

We can now combine our two previous results to prove the following.

Theorem 3.12. (a) S1 = {e :Ke is OIco-r:e:} is �0
4 complete.

(b) S2 = {e :Le ∈OICLOSED &Le is CIr:e:} is �0
4 complete.

(c) S3 = {e :Ke is closed interval decidable} is �0
3 complete.

(d) S4 = {e :Le ∈OICLOSED & is open interval decidable} is �0
3 complete.

Proof. First it is easy to see that S1 and S2 are �0
4 sets by simply writing out the

de1nitions. That is

e ∈ S1 ⇔ (∃f)(∀w)(Iw ∩ Ke = ∅ ⇔ w ∈ Wf):

Note that Iw ∩Ke = ∅ if and only if for all x∈ Iw, there exists a w1 in We such that
x∈ Iw1 . Thus both w∈Wf and Iw ∩Ke = ∅ are 0

2 conditions so that S1 is a �0
4 set.

Similarly,

e ∈ S2 ⇔ e ∈ OICLOSED & (∃f)(∀w)(Iw ∩ Le �= ∅ ⇔ w ∈ Wf):

Now e∈OICLOSED is a 0
2 condition. Moreover, if e∈OICLOSED, then Iw ∩Le = ∅

if and only if there exists w1; : : : ; wk not in We such that Iw ⊆
⋃k

i=1 Iwi . Thus Iw ∩Le �= ∅
is 0

2 condition so that S2 is a �0
4 set.
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To see that S3 is a �0
3 set, let p be a recursive function such that Wp(e) is the set of

all w such that there exist w1; : : : ; wk ∈We with Iw ⊆
⋃k

i=0 Iwi . Then e∈ S3 if and only
if Wp(e) is recursive which is a �0

3 condition. Finally, to see that S4 is a �0
3 set, note

that e∈ S4 if and only if e∈OICLOSED and We is recursive set which is again a �0
3

condition.
For the �0

4 completeness of S1 and S2, note that the recursive functions f and g
constructed in Theorem 3.11 show that the complete �0

4 set {e :P2; e is r:e} is 1 : 1
reducible to S1 and S2. For the �0

3 completeness of S3 and S4, note that the recursive
functions h and k constructed in Theorem 3.11 show that the complete �0

3 set Rec is
1 : 1 reducible to S3 and S4.

Finally, we should remark that the same index set results clearly hold for the reals
�. For both {0; 1}! and !!, every basic interval is clopen so that there is no distinc-
tion between OIr.e. and CI.re. closed set and OIco-r.e. and CIco-r.e. closed sets. The
analogue of Theorem 3.12 does hold and follows from index sets results on 0

1 classes
proved by the authors in [6].

4. Graphs of continuous functions

For any Hausdor" topological spaces X and Y , the graph G of a continuous function
F from X to Y must be a closed subset. It is a natural question for one of our four
spaces X , whether the graph of a computably continuous function from X n to X will
be an e"ectively closed set and in what sense. We will determine the solution to this
question for each of the spaces �, [0; 1], {0; 1}! and !!.

The reverse problem of whether a function with a closed graph is necessarily con-
tinuous is a general version of the well-known “automatic continuity” problem, usually
studied for linear functions. In the spirit of Brattka and Weihrauch [2], we shall con-
sider the e"ective analogue of this problem for e"ectively closed graphs. There are
two versions of each problem. We 1rst ask whether a function F :X →X with an ef-
fectively closed graph is necessarily computably continuous (or semicontinuous). Then
we ask the same question when F is assumed to be continuous. These problems are
considered for each of our four spaces �, [0; 1], {0; 1}! and !!. As in the previous
section, the latter space leads to the most interesting results.

Theorem 4.1. Let F :X n →X be a computably continuous function where X is one
of the spaces �; [0; 1]; {0; 1}! and !!. Then the graph of F is an OIr.e. closed set.

Proof. Let F :X →X be a computably continuous function, f be a computable repre-
senting function for F , and G be the graph of F . We claim that

G ∩ (Ia × Ib) �= ∅ ⇔ (∃c)[Ic ⊂ Ia & If(c) ⊂ Ib]:

To see this, suppose 1rst that there is some pair (x; y)∈G ∩ (Ia × Ib). Then x∈ Ia
and y =F(x)∈ Ib. Let Ie1 ; Ie2 ; : : : be a decreasing sequence of subintervals of Ia such



D. Cenzer, J.B. Remmel / Theoretical Computer Science 284 (2002) 279–318 301

that
⋂

k Iek = {x}. Since f is a representing function for F , we have that for all k,
If(ek ) ⊃ If(ek+1) and

⋂
k If(ek ) = {y}. It follows that some If(ek ) ⊆ Ib. Note that this does

not depend on compactness, but only on metrizability. That is, let B(y; r) = {x∈X :d(x;
y)¡r} be the open ball of radius r about y. Then each interval If(ek ) ⊆B(y; rk) for
some decreasing sequence {rk} of rationals with limit 0. On the other hand, there is
some rational r such that B(y; r)⊂ Ib and hence some k such that

If(ek ) ⊂ B(y; rk) ⊂ B(y : r) ⊂ Ib:

On the other hand, suppose that Ic ⊂ Ia and If(c) ⊂ Ib. Then for any x∈ Ic, we have
F(x)∈ Ib, so that G ∩ (Ia × Ib) is non-empty.

We need local compactness to show that the graph of a computably continuous
function is also CIco-.r.e.

Theorem 4.2. Let F :X n →X be a computably continuous function; where X is either
�; [0; 1] or {0; 1}!. Then the graph of F is a CIco-r.e. closed set.

Proof. With F , G and f as in the previous proof, we claim that G ∩ Ia × Ib = ∅ if and
only if

(∃a1; : : : ; ak)[Ia ⊆ Ia1 ∪ Ia2 ∪ · · · ∪ Iak & (∀i 6 k)((Iai × If(ai)) ∩ G = ∅)]

and hence G is CIco-r.e.
To prove our claim, suppose 1rst that G ∩ Ia × Ib is non-empty and contains some

element (x; y) such that y =F(x). Then for any a1; : : : ; ak with Ia ⊂ Ia1 ∪ · · · ∪ Iak , we
must have x∈ Iaj for some j, so that y∈ If(aj). It follows that (x; y)∈ (Iai × If(ai))∩G
so that the right-hand condition cannot hold.

On the other hand, suppose that G ∩ Ia × Ib = ∅. Then for any element x∈ Ia, F(x) =∈
Ib. It follows that there is some interval Ia(x) containing x such that If(a(x)) ∩ Ib = ∅.
Since the compact set Ia is covered by {Ia(x) : x∈ Ia}, there must be a 1nite subset
Ia1 ; : : : ; Iak of those intervals which cover Ia.

Corollary 4.3. Let F :X n →X be a computably continuous function; where X is one
of the spaces �; [0; 1]; and {0; 1}!. Then the graph of F is a recursive closed set.

We saw in Section 3 that a recursive closed set need not be open interval co-r.e. or
closed interval r.e. The following examples show that these types of results extend to
graphs of computably continuous functions.

Theorem 4.4. Let X be either � or [0; 1].
(a) There is a computably continuous real function F :X →X such that the graph G

of F is closed interval decidable but is not OIco-r.e.
(b) There is a computably continuous real function F :X →X such that the graph G

of F is open interval decidable but is not CIr.e.
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(c) There is a computably continuous real function F :X →X with a graph G which
is neither OIco-r.e. nor CIr.e.

Proof. Let C be a non-recursive r.e. set of natural numbers. Let g be a 1 : 1 recursive
function whose range is C and let Cs = {g(0); : : : ; g(s)} for all s.

(a) De1ne F : [0; 1]→ [0; 1] as follows (F can be extended to � by setting F(x) = 0
for all other x =∈ [0; 1]). Let F(0) = 0 and let F(2−n) = 0 for all n. Within (2−n−1; 2−n),
there are two possibilities. If n =∈C, let F(x) = 0 for all x. If n∈Cs+1 − Cs, let the
graph of F consist of two line segments, the 1rst from 〈1=2n+1; 0〉 to 〈1=2n+1 +
3=2n+2; 1=2n+1+s+1〉 and the second from 〈1=2n+1 + 3=2n+2; 1=2n+1+s+1〉 to 〈1=2n; 0〉. To
compute F(x) within 1=2s, it suQces to locate x in an interval [1=2n+1; 1=2n] and check
whether n∈Cs+1. If n =∈Cs+1, then 0 6 F(x) 6 1=2s+2. If n∈Cs+1, compute the least t
such that n∈Ct+1. Then we can compute the value of F(x) exactly given the de1nition
above.

To see that the graph G of F is not OIco-r.e., just observe that

G ∩ ((2−n−1; 2−n) × (0; 1)) = ∅ ⇔ n =∈ C:

To see that F is closed interval decidable, suppose that we are given a closed interval
A= Ia × Ib = [p1; p2] × [q1; q2]. Then we can test whether G ∩A= ∅ as follows. If
q1 = 0 and [p1; p2] contains either 0 or some element of the form 1=2n, then of course
G ∩A �= ∅. Next suppose that 0 = q1¡q2. Then 1nd the least s such that 1=2s6q2

and compute Cs. Then if [p1; p2]⊆ (1=2n+1; 1=2n) and n =∈Cs, it is easy to see that
G ∩A �= ∅. If n∈Cs, then we can compute F exactly on [1=2n+1; 1=2n] so that we
can easily decide if G ∩A= ∅. Finally suppose that q1¿0, then there is some n such
that G cannot possibly meet [1=2n; 1] × [q1; q2], since we always have F(x)61=2n+2

on [1=2n+1; 1=2n]. Thus we may restrict [p1; p2] to some 1nite set of subintervals of
the form [1=2n+1; 1=2n]. On each interval [1=2n+1; 1=2n], there is some sn such that if
n =∈Csn , then G cannot possibly meet A. Finally, if n∈Csn , then we can determine F
exactly on [1=2n+1; 1=2n] and thus test whether G meets A.

(b) De1ne F : [0; 1]→ [0; 1] as follows (F can be extended to � by setting F(x) = 1
2

for all other x =∈ [0; 1]). Let F(0) = 1
2 and let F(2−n) = 1

2 for all n. Within (2−n−1; 2−n),
there are two possibilities. If n =∈C, let F(x) = 1

2 for all x. If n∈Cs+1−Cs, let the graph
of F consist of two line segments, the 1rst from 〈1=2n+1; 1

2 〉 to 〈1=2n+1 + 3=2n+2; 1
2 −

1=2n+1+s+1〉 and the second from 〈1=2n+1 + 3=2n+2; 1
2 − 1=2n+1+s+1〉 to 〈1=2n; 1

2 〉. To
compute F(x) within 1=2s, it suQces to locate x in an interval [1=2n+1; 1=2n] and check
whether n∈Cs+1. If n =∈Cs+1, then 1

2¿F(x)¿ 1
2 − 1=2s+2. If n∈Cs+1, compute the

least t such that n∈Ct+1. Then we can compute the value of F(x) exactly given the
de1nition above.

To see that the graph G of F is not CIr.e., just observe that

G ∩
[

1
2n+1 +

1
2n+3 ;

1
2n − 1

2n+3

]
×
[

1
2
; 1
]

= ∅ ⇔ n =∈ C:
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To see that F is open interval decidable we need only show that G is OIco-r.e. since
it automatically OIr.e. Suppose that we are given a open interval A= Ia × Ib. Then we
can test whether G ∩A= ∅ as follows. If Ib = (q1; q2) or (q1; 1] where q1¿ 1

2 , then
clearly G ∩A= ∅. Thus, we can assume that Ib = [0; q2) or (q1; q2) where 0¡q1¡ 1

2 .
We now consider various cases.
Case 1: Ib = [0; q2) where q2¿ 1

2 .
In this case is clear that G ∩A �= ∅.
Case 2: Ib = [0; q2) where q2 = 1

2 .
Then consider Ia. If Ia = [0; p2) where 0¡p2, then again G ∩A �= ∅ since C is in1nite

so that there will be some n∈C where (1=2n+1; 1=2n)⊆ [0; p2) and hence F(x)∈ [0; 1
2 )

for some x∈ (1=2n+1; 1=2n). Otherwise Ia = (p1; p2) where 0¡p1. Let n the least m
such that 1=2m+1¡p1. In this case, it is easy to see that G ∩A �= ∅ if and only if
(p1; p2)∩ (1=2m+1; 1=2m) �= ∅ for some m∈C ∩{0; : : : ; n} which is an r.e. condition.
Case 3: Ib = [0; q2) where q2¡ 1

2 . Then let s be the least t such 1=2t¡ 1
2 −q2 and let

m be the largest n such that n∈Cs+1. Then consider Ia. If Ia ⊆ [0; 1=2m), then we know
that G ∩A= ∅ since F(x)¿ 1

2 −1=2s¿q2 for all x∈ [0; 1=2m). Otherwise, we need only
consider Ia ∩ (1=2n+1; 1=2n) for n6m. The only way that G ∩A �= ∅ is if there is some
n6m with n∈Cs and an x∈ Ib ∩ (1=2n+1; 1=2n) such that F(x)¡q2. But we can decide
in this is the case since we can explicitly compute F(x) for any x∈ (1=2n+1; 1=2n) if
n∈Cs.
Case 4: Ib = (q1; q2) where q1¡ 1

2 and q2¿ 1
2 . In this case, let s be the least t such

that 1=2t¡ 1
2 − q1. Now if Ia = [0; p2) where p2¿0, then G ∩A �= ∅ since F(0) = 1

2 so
that 〈0; 1

2 〉 ∈G ∩A. Thus we can assume that Ia = (p1; p2) where 0¡p1¡p2. Then let
n be the least m such that 1=2m6p1. We can assume that there is some m6n such that
(p1; p2)⊆ (1=2m+1; 1=2m) since otherwise (p1; p2) contains some element of the form
1=2t so that 〈1=2t ; 1

2 〉 ∈G ∩A. Then if n =∈Cs, then we know that F(x)¿ 1
2 − 1=2s¿q1

for all x∈ (1=2m+1; 1=2m) so that G ∩A �= ∅. If m∈Cs, then we can compute F(x) for
x∈ (1=2m+1; 1=2m) explicitly so that we can decide if G ∩A �= ∅.
Case 5: Ib = (q1; q2) where q1¡ 1

2 and q2 = 1
2 . In this case, let s be the least t such

that 1=2t¡ 1
2 − q1. Now if Ia = [0; p2) where p2¿0, then G ∩A �= ∅ since C is in1nite

so that there will be some m such that m∈C−Cs and (1=2m+1; 1=2m)⊆ [0; p2) in which
case q1¡F(x)¡ 1

2 for all x∈ so that G ∩A �= ∅. Thus we can assume that Ia = (p1; p2)
where 0¡p1¡p2. Then let n be the least m such that 1=2m6p1. Then G ∩A �= ∅ if
and only if there is an m∈C with m6n such that there is x∈ (p1; p2)∩ (1=2m+1; 1=2m)
with F(x)∈ (q1; q2) which is an r.e. condition since we can explicitly calculate F(x)
for x∈ (1=2m+1; 1=2m) if m∈C.

Case 6: Ib = (q1; q2) where 0¡q1¡q2¡ 1
2 . In this case, let s be the least t such that

1=2t¡ 1
2 − q2. There are only 1nitely many n such that n∈Cs+1 and then only possi-

ble x such that F(x)¡q2 must be in
⋃

n∈Cs
(1=2n+1; 1=2n). However F(x) is explicitly

computable on
⋃

n∈Cs
(1=2n+1; 1=2n) so that we can easily decide if G ∩A �= ∅ in this

situation.
(c) De1ne F : [0; 1]→ [0; 1] as follows. Let F(0) = 0 and let F(1=2n) = 0 for all n.

Within (1=2n+1; 1=2n), there are two possibilities. If n =∈C, the graph of F consist of
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two line segments, the 1rst from 〈1=2n+1; 0〉 to 〈1=2n+1 + 3=2n+2; 1
2 〉 and the second

from 〈1=2n+1 + 3=2n+2; 0〉. If n∈Cs+1 − Cs, then the graph of F again consists of
two line segments, one from 〈1=2n+1; 0〉 to 〈1=2n+1 + 3=2n+2; 1

2 − 1=2n+1+s+1〉 and the
second from 〈1=2n+1 +3=2n+2; 1

2 −1=2n+1+s+1〉 to 〈1=2n; 0〉. It is easy to show that F(x)
is computably continuous via the same type of argument that was used in parts (a)
and (b).

To see that the graph G of F is not CIr.e., just observe that

G ∩
([

1
2n+1 ;

1
2n

]
×
[

1
2
; 1
])

= ∅ ⇔ n =∈ C:

To see that the graph G is not OIr.e. observe that if n =∈C then F(5=2n+3)=F(7=2n+3)=
1
4 and hence F(x)¿ 1

4 if x∈ (5=2n+3; 7=2n+3). However if n∈C, then F(5=2n+3)
=F(7=2n+3)¡ 1

4 . Thus

G ∩
(

5
2n+3 ;

7
2n+3

)
×
[
0;

1
4

)
= ∅ ⇔ n =∈ C:

Theorem 4.4 essentially settles all the questions about which subsets of the four
notions of e"ectively closed sets could be satis1ed by a graph of a computably con-
tinuous function. That is, such a graph must be both OIr.e. and CIco-r.e. Theorem 4.4
show that there exists such graphs which have either one or none of the other two
properties. Of course, the constant 0 function has all four properties.

The situation is a bit more complicated for the space !!. Of course, in !!, the
basic intervals are clopen so that for a closed set K , K is OIr.e. if and only if K is
CIr.e. and K is OIco-r.e. if and only if K is CIco-r.e. Our next result will show that
the graph of a computably continuous function f :!! →!! is not always an OIco-r.e.
closed set so that the graph of F is not a recursive closed set in the sense of Brattka
and Weihrauch.

We say that two sets of natural numbers are recursively isomorphic if there is a
recursive permutation 7 :!→! such that a∈A⇔7(a)∈B. Given A; B⊆!, we say
that A is 1–1 reducible to B there is a 1 : 1 recursive function f :!→! such that
x∈A⇔f(x)∈B. We write that A61B if A is 1-1 reducible to B and we write A ≡1 B
if A61B and B61A. It was shown by Myhill that A and B are recursively isomorphic
whenever A ≡1 B. Recall that 〈; 〉 is a recursive 1 : 1 pairing function which maps !×!
onto !.

Theorem 4.5. Let C be any in9nite recursively enumerable subset of ! and let D =
{2〈n; m〉 + 1 : n∈C &m∈!}∪ {4n : n∈!}. Then there is a computably continuous
function F :!! →!! such that {c :G ∩ Ic �= ∅} is recursively isomorphic to D.

Proof. Let h :!→! be a 1 : 1 recursive function whose range is D. We let Ds =
{h(0); : : : ; h(s)} for all s.

The function F is de1ned by letting F(x) = 1! on the intervals I((n; s)) such that
n∈Ds+1−Ds and F(x) = 0! on the intervals I((n; s)) such that n =∈Ds+1−Ds. The value
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of F(x) is completely determined by the 1rst two values of x so that F is computably
continuous.

Let M = {〈a; b〉 :G ∩ (Ia × Ib) �= ∅} where G is the graph of F . Let g(n) be a 1 : 1
recursive function such that Ig(n) = I((n)). Then D is 1–1 reducible to M since

n ∈ D ⇔ G ∩ (I((n)) × I((1))) �= ∅ ⇔ 〈g(n); g(1)〉 ∈ M:

On the other hand, M is also 1–1 reducible to D. That is, we can de1ne a 1 : 1 recur-
sive function k such that m∈M ⇔ k(m)∈D as follows. Given m= 〈a; b〉, let �; �∈!!

be such that Ia × Ib = I(�)× I(�). First suppose that |�|¿2. Thus � is of the form,
� = (n; s; �3; : : : ; �p) for some n; s. Then m∈M if and only if I(�)× I(�)∩G �= ∅. But
by our de1nition of F; (I(�) × I(�))∩G �= ∅ if and only if n∈Ds+1 − Ds and �≺ 1!

or n =∈Ds+1 − Ds and �≺ 0!. Thus we let k(m) = 4m∈D if (I(�) × I(�))∩G �= ∅ and
k(m) = 4m+2 =∈D if (I(�)×I(�))∩G = ∅. Next assume that |�|= 1 so that � = (n) for
some n. Then if �≺ 0!, then (I(�)× I(�))∩G �= ∅ so that we let k(m) = 4m. If �≺ 1!

and |�|¿1, then (I(�) × I(�))∩G �= ∅ if and only if n∈D so that we let k(m) = 4m
if n ≡ 0 mod 4, k(m) = 4m + 2 if n ≡ 2 mod 4, and k(m) = 2〈r; 〈k; m〉〉 + 1 if n is of
the form 2〈r; k〉+ 1. Finally if neither �≺ 0! nor �≺ 1!, then (I(�)× I(�))∩G = ∅ so
that we let k(m) = 4m+ 2. Finally suppose that � = ∅. Then if either �≺ 0! or �≺ 1!,
then (I(�)× I(�))∩G �= ∅ so that we let k(m) = 4m. Otherwise, we let k(m) = 4m + 2
since in that case (I(�) × I(�))∩G = ∅ and m =∈M .

Corollary 4.6. There is a computably continuous function F :!! →!! such that the
graph of F is not OIco-r.e.

Proof. Just let C be an r.e. nonrecursive set and let F be constructed as in the proof
of Theorem 4.5. Then if G is the graph of F; {〈a; b〉 : Ia × Ib ∩G �= ∅} is an r.e. non-
recursive set so that the graph of F is not OIco-r.e.

Next, we consider the question of whether the fact that the graph of a (continuous)
function F is an e"ectively closed set implies that F is automatically computable. For
the spaces �; [0; 1] and {0; 1}!, it follows from Corollary 4:3 above that the graph of
any computable function must be a recursively closed set. Our next result shows that
for these spaces, the assumption that the graph of a continuous function F is CIco-r.e.
already implies that F must be computable.

Theorem 4.7. Let F :X n →X be a continuous function with a CIco-r.e. closed graph
G; where X is either �; [0; 1] or {0; 1}!. Then F is computably continuous.

Proof. We 1rst give the argument for the compact spaces and then indicate how to
extend the result to �. Assume that F :X →X is continuous function with graph G
and that {〈a; b〉 :G ∩ Ia × Ib = ∅} is r.e. We will then de1ne a computable representing
function f for F .
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First let

SS = {〈a; c〉 : F(Ia) ⊂ Ic}:
Since F(Ia) will be an open set, 〈a; c〉 ∈ SS means that F(Ia) is properly included in
Ic in the sense that the boundaries do not meet. We claim that SS is an r.e. set. Note
that

F(Ia) ⊂ Ic ⇔ G ∩ (Ia × (X − Ic)) = ∅:
Moreover in either [0; 1] or {0; 1}!, X − Ic may be e"ectively decomposed into a
1nite union of closed intervals. That is, in [0; 1], X − (p; q) = [0; p]∪ [q; 1]. Similarly,
in {0; 1}!, if Ic = I(�), then X − I(�) =

⋃{I(�) : |�|= |�|& � �= �}. Thus since G is
CIco-r.e., SS is r.e.

As a 1rst step to de1ning our desired representing function f for F , de1ne a 1rst
approximation h to f by letting h(a) = b where Ib is the intersection of all c¡a such
that 〈a; c〉 ∈ SS. h is not a representing function for F , but h does satisfy one of the two
conditions for being a representing function of F . That is, let a1; a2; : : : be a sequence
such that I(an+1) ⊂ I(an) for all n and

⋂
n I(an) = {x} for some x. Let y =F(x). First

observe that for each n, F(Ian)⊆ Ih(an) so that y =F(x) is an element of Ih(an). Now for
any interval Ic containing y, there is an interval Ian with an¿c such that F(Ian) ⊂ Ic
and therefore Ih(an) ⊂ Ic. It follows that

⋂
n I(h(an) = {y}.

This given, we can de1ne our desired representing function f of F by setting
f(a) = b where Ib is the intersection of all Ih(s) such that Ia ⊂ Is. The computabil-
ity of f will immediately follow from the condition that whenever Ia ⊂ Is, we must
have s6a. It is not diQcult to select a basis of intervals with this property. However
since this is crucial to the argument, we give some details. For {0; 1}!, we enumerate
the intervals I(�) in order 1rst by length and then lexicographically, which will suQce
since I(�) ⊂ I(�) implies that |�|6|�|. For the real interval [0,1], we can revise our
given e"ective list of basic intervals, if necessary, so that whenever Ia ⊂ Is with s¿a,
we replace Is with a 1nite cover of Is consisting of smaller intervals which do not
include any previous interval. The revised list will still be a basis and will have the
necessary property.

It is clear that the re1ned function f still satis1es the 1rst condition for being a
representing function for F . It satis1es the second condition, since whenever Ia ⊆ Ie, we
have e6a, so that If(a) is the intersection of a larger family of sets Ih(s) and therefore
If(a) ⊆ If(e).

Now suppose that F :�→� is continuous and has a CIco-r.e. graph G. Let A= {〈a;
b〉 : Ia × Ib ∩G = ∅} and let As be the numbers enumerated into A by stage s. Without
loss of generality, we may assume that F(0) = 0. We claim that we can de1ne a com-
putable function h :N→N such that, for all n and all x∈ [−n; n], |F(x)|¡b(n). Here
is the procedure for computing b(n) from n. First let a be de1ned so that Ia = (−n; n).
Since F is continuous, there is some B such that |F(x)|¡B for all x∈ [−n; n]. This
implies that G ∩ ([−n; n]× [B; B+ 1]) =G ∩ ([−n; n]× [−B−1;−B]) = ∅. On the other
hand, suppose that G ∩ ([−n; n] × [B; B + 1]) =G ∩ ([−n; n] × [−B− 1;−B] = ∅. Then
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it follows from the Intermediate Value Theorem that |F(x)|¡B for all x∈ [−n; n]. We
may thus compute an upper bound b(n) by searching for the least stage s such that, for
some rational B, [−n; n]×([B; B+1]∪ [−B−1;−B]) is covered by intervals Iw0 ; : : : ; Iwk

such that 〈a; wi〉 ∈As for all i6k.
Given this computable bound b(n), we can now construct a representing function

fn for F : [−n; n]→ [−b(n); b(n)] by the same argument that we used to construct a
representing function f for a continuous function F : [0; 1]→ [0; 1] which had a CIco-
r.e. closed graph. Since this can be done uniformly with respect to n, this allows us
to compute F(x) for any x.

Our previous results show that if G is the graph of a continuous function F and
G is CIco-r.e., then G is automatically OIr.e. Next we consider the possibilities when
F is continuous, but not computable. Hence G is not CIco-r.e. and therefore is not
OIco-r.e. However our next examples will show that G may still be OIr.e.

Theorem 4.8. Let X be any of the spaces �; [0; 1]; {0; 1}! and !!; there exists a
continuous but not computable function F :X →X with an OIr.e. closed graph.

Proof. Let C be any r.e. set and D = {2〈n; m〉 + 1 : n∈C &m∈!}∪ {4n : n∈!}. Let
h :!→! be a 1 : 1 recursive function whose range is D. We let Ds = {h(0); : : : ; h(s)}
for all s.
Case 1: X = {0; 1}!. We de1ne the function F as follows. First, let F(0!) = 0!.

For each n and s, we de1ne F(x) for the extensions of 0n−1 ∗ 1 in two cases. If
n =∈D, then F(x) = 0! for all extensions of 0n−1 ∗ 1. If n∈Ds+1 − Ds, then we let
F(x) = 0n−1 ∗ 1 ∗ 0! when x extends 0n−1 ∗ 1 ∗ 0s ∗ 1 and we let F(x) = 0!, otherwise.
It is clear that F is continuous.

We claim that D is 1–1 equivalent to M = {〈a; b〉 :G ∩ Ia × Ib �= ∅} where G is the
graph of F . Thus G is OIr.e. but not OIco-r.e. Note that for {0; 1}!, G is OIco-r.e. if
and only if G is CIco-r.e. Thus G is not CIco-r.e. and hence F is not computable by
Theorem 4.7.

To see that M61D, we de1ne a 1 : 1 recursive function k such that m∈M ⇔ k(m)
∈D. Let m= 〈a; b〉 and let � and � be such that Ia = I(�) and Ib = I(�). Then if � has
two or more 1’s, then (I(�)×I(�))∩G = ∅ so that m =∈M and we can let k(m) = 4m+2.

Thus suppose that � is of the form 0n−1 ∗ 1 ∗ 0t . If � has two or more 1’s and is
not of the form 0n−1 ∗ 1 ∗ 0s ∗ 1 ∗ ? where ?∈{0; 1}∗, then again (I(�)× I(�))∩G = ∅
so that m =∈M and we can let k(m) = 4m + 2. If � is of the form 0n−1 ∗ 1 ∗ 0s ∗ 1 ∗ ?
where ?∈{0; 1}∗, then (I(�) × I(�))∩G �= ∅ if and only if n∈Ds+1 − Ds so that we
can let k(m) = 4m if n∈Ds+1 − Ds and let k(m) = 4m + 2 otherwise. If � has one
1 and is not of the form 0n−1 ∗ 1 ∗ 0t where t¿0, then again (I(�) × I(�))∩G = ∅
so that m =∈M and we can let k(m) = 4m + 2. Next suppose that � is of the form
0n−1 ∗ 1 ∗ 0t . Then (I(�)× I(�))∩G = ∅ if n∈Dt+1 so that we can let k(m) = 4m + 2.
If n =∈Dt , then I(�) × I(�)∩G �= ∅ if and only if n∈D so that we can let k(m) = 4m
if n ≡ 0 mod 4, k(m) = 4m + 2 if n ≡ 2 mod 4, and k(m) = 2〈r; 〈k; m〉〉 + 1 if n is of
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the form 2〈r; k〉 + 1. Next suppose � has no 1’s so that � = 0t for some t¿0. Then
if t¿n, then (I(�) × I(�))∩G = ∅ so that we can let k(m) = 4m + 2. If t¡n, then
I(�) × I(�)∩G �= ∅ if and only if n∈D so that we can let k(m) = 4m if n ≡ 0 mod 4,
k(m) = 4m+2 if n ≡ 2 mod 4, and k(m) = 2〈r; 〈k; m〉〉+1 if n is of the form 2〈r; k〉+1.

Finally suppose that � has no 1’s so that �= 0t for some t¿0. Next, suppose that
� has two or more 1’s and � = 0n−1 ∗ 1 ∗ 0s ∗ 1 ∗ ? where ?∈{0; 1}∗. Then (I(�) ×
I(�))∩G �= ∅ if n =∈Ds+1 − Ds so that we can let k(m) = 4m. If n∈Ds+1 − Ds, then
(I(�) × I(�))∩G �= ∅ if and only if t6n − 1 so that we let k(m) = 4m if t6n − 1
and let k(m) = 4m + 2 if t¿n. Finally it is easy to see that if � at most one 1, then
(I(�) × I(�))∩G �= ∅ so that we can let k(m) = 4m.
Case 2: X =!!. De1ne the function F so that F(x) = 1! if ns ≺ x for some n and

s such that n∈Ds+1 and let F(x) = 0! otherwise. Then F is clearly continuous, but is
not computable since n∈D⇔F(n!)(0) = 1. To see whether G ∩ (I(�)× I(�)) �= ∅, we
1rst 1nd the unique n and s such that ns ≺ �. There are two cases. First, suppose that
n =∈ Cs+1. Then G ∩ (I(�)×I(�)) �= ∅ if �(i) = 0 for all i, or if �(i) = 1 for all i and n∈C
which is an r.e. condition. Second, suppose that n∈Cs+1. Then G ∩ (I(�)×I(�)) �= ∅ if
and only if �(i) = 1 for all i. It follows that {〈a; b〉 :G ∩ (Ia×Ib) �= ∅} is r.e.

Case 3: X = R or X = [0; 1]. We will de1ne a continuous function F : [0; 1]→ [0; 1]
with F(0) =F(1) = 0 such that F is not computable but the graph G of F is open
interval recursively enumerable. Then F can be extended to the real line by setting
F(x) = 0 for all x =∈ [0; 1] to give an example for R.

Let the basic sets Ia×Ib ⊂ [0; 1]×[0; 1] be enumerated as B1; B2; : : : . Then we de1ne a
continuous function F as a limit of uniformly computably sequence of piecewise linear
functions Fs with graphs Gs such that Gs ∩Bi �= ∅ implies that G ∩Bi �= ∅ whenever i¡s.
(We will do this by selecting a point in Bi and keeping that point 1xed thereafter.)
Thus G will be open interval r.e., since

G ∩ Bi �= ∅ ⇔ (∃s ¿ i)(Gs ∩ Bi �= ∅):

We will ensure that F is not computable by having F(2−n) = 0 if and only if n∈D. We
will make F continuous at x �= 0 by ensuring that for each x, and all x∈ [2−n−1; 2−n],
there is an s such that for all t¿s, F(x) =Ft(x). F will be continuous at 0 since we
will have F(x)6x for all x.

Initially F1(x) = 0 for all x. After stage s, we will have a piecewise linear function
Fs with graph Gs. We will also have a subset Ms of {0; 1; : : : ; s−1} consisting of those
i¡s such that Gi ∩Bi �= ∅ and, for each i∈Ms, a point 〈xi; yi〉 ∈Bi ∩Gs, with xi not of
the form 2−n. Let n∈Ds+1 − Ds, then do the following.

Choose an interval (p; q) with diameter ¡2−n−3 containing 2−n−1 which does not
contain any of the points 〈xi; yi〉 and does not contain any of the endpoints of the line
segments making up Gs. Then de1ne Fs+1(x) on [p; q] to consist of two line segments,
from 〈p; Fs(p)〉 to 〈2−n−1; 0〉 and then from 〈2−n−1; 0〉 to 〈q; Fs(q)〉. For x =∈ [p; q], let
Fs+1(x) = x. Let Ms+1 = {i6s :Gs+1 ∩Bi �= ∅} and choose for each i∈Ms+1 − Ms, a
point 〈xi; yi〉 ∈Gs+1 ∩Bi with xi �= 2−n for any n.
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Let us check the conditions set out above, beginning with the continuity. First observe
that Ft(x) = x for all t and all x¿ 3

4 . Now 1x n and let s be large enough so that
n∈Ds ⇔ n∈D and n− 1∈Ds ⇔ n− 1∈D. Then it follows from the construction that
Ft(x) =Fs(x) for all t¿s and all x∈ [2−n−1; 2−n]. Thus F is continuous at all points
x �= 0.

By the construction, we have F0(x) = x and Fs+1(x)6Fs(x) for all x and s so that
F(x)6x and thus F is continuous at x = 0.

Next, we check that G is a recursively enumerable closed set. Let M = ∪s Ms. We
claim that G ∩Bi �= ∅⇔ i∈M . If i∈M , then by the construction we have selected
〈xi; yi〉 ∈Bi and ensured that yi =F(xi) so that G ∩Bi �= ∅. Suppose that G ∩Bi �= ∅
and let 〈x; y〉 ∈G ∩Bi. Then by the continuity argument, there is a stage s such that
Ft(x) =y for all t¿s. Thus for some t¿i, Gt ∩Bi �= ∅ so that i∈M .

Finally, we check that F is not computable. By the construction, we have F(2−n−1)
= 2−n−1 if n =∈D and F(2−n−1) = 0 if n∈D. If F were computable, then the set of
zeroes of F would be a 0

1 class and therefore D would be co-r.e., contradicting the
assumption that C and hence D is non-recursive.

We end this section by considering the question of whether a function which has
a graph that is OIr.e., CIr.e., OIco-r.e. or CIco-r.e. is necessarily continuous. For the
compact spaces [0; 1] and {0; 1}!, it is easy to see that any function with a closed
graph must be continuous. However, as we observed in Section 3, our de1nitions of
OIr.e, CIr.e., etc., do not inherently imply that the set is closed.

Example 4.1. De1ne a function F : [0; 1]→ [0; 1] by setting F(x) = 1
4 for x �= 1

2 and
F( 1

2 ) = 1
2 . Then F is not continuous but the graph G of F has the property that both

{〈a; b〉 :G ∩ (Ia×Ib) �= ∅} and {〈a; b〉 :G ∩ Ia×Ib = ∅} are recursive sets. This is because

G ∩ ((p; q) × (r; s)) �= ∅ ⇔ r ¡ 1
4 ¡ s ∨ (p ¡ 1

2 ¡ q& r ¡ 1
2 ¡ s)

and

G ∩ ([p; q] × [r; s]) �= ∅ ⇔ r 6 1
4 6 s ∨ (p6 1

2 6 q& r 6 1
2 6 s):

Example 4.2. De1ne a non-continuous map from {0; 1}! to {0; 1}! by setting F(x)
= 0! if x = 0! and F(x) = 1! for x �= 0!. The graph G of F has the property that
{〈a; b〉 :G ∩ (Ia×Ib) �= ∅} is a recursive set since G ∩ (I(�)×I(�)) �= ∅ if and only if

(∀i ¡ |�|)(�(i) = 1) ∨ [(∀j ¡ |�|)(�(j) = 0) & (∀i ¡ |�|)(�(i) = 0)]:

For the spaces R and !!, we can de1ne non-continuous functions with closed graphs
which have similar properties.

Example 4.3. Let F : R→R be de1ned by setting F(x) = 1=x2 for x �= 0 and F(0) = 0.
The graph of G of F is clearly closed but it can be checked that both {〈a; b〉 :G ∩ (Ia
×Ib) �= ∅} and {〈a; b〉 :G ∩ Ia×Ib �= ∅} are recursive sets.
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Example 4.4. De1ne a function F :!! →!! by setting F(x) = 0! if x = k! for some
k and setting F(x) = (n + 1)! if n is the least such that x(n + 1) �= x(n). The graph G
of F is closed, by the following argument. Suppose that limt〈xt ; yt〉= 〈x; y〉 for some
sequence {〈xt ; yt〉} with F(xt) =yt and consider two cases. First, say that y = 0!. Then
for all but 1nitely many t; yt(0) = 0, which implies that x(t) = k!

t for some kt . Since
x = limt xt , it follows that limt kt = k for some k so that y =F(x) as desired. Second,
say that y = (n + 1)! for some n. Since y = limt yt , it follows that for all but 1nitely
many t; yt(0) = n+1 so that n is the least such that xt(n+1) �= xt(n). Since x = limt xt ,
it then follows that n is the least such that x(n+1) �= x(n), so that y =F(x) as desired.

G has the property that {〈a; b〉 :G ∩ (Ia×Ib) �= ∅} is a recursive set since G ∩ (I(�)
×I(�)) �= ∅ if and only if either � is constant and � is either constant 0 or is constant
n + 1 for some n¿|�|, or, for some n, n is the least such that �(n + 1) �= �(n) and �
is constant n + 1.

5. Complexity theory and closed sets

We note that the application of complexity theory in analysis is a well-developed
subject (see Ko’s book [18]). It is reasonable to ask whether there are natural com-
plexity theoretic analogues of the results of Sections 2 and 3. The answer is that one
can develop such a subject. The type of results that one obtains are typical of complex-
ity theoretic analysis where some of the results continue to hold for polynomial time
computable functions and closed sets, some of the results no longer hold, and some of
the results are intimately connected with various separation questions in classical com-
plexity theory, such as the P = NP question. We do not have the space to develop such
a theory in this paper so that we will be content to simply give the basic de1nitions
and a few results. We will give a more complete development in a future paper.

To give the de1nitions of various resource bounded versions of e"ectively closed
sets, one requires some natural polynomial time enumeration of the basic intervals. We
will illustrate this idea by considering the two easiest cases, namely, the unit interval
[0; 1] and the space {0; 1}! where such enumerations are relatively straightforward.

First consider the space {0; 1}!. The standard enumeration de1ned by letting In =
I(�n) where bin(n + 1) = 1 ∗ �n is clearly a linear time enumeration and we can refer
to I(�) rather than In in our calculations since bin(n) and �n can be computed from
each other in linear time.

For the real interval, we adapt the enumeration given by Cenzer and Remmel
[8]. Here we take our basic open intervals to be the set of all dyadic open inter-
vals (i=2n+1; (i + 2)=2n+1) for n¿1 and i¡2n+1 − 1, as well as the half-open in-
tervals [0; 1=2n+1) and (1 − 1=2n+1; 1] and the entire space [0; 1]. Let [0; 1] = I0, let
[0; 1=2n+1) = I22n , let (1 − 1=2n+1; 1] = I22n+1 , and let (i=2n+1; (i + 2)=2n+1) = I2n+1+i+1.
Then we can compute the end points of each interval Ik from bin(k) and vice versa
in linear time. One advantage of this collection of intervals is that we can split each
interval into three overlapping subintervals in linear time. For example, (0; 1

2 ) can split
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into (0; 1
4 ), ( 1

8 ;
3
8 ) and ( 1

4 ;
1
2 )-the left half, middle half and right half of the interval. It

follows that we can locate a real within 2−n by successively 1nding intervals of radius
1
2 ;

1
4 ; : : : ; where each step requires checking at most 2 of the three subintervals.
We shall assume that the reader is familiar with the basic de1nition of polynomial

time (P), non-deterministic polynomial time (NP), and co-non-deterministic polynomial
time (CoNP) subsets of {0; 1}∗. This given, we have the following natural complexity
theoretic analogues of our various versions of e"ectively closed sets.

De�nition 5.1. Let K be a closed set in the space X where X is either {0; 1}! or
[0; 1].

(i) K is open interval NP (OINP) if {bin(w) : Iw ∩K �= ∅} is in NP.
(ii) K is open interval CoNP (OICoNP) if {bin(w) : Iw ∩K = ∅} is in NP.

(iii) K is closed interval NP (CINP) if {bin(w) : Iw ∩K �= ∅} is in NP.
(iv) K is closed interval CoNP (CICoNP) if {bin(w) : Iw ∩K = ∅} is in NP.
(v) K is NP if K is both OINP and CICoNP.
(vi) K is open interval polynomial time decidable if {bin(w) : Iw ∩K �= ∅} is in P.
(vii) K is closed interval polynomial time decidable if {bin(w) : Iw ∩K �= ∅} is in P.
(viii) K is polynomial time decidable if K is both open interval polynomial time

decidable and closed interval polynomial time decidable.

The notion of polynomial time, NP and CoNP computable real functions is developed
by Ko [18]. One can also give an equivalent formulation of polynomial time continuous
computable function which mirrors our working de1nition of continuous computable
function. Suppose we are given a computably continuous function F . Then F is said
to be polynomial time computable if F has a representing function f :!→! such
that f is polynomial time computable (relative to the binary representation of !) and
there is k such that for all m and t,

(∗) diam(It) ¡ 2−mk → diam(If(t)) ¡ 2−m:

One can also de1ne natural complexity theoretic analogues of upper and lower com-
putable functions. Let D be the set of dyadic rationals in R. Here a string 0’s and 1’s,
±sm : : : s0:t1 : : : tn, codes the diadic rational

d = ±
m∑
i+0

si2i ±
n∑

j=1

ti2−i :

A function F :X → [0; 1] is upper (lower) polynomial time computable if there is a
polynomial time oracle Turing machine M such that Mx accepts {d∈D :F(x)¡d}
({d :d¡F(x)}). A function F :X →R is said to be lower NP computable if there is
a nondeterministic polynomial time oracle Turing machine M such that Mx accepts
{d∈D :d¡F(x)}. Similarly, F is upper NP computable if there is an NP oracle
Turing machine M such that Mx accepts {d :d¿F(x)}.

We shall give just a couple of results to show that one can also develop a complexity
theoretic analogue of the results of this paper. For example, there are a number of
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results which relate the complexity of a closed set K to the complexity of the distance
function dK . The simplest example is the following.

Theorem 5.2. Let K be a nonempty closed subset of {0; 1}!. Then
(a) K is OINP if and only if dK is lower NP computable.
(b) K is OICoNP if and only if dK is upper NP computable.
(c) K is OI polynomial time decidable if and only if dK is polynomial time com-

putable.

Proof. Recall that we have a discrete distance function on the space {0; 1}!, that is,
d(x; y) = 2−n where n is the least such that x(n) �=y(n). Thus given x∈{0; 1}! and
d∈D, we may assume that d= 2−n for some n since those are the only possible
distances in {0; 1}!. Part (a), (b), and (c) now easily follow from our de1nitions and
the following observations.
(a) dK (x)¡2−n ⇔ I(x�n + 1)∩K �= ∅:
(b) dK (x)¿2−n−1 ⇔¬(dK (x)¡2−n)⇔ I(x�n + 1)∩K = ∅:
(c) dK (x) = 2−n ⇔dK (x)¡2−n+1 &dK (x)¿2−n−1.

One can also distinguish between the OI complexity of closed sets and the CI
complexity of closed sets. We end this section with two simple examples of such a
results. Recall that given sets A and B contained in {0; 1}∗, we say that A is polynomial
time 1–1 (m-1) reducible to B, A6p

1 B (A6p
mB), if there is a 1 : 1 polynomial time

(many-one polynomial time) function f : {0; 1}∗ →{0; 1}∗ such that for all x∈{0; 1}∗,
x∈A⇔f(x)∈B. We write A ≡p

1 B if both A6p
1 B and B6p

1 A and A ≡p
m B if both

A6p
mB and B6p

mA.
First we give a result for the space {0; 1}!.

Theorem 5.3. Let A be any subset of the binary representation of the natural num-
bers, Bin(!). Then there is a closed set K(A)⊆{0; 1}! such that A≡p

m {bin(n) :K(A)∩
In �= ∅}.

Proof. First if A is empty, then we can simply let K(A) = ∅ since in that case A=
{bin(n) : In ∩K(A) �= ∅}. Thus suppose that we are given a non-empty set A⊆Bin(!).
For any n, let bin(n + 2) = 1e1 : : : ek and let If(n) = I(�) where � = e10e20 : : : ek−10ek1
and Ig(n) = I(�) where �= e10e20 : : : ek−10ek0. Then de1ne the closed set K(A) as fol-
lows. First K(A) contains all x such that x(2n + 1) = 0 for all n, that is, ({0; 1}{0})!

⊆K(A). Second K(A) includes the interval If(n) if and only if bin(n)∈A. It is easy to
see that K(A) is a closed set since K(A) is the set of in1nite paths through the tree
T de1ned as follows. For any sequence @, @∈T if and only if, either @(2i + 1) = 0
for all i, or else @= e10e20 : : : ek−10ek1˙? for some ?∈{0; 1}¡! and bin(n)∈A where
bin(n + 2) = 1e1 : : : ek .

First we claim that

bin(n) ∈ A ⇔ bin(f(n)) ∈ {bin(m) : K(A) ∩ Im �= ∅}:
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That is, if bin(n)∈A, then If(n) ⊂ K(A) by de1nition so that certainly K(A)∩ If(n) �= ∅.
On the other hand, suppose that K(A)∩ If(n) �= ∅. Then there is a string @= e10e20 : : :
ek−10ek1˙? in K(A)∩ If(n) for some ?∈{0; 1}!. But the only way that @∈K(A)
is if bin(m)∈A where bin(m + 2) = 1e1 : : : ek and the only way that @∈ If(n) is if
m= n. Thus if K(A)∩ If(n) �= ∅, then bin(n)∈A. Since the function F de1ned by set-
ting F(bin(n)) = bin(f(n)) is clearly polynomial time, it follows that A6p

m{bin(n) :
In ∩K(A) �= ∅}.

Next, we shall de1ne a polynomial time function h such that bin(m)∈{bin(n) : In ∩
K(A) �= ∅} if and only if h(bin(m)∈A. Let r0 be the least n such that bin(n)∈A. Given
bin(n), 1rst compute the 1nite sequence @ such that In = I(@).

Case I: If @(2i + 1) = 0 for all i, then K(A)∩ In �= ∅. In this case, let bin(h(n)) =
bin(r0).
Case II: Otherwise, let i be the least such that @(2i + 1) = 1. Then K(A)∩ In �= ∅

if and only if bin(m)∈A, where bin(m + 2) = 1@(0)@(2) : : : @(2i). In this case, let
h(bin(n)) = bin(m).

Again it is easy to see that h is polynomial time function so that {bin(n) :K(A)∩ In
�= ∅}6p

mA.

Note that in {0; 1}!, every In is clopen. Thus, we automatically have that OINP =
CINP and OICoNP = CICoNP. The question of whether there is a OINP closed which
is not polynomial decidable or a OICoNP which is not polynomial time decidable
is equivalent the question of whether P = NP. That is, an immediate application of
Theorem 5.3 is the following.

Theorem 5.4. The following are equivalent:
• P = NP.
• Every OINP closed subset of {0; 1}! is polynomial time decidable.
• Every OICoNP closed subset of {0; 1}! is polynomial time decidable.

Proof. First we note that if P = NP, then it is immediate that every OINP closed set
and every OICoNP set closed set is polynomial time decidable.

To show that P = NP, it is enough to show that every NP set A⊆Bin(!) is in P or
that every CoNP set A⊆Bin(!) is in P. By Theorem 5.3, A ≡p

m {bin(n) : In ∩K(A) �=
∅}. Thus A is in P if and only if {bin(n) : In ∩K(A) �= ∅} is in P and A is in NP
if and only if {bin(n) : In ∩K(A) �= ∅} is in NP. Moreover A∈CoNP if and only if
{bin(n) : In ∩K(A) �= ∅} is in CoNP if and only {bin(n) : In ∩K(A) = ∅} is in NP.

Now if every OINP closed set is polynomial time decidable, then given a NP set
A⊆Bin(!); K(A) is in OINP and hence is automatically in P. But then A must be in
P. Similarly, if every OICoNP closed set is polynomial time decidable, then for any
CoNP set B⊆Bin(!), K(B) is OICoNP and hence is automatically in P. But then B
is in P.

For the space [0; 1], the counterexamples given in section can be modi1ed to give
the following result.
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Theorem 5.5. Let C be any computable subset of {bin(2n) : n∈!} and D =
{bin(23[(2n)(2k+1)]+1) : bin(2n)∈C}∪ {bin(23n) : n∈!}. Then there is a closed subset
KD of [0; 1] such that KD is OI polynomial time decidable and D ≡p

1 {bin(n) :KD ∩ In
= ∅}.

Proof. Let KD always contain 0 and put 1=2n+1 in KD if and only if bin(2n)∈D. Let
M be a Turing machine which computes the characteristic function of D. For each
n, let tn be the unique t such that the computation of AD(bin(2n)) by M takes ex-
actly t steps. We then put cn = 1=2n+1 + 1=2n+1+2tn ∈KD. We refer to cn as the check-
point for n.

Given an interval Ie = (i=2m+1; (i + 2)=2m+1), we test whether KD meets Ie as follows.
There are two cases.
Case I: 1=2n+1 ∈ Ie for some n. This happens only if Ie = ((2k − 1)=2k+n+1;

(2k + 1)=2n+k+1) for some k. In that case, e = 2n+k+2 + 2k−1 and |bin(e)| ¿ n +
k + 1. We then run the Turing machine M on bin(2n) for k steps. If the computa-
tion does not converge, then tn¿k and therefore the checkpoint cn ∈KD ∩ Ie so that
KD ∩ Ie �= ∅. If the computation converges, then tn 6 k. Then Ie ∩KD �= ∅ if and
only if 2tn¿k or equivalently if and only if tn¿|bin(k)|. Since we can compute
whether tn¿|bin(k)| in k steps, we can decide if the checkpoint cn ∈ Ie in linear
time in |bin(e)|. Now if cn =∈ Ie, then we have KD ∩ Ie �= ∅ ⇔ bin(2n)∈D. But
we have just computed whether bin(2n)∈D so once again we can determine the
answer in linear time |bin(e)|. Thus we can decide if Ie ∩KD = ∅ in linear time in
|bin(e)|.
Case II: Not Case I. In this case, in linear time in |bin(e)|, we can 1nd s¡m + 1

such that 2s 6 i; i+2 6 2s+1 and hence 1=2m−s+1 6 i=2m+1¡(i + 2)=2m+1 6 1=2m−s.
Then the only possible member of KD ∩ Ie is the checkpoint for m − s. That is, if
i = 2s + j, then we must look for tm−s such that

2s + j
2m+1 ¡

1
2m−s+1 +

1

2m−s+1+2tm−s
¡

2s + j + 2
2m+1

or equivalently that

j¡
2s

22tm−s
¡ j + 2:

Thus there is a checkpoint in Ie if and only if j is of the form j = 2k − 1 for some
k 6 s and 2tm−s = s− k. But since log2(k) and log2(m− s) are both less than |bin(e)|,
we can run our Turing machine M for s steps and determine if there is a checkpoint
in Ie in linear time in bin(e). Thus again we can determine if Ie ∩KD �= ∅ in linear
time in |bin(e)|.

Now if Ie is not of the form (i=2m+1; (i + 2)=2m+1), then either e = 0 and Ie = [0; 1];
e = 22n, and Ie = [0; 1=2n+1) or e = 22n+1 and Ie = (1 − 1=2n+1; 1]. Clearly in each of
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these cases, we can decide if Ie ∩KD �= ∅ in linear time in |bin(e)|. It follows that KD

is OI polynomial time decidable.
Next, we want to show that D ≡p

1 U = {bin(e) : Ie ∩KD �= ∅}. To show that U 6p
1 D,

1rst observe that our proof of the fact that KD was OI polynomial time decidable shows
that Ie ∩KD �= ∅ only if Ie has one of the following forms:
1. Ie = [0; 1] so that e = 0,
2. Ie = [0; 1=2n+1) so that e = 22n,
3. Ie = (2k − 1)=2n+k+1; (2k + 1)=2n+k+1) for some k and n so that e = 2n+k+1 + 2k , or
4. Ie = ((2s + 2k − 1)=2m+1; (2s + 2k + 1)=2m+1) for some m¿s¿k so that e = 2m+1 +

2s + 2k .
Let T be the set of e of the form 22n, 2n+2k for k¡n and 2n+2s+2k where n¿s¿k.

It is easy to see that the set Bin(T ) = {bin(e) : e∈T} is polynomial time isomorphic
to the set {bin(2n) : n∈!}. Thus let  : {0; 1}∗ →{0; 1}∗ be a 1 : 1 polynomial time
function such that  (Bin(T )) = {bin(2n) : n∈!}.

We can now de1ne a 1 : 1 polynomial time function f : {0; 1}∗ →{0; 1}∗ which
shows that U 6p

1 D as follows. First if � =∈Bin(!), then let f(�) = � since � is not
in either U nor D. If � = bin(e) for some e∈!, then we 1rst check if Ie ∩KD �= ∅. If
Ie ∩KD �= ∅, then let f(bin(e)) = bin(23(5m)) where  (bin(e)) = bin(2m) so that bin(e)∈
U and f(bin(e))∈D. If Ie ∩KD = ∅, then our argument above shows that we can check
in linear time in |bin(e)| whether the endpoints of Ie are of the form 1=2n+1 or one
of the checkpoints cm for some m. If the endpoints are not a check point nor of the
form 1=2n+1, then bin(e) =∈U so that we can let f(bin(e)) = bin(e)˙1 which is not in
D. Otherwise, we have three cases.
Case A: One of the endpoints of Ie is a check point cn = 1=2n+1 + 1=2n+1+2tn . This

means bin(e)∈U and that either
(i) Ie = ((2tn + 1)=2n+1+2tn ; (2tn + 3)=2n+1+2tn ) or
(ii) Ie((2tn − 1)=2n+1+2tn ; (2tn + 1)=2n+1+2tn ). We then set f(bin(e)) = 23(5m+1) in case

(i) and f(bin(e)) = 23(5m+2) in case (ii) where  (bin(2n+1+2tn ) + 2tn) = bin(2m).
Case B: Not Case A and Ie = (2k =2n+1+k ; (2k + 2)=2n+1+k) for some n and k.

In this case, we are assuming that Ie ∩KD = ∅ and neither endpoint is a check point.
Then we have that

Ie ∩ KD �= ∅ ⇔ 1
2n+1 ∈ KD ⇔ n ∈ D:

Now if n= 3m, then n∈D and bin(e)∈U so that we let f(bin(e)) = bin(23[5(〈n; k〉)+3])
where 〈 ; 〉 denote some 1 : 1 polynomial time pairing function from Bin(!)×Bin(!)
→Bin(!). If n= 3m+2, then n =∈D and hence bin(e) =∈U so that we can let f(bin(e))
= bin(e)˙1 which not in D. Finally if n= 3m + 1, then we can write m in the form
(2s)(2t + 1). Then n∈D if and only if s∈C. Note that we can compute n; k; s and
t in linear time in |bin(e)|. We then let f(bin(e)) = bin(23(2s)(2〈t;2k〉+1)+1. Then our
de1nition ensures that bin(e)∈U if and only if f(bin(e))∈D in this case.
Case C: Not Case A and Ie = ((2k − 2)=2n+1+k ; 2k =2n+1+k) for some n and k.
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Once again in this case, we are assuming that Ie ∩KD = ∅ and neither endpoint is a
check point. As in Case B, we have that

Ie ∩ KD �= ∅ ⇔ 1
2n+1 ∈ KD ⇔ n ∈ D:

Now if n= 3m, then n∈D and bin(e)∈U so that we let f(bin(e)) = bin(23[5(〈n; k〉)+4]).
If n= 3m + 2, then n =∈D and hence bin(e) =∈U so that we can let f(bin(e))
= bin(e)˙1 which not in D. Finally if n= 3m + 1, then we can write m in the form
(2s)(2t + 1). Then n∈D if and only if s∈C. Note that we can compute n; k; s and
t in linear time in |bin(e)|. We then let f(bin(e) = bin(23(2s)(2〈t;2k+1〉+1)+1. Then our
de1nition ensures that bin(e)∈U if and only if f(bin(e))∈D in this case.

It is now easy to check that f is a 1 : 1 polynomial time function such that �∈U ⇔
f(�)∈D for all �∈{0; 1}∗.

To see that D6p
1 U , 1rst observe that

2n ∈ D ⇔
[

6
2n+4 ;

8
2n+4

]
∩ KD �= ∅ ⇔ 2n+4+1 + 7 ∈ {e : Ie ∩ KD �= ∅}:

Also note that any string of the form bin(e) = 111˙� where �∈{0; 1}∗ corresponds
to an interval Ie ⊆ ( 1

2 ; 1] so that Ie ∩KD = ∅. We can then de1ne our desired 1 : 1
polynomial time function g which shows that D6p

1 U as follows. First if � =∈Bin(!),
then we let g(�) = �. We de1ne g on Bin(!) by setting g(bin(2n)) = bin(2n+5 + 7) for
all n∈! and setting g(bin(k)) = 111˙bin(k) if k is not of the for 2n.

We should note that in Theorem 5.5, the fact that {bin(n) :KD ∩ I n = ∅} is 1–1 poly-
nomial time equivalent to what is essentially a tally set is an artifact of our coding of
the intervals In. Under other natural codings, {bin(n) :KD ∩ I n = ∅} will be polynomial
time equivalent to essentially arbitrary computable subsets of Bin(!) as C varies. How-
ever, these other codings do not have the same nice properties with respect to other
complexity theoretic analogues of the results of this paper. We do not have the space
to discuss such codings in full detail in this paper, but these issues will be addressed
in a subsequent paper. However since 1–1 polynomial time equivalence preserves the
properties of being NP, CoNP, or polynomial time, we have the following immediate
corollary of Theorem 5.5.

Theorem 5.6. (1) There is an OI polynomial time decidable closed set K of [0; 1]
such that K is not CINP or CICoNP.

(2) If P �= NP for tally sets, then there is an OI polynomial time decidable closed
set K of [0; 1] such that K is CINP but not CI polynomial time decidable and there
is an OI polynomial time decidable closed set L of [0; 1] such that L is CICoNP but
not CI polynomial time decidable.

(3) If NP �= CoNP for tally sets, then there is an OI polynomial time decidable
closed set K of [0; 1] such that K is CINP but not CICoNP and there is an OI
polynomial time decidable closed set L in [0; 1] such that L is CICoNP but not CINP.
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