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Principal component analysis (PCA) is commonly used to compute a bounding box of a
point set in R

d . The popularity of this heuristic lies in its speed, easy implementation
and in the fact that usually, PCA bounding boxes quite well approximate the minimum-
volume bounding boxes. We present examples of discrete points sets in the plane, showing
that the worst case ratio of the volume of the PCA bounding box and the volume of the
minimum-volume bounding box tends to infinity. Thus, we concentrate our attention on
PCA bounding boxes for continuous sets, especially for the convex hull of a point set. Here,
we contribute lower bounds on the approximation factor of PCA bounding boxes of convex
sets in arbitrary dimension, and upper bounds in R

2 and R
3.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Bounding boxes are used in many applications for simplification of point sets or complex shapes. For example, in com-
puter graphics, bounding boxes are used to maintain hierarchical data structures for fast rendering of a scene or for collision
detection. Additional applications include those in shape analysis and shape simplification, or in statistics, for storing and
performing range-search queries on a large database of samples.

Computing a minimum-area bounding box of a set of n points in R
2 can be done in O (n log n) time, for example with

the rotating calipers algorithm [13]. O’Rourke [10] presented a deterministic algorithm, a rotating calipers variant in R
3,

for computing the minimum-volume bounding box of a set of n points in R
3. His algorithm requires O (n3) time and

O (n) space. Barequet and Har-Peled [2] have contributed two (1 + ε)-approximation algorithms for the minimum-volume
bounding box of point sets in R

3, both with nearly linear complexity. The running times of their algorithms are O (n+1/ε4.5)

and O (n log n + n/ε3), respectively.
Numerous heuristics have been proposed for computing a box which encloses a given set of points. The simplest heuristic

is naturally to compute the axis-aligned bounding box of the point set. Two-dimensional variants of this heuristic include
the well-known R-tree, the packed R-tree [11], the R∗-tree [3], the R+-tree [12], etc.

A frequently used heuristic for computing a bounding box of a set of points is based on principal component analysis. The
principal components of the point set define the axes of the bounding box. Once the axis directions are given, the dimension
of the bounding box is easily found by the extreme values of the projection of the points on the corresponding axis. Two
distinguished applications of this heuristic are the OBB-tree [4] and the BOXTREE [1], hierarchical bounding box structures,
which support efficient collision detection and ray tracing. Computing a bounding box of a set of points in R

2 and R
3 by

PCA is simple and requires linear time. To avoid the influence of the distribution of the point set on the directions of the
PCs, a possible approach is to consider the convex hull, or the boundary of the convex hull CH(P ) of the point set P . Thus,
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the complexity of the algorithm increases to O (n log n). The popularity of this heuristic, besides its speed, lies in its easy
implementation and in the fact that usually PCA bounding boxes are tight-fitting, see [8] for some experimental results.

Given a point set P ⊆ R
d we denote by BBpca(P ) the PCA bounding box of P and by BBopt(P ) the bounding box of P

with smallest possible volume. The ratio of the two volumes κd(P ) = Vol(BBpca(P ))/Vol(BBopt(P )) defines the approximation
factor for P , and

κd = sup
{
κd(P ) | P ⊆ R

d,Vol
(
CH(P )

)
> 0
}

defines the general PCA approximation factor. Here, we give lower bounds on κd for arbitrary dimension d, and upper
bounds on κ2 and κ3.

The organization and the main results of the paper are as follows: In Section 2 we review the basics of principal compo-
nent analysis. In particular, we introduce the continuous version of PCA, which results in a series of approximation factors
κd,i , where i ranges from 0 to d and denotes the dimension of the faces of the convex hull that contribute to the continuous
point set for which the principal components are computed. In Section 3 we give lower bounds on κd,i for arbitrary values
of d and 1 � i � d. First, we show that κd,i = ∞ for any d � 4 and any 1 � i < d − 1. Next, we show that κ3,2 � 4 and
κ3,3 � 4. When d is a power of two, we show that κd,d−1 � dd/2 and κd,d � dd/2. The rest of the lower bounds, we obtain
by combination of the above bounds. In Section 4, we present upper bounds in R

2 and R
3, showing that κ2,1 � 2.737,

κ2,2 � 2.104 and κ3,3 � 7.807. We conclude with open problems in Section 5.

2. Principal component analysis and PCA bounding boxes

The central idea and motivation of PCA [6] (also known as the Karhunen–Loeve transform, or the Hotelling transform)
is to reduce the dimensionality of a point set by identifying the most significant directions (principal components). Let X =
{x1, x2, . . . , xm} be a set of vectors (points) in R

d , and c = (c1, c2, . . . , cd) ∈ R
d be the center of gravity of X . For 1 � k � d,

we use xik to denote the k-th coordinate of the vector xi . Given two vectors u and v , we use 〈u, v〉 to denote their inner
product. For any unit vector v ∈ R

d , the variance of X in direction v is

var(X, v) = 1

m

m∑
i=1

〈xi − c, v〉2. (1)

The most significant direction corresponds to the unit vector v1 such that var(X, v1) is maximum. In general, after
identifying the j most significant directions B j = {v1, . . . , v j}, the ( j + 1)-th most significant direction corresponds to the
unit vector v j+1 such that var(X, v j+1) is maximum among all unit vectors perpendicular to v1, v2, . . . , v j .

It can be verified that for any unit vector v ∈ R
d ,

var(X, v) = 〈Σv, v〉, (2)

where Σ is the covariance matrix of X . Σ is a symmetric d × d matrix where the (i, j)-th component, σi j , 1 � i, j � d, is
defined as

σi j = 1

m

m∑
k=1

(xik − ci)(x jk − c j). (3)

The procedure of finding the most significant directions, in the sense mentioned above, can be formulated as an eigen-
value problem. If λ1 > λ2 > · · · > λd are the eigenvalues of Σ , then the unit eigenvector v j for λ j is the j-th most significant
direction. All λ js are non-negative and λ j = var(X, v j). Since the matrix Σ is symmetric positive definite, its eigenvectors
are orthogonal. If the eigenvalues are not distinct, the eigenvectors are not unique. In this case, an orthogonal basis of eigen-
vectors is chosen arbitrarily. However, we can always achieve distinct eigenvalues by a slight perturbation of the point set.

The following result summarizes the above background knowledge on PCA. For any set S of orthogonal unit vectors
in R

d , we use var(X, S) to denote
∑

v∈S var(X, v).

Lemma 1. Assume that the covariance matrix Σ of a point set X ∈ R
d has distinct eigenvalues. For 1 � j � d, let λ j be the j-th largest

eigenvalue of Σ and let v j denote the unit eigenvector for λ j . Let B j = {v1, v2, . . . , v j}, sp(B j) be the linear subspace spanned by B j ,
and sp(B j)

⊥ be the orthogonal complement of sp(B j). Then λ1 = max{var(X, v): v ∈ R
d, ‖v‖ = 1 }, and for any 2 � j � d,

(i) λ j = max{var(X, v): v ∈ sp(B j−1)
⊥, ‖v‖ = 1}.

(ii) λ j = min{var(X, v): v ∈ sp(B j), ‖v‖ = 1}.
(iii) var(X, B j) � var(X, S) for any set S of j orthogonal unit vectors.

Since bounding boxes of a point set P (with respect to any orthogonal coordinate system) depend only on the convex
hull of CH(P ), the construction of the covariance matrix should be based only on CH(P ) and not on the distribution of
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Fig. 1. Four points and their PCA bounding-box (a). A dense collection of additional points significantly affect the orientation of the PCA bounding-box (b).

the points inside. Using the vertices, i.e., the 0-dimensional faces of CH(P ) to define the covariance matrix Σ we obtain a
bounding box BBpca(d,0)(P ). We denote by κd,0(P ) the approximation factor for the given point set P and by

κd,0 = sup
{
κd,0(P ) | P ⊆ R

d, Vol
(
CH(P )

)
> 0
}

the approximation factor in general. The example in Fig. 1 shows that κ2,0(P ) can be arbitrarily large if the convex hull is a
thin, slightly “bulged rectangle”, with a lot of additional vertices in the middle of the two long sides. Since this construction
can be lifted into higher dimensions we obtain a first general lower bound.

Proposition 1. κd,0 = ∞ for any d � 2.

To overcome this problem, one can apply a continuous version of PCA taking into account (the dense set of) all points on
the boundary of CH(P ), or even all points in CH(P ). In this approach X is a continuous set of d-dimensional vectors and the
coefficients of the covariance matrix are defined by integrals instead of finite sums. If CH(P ) is known, the computation of
the coefficients of the covariance matrix in the continuous case can also be done in linear time, thus, the overall complexity
remains the same as in the discrete case. Note that for d = 1 the above problem is trivial, because the PCA bounding box is
always optimal, i.e., κ1,0 is 1.

2.1. Continuous PCA

Variants of the continuous PCA applied to triangulated surfaces of 3D objects were presented by Gottschalk et al. [4],
Lahanas et al. [8] and Vranić et al. [14]. In what follows, we briefly review the basics of the continuous PCA in a general
setting.

Let X be a continuous set of d-dimensional vectors with constant density. Then, the center of gravity of X is

c =
∫

x∈X x dx∫
x∈X dx

. (4)

Here,
∫

dx denotes either a line integral, an area integral, or a volume integral in higher dimensions. For any unit vector
v ∈ R

d , the variance of X in direction v is

var(X, v) =
∫

x∈X 〈x − c, v〉2 dx∫
x∈X dx

. (5)

The covariance matrix of X has the form

Σ =
∫

x∈X (x − c)(x − c)T dx∫
x∈X dx

, (6)

with its (i, j)-th component

σi j =
∫

x∈X (xi − ci)(x j − c j)dx∫
x∈X dx

, (7)

where xi and x j are the i-th and j-th component of the vector x, and ci and c j the i-th and j-th component of the center
of gravity. It can be verified that relation (2) is also true when X is a continuous set of vectors. The procedure of finding
the most significant directions can be also reformulated as an eigenvalue problem and consequently Lemma 1 holds.

For point sets P in R
2 we are especially interested in the cases when X represents the boundary of CH(P ), or all points in

CH(P ). Since the first case corresponds to the 1-dimensional faces of CH(P ) and the second case to the only 2-dimensional
face of CH(P ), the generalization to a dimension d > 2 leads to a series of d − 1 continuous PCA versions. For a point set
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P ∈ R
d , Σ(P , i) denotes the covariance matrix defined by the points on the i-dimensional faces of CH(P ), and BBpca(d,i)(P ),

denotes the corresponding bounding box. The approximation factors κd,i(P ) and κd,i are defined as

κd,i(P ) = Vol(BBpca(d,i)(P ))

Vol(BBopt(P ))
, and κd,i = sup

{
κd,i(P ) | P ⊆ R

d,Vol
(
CH(P )

)
> 0
}
.

3. Lower bounds

The lower bounds we are going to derive are based on the following connection between the symmetry of a point set
and its principal components.

Lemma 2. Let P be a d-dimensional point set symmetric with respect to a hyperplane H and assume that the covariance matrix Σ has
d different eigenvalues. Then, a principal component of P is orthogonal to H.

Proof. Without loss of generality, we can assume that the hyperplane of symmetry is spanned by the last d − 1 standard
base vectors of the d-dimensional space and the center of gravity of the point set coincides with the origin of the d-
dimensional space, i.e., c = (0,0, . . . ,0). Thus, we can write P = P+ ∪ P− , where each point p− from P− has a counterpoint
p+ in P+ (and vice versa) such that p− and p+ differ only in the first coordinate, namely p−

1 = −p+
1 . Then, we can

rewrite (7) as

σi j =
∫

p∈P (pi − ci)(p j − c j)dp∫
p∈P dp

=
∫

p∈P+ pi p j dp∫
p∈P+ dp

+
∫

p∈P− pi p j dp∫
p∈P− dp

,

and

σ1 j =
∫

p∈P+ p1 p j dp∫
p∈P+ dp

+
∫

p∈P− p1 p j dp∫
p∈P− dp

=
∫

p∈P+ p1 p j dp∫
p∈P+ dp

+
∫

p∈P+ −p1 p j dp∫
p∈P+ dp

.

Then, the components σ1 j , for 2 � j � d, are 0. Due to symmetry the components σ j1 are also 0. Thus, the covariance
matrix has the form

Σ =

⎛
⎜⎜⎝

σ11 0 . . . 0
0 σ22 . . . σ2d
.
.
.

.

.

.
. . .

.

.

.

0 σd2 . . . σdd

⎞
⎟⎟⎠ . (8)

We note that the same argument carry thorough in the case when P is a discrete point set.
The characteristic polynomial of Σ is

det(Σ − λ I) = (σ11 − λ) f (λ), (9)

where f (λ) is a polynomial of degree d − 1, with coefficients determined by the elements of the (d − 1)× (d − 1) submatrix
of Σ . From this it follows that σ11 is a solution of the characteristic equation, i.e., it is an eigenvalue of Σ and the vector
(1,0, . . . ,0) is its corresponding eigenvector (principal component), which is orthogonal to the assumed hyperplane of
symmetry. �

We start with a generalization of Proposition 1.

Proposition 2. κd,i = ∞ for any d � 4 and any 1 � i < d − 1.

Proof. We use a lifting argument to show that for any point set P ⊆ R
k there is a point set P ′ ⊆ R

k+1 such that κk,i(P ) �
κk+1,i+1(P ′), and consequently κk,i � κk+1,i+1.

Let Σ be the covariance matrix of P with eigenvalues λ1 > λ2 > · · · > λk , and corresponding eigenvectors v1, v2, . . . , vk .
We define the point set P ′(h) = P × [−h,h], h ∈ R

+ . Let Σ ′(h) be the covariance matrix of P ′(h). Obviously, the point set
P ′(h) is symmetric with respect to the hyperplane H = R

k × {0}, and by Lemma 2, the vector vk+1 = (0, . . . ,0,1) is an
eigenvector of Σ ′(h). Let λ(h) be the corresponding eigenvalue of vk+1. Since λ(h) = var(P ′, vk+1) is a quadratic function of
h, with limh→0 λ(h) = 0, we can choose a value h0 such that λ(h0) is smaller than the other eigenvalues of Σ ′ . Let v be an
arbitrary direction in R

k . Then, by definition of P ′ , the variance of P ′ in the direction (v,0) remains the same as the variance
of P in the direction v . Thus, we can conclude that the eigenvalues of Σ ′ are λ1 > λ2 > · · · > λk > λ(h0), with corresponding
eigenvectors (v1,0), (v2,0), . . . , (vk,0), vk+1, and consequently Vol(BBpca(k+1,i+1)(P ′)) = 2h0 Vol(BBpca(k,i)(P )).

On the other hand, the bounding box BBh0 = BBopt(P ) × [−h0,h0] is also a bounding box of P ′ . Therefore, we obtain

κk+1,i+1 � κk+1,i+1(P ′) = Vol(BBpca(k+1,i+1)(P ′))
Vol(BB (P ′))

� Vol(BBpca(k+1,i+1)(P ′))
Vol(BB )

� 2h0 Vol(BBpca(k,i)(P ))

2h Vol(BB (P ))
� κk,i .
opt h0 0 opt
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Fig. 2. An example which gives the lower bound of the area of the PCA bounding box of an arbitrary convex polygon in R
2.

Now, we can establish κd,i � κd−1,i−1 � · · · � κd−i,0 = ∞. �
This way, there remain only two interesting cases for a given d: the factor κd,d−1 corresponding to the boundary of the

convex hull, and the factor κd,d corresponding to the full convex hull.

3.1. Lower bounds in R
2

The result obtained in this subsection can be seen as a special case of the result obtained in Subsection 3.3. To gain a
better understanding of the problem and the obtained results, we consider it separately.

Theorem 1. κ2,1 � 2 and κ2,2 � 2.

Proof. Both lower bounds can be derived from a rhombus. Let the side length of the rhombus be 1. To make sure that
the covariance matrix has two distinct eigenvalues, we assume that the rhombus has an angle α > 90◦ . Since the rhom-
bus is symmetric, its PCs coincide with its diagonals. In Fig. 2(b) its optimal-area bounding boxes, for 2 different angles,
α > 90◦ and β = 90◦ , are shown, and in Fig. 2(a) its corresponding PCA bounding boxes. As the rhombus’ angles in limit
approach 90◦ , the rhombus approaches a square with side length 1, i.e., the vertices of the rhombus in the limit are
( 1√

2
,0), (− 1√

2
,0), (0, 1√

2
) and (0,− 1√

2
) (see Fig. 2(a)), and the area of its PCA bounding box is

√
2 × √

2. According to

Lemma 2, the PCs of the rhombus are unique as long its angles are not 90◦ . This leads to the conclusion that the ratio
between the area of the PCA bounding box in Fig. 2(a) and the area of the optimal-area bounding box in Fig. 2(b) in limit
goes to 2. �

Alternatively, to show that the given squared rhombus fits into a unit cube, one can apply the following rotation matrix

R2 = 1√
2

[
1 1
1 −1

]
. (10)

It can be verified easily that all coordinates of the vertices of the rhombus transformed by R2 are in the interval [−0.5,0.5].
We use similar arguments when we prove the lower bounds in higher dimensions.

3.2. Lower bounds in R
3

Theorem 2. κ3,2 � 4 and κ3,3 � 4.

Proof. Both lower bounds are obtained from a dipyramid, having a rhombus with side length
√

2 as its base. The other sides

of the dipyramid have length
√

3
2 . Similarly as in R

2, we consider the case when its base, the rhombus, in limit approaches

the square, i.e., the vertices of the square dipyramid are (1,0,0), (−1,0,0), (0,1,0), (0,−1,0), (0,0,
√

2 ) and (0,0,−
√

2 )
2 2
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Fig. 3. An example which gives the lower bound of the volume of the PCA bounding box of an arbitrary convex polygon in R
3.

(see Fig. 3(a)). The side lengths of its PCA bounding box are 2,2 and
√

2. Now, we rotate the coordinate system (or the
square dipyramid) with the rotation determined by the following orthogonal matrix

R3 =
⎡
⎢⎣

1√
2

− 1√
2

0
1
2

1
2 − 1√

2
1
2

1
2

1√
2

⎤
⎥⎦ . (11)

It can be verified easily that the square dipyramid, after rotation with R3 fits into the box [−0.5,0.5]3 (see Fig. 3(b)).
Thus, the ratio of the volume of the bounding box, Fig. 3(a), and the volume of its PCA bounding box, Fig. 3(b), in limit
goes to 4. �
3.3. Lower bounds in R

d

The lower bounds, presented in this subsection, are based on the following result.

Theorem 3. If the dimension d of the bounding box is

(a) a power of two, or
(b) a multiply of four and at most 664,

then κd,d−1 � dd/2 and κd,d � dd/2 .

Proof. (a) For any d = 2k , k ∈ N \ {0}, let ai be a d-dimensional vector, with aii =
√

d
2 and aij = 0 for i �= j, and let bi =

−ai . We construct a d-dimensional convex polytope Pd with vertices V = {ai,bi | 1 � i � d}. It is easy to check that the
hyperplane normal to ai is a hyperplane of reflective symmetry, and as consequence of Lemma 2, ai is an eigenvector of the
covariance matrix of Pd . To ensure that all eigenvalues are different (which implies that the PCA bounding box is unique),
we add εi > 0 to the i-th coordinate of ai , and −εi to the i-th coordinate of bi , for 1 � i � d, where ε1 < ε2 < · · · < εd .
When all εi , 1 � i � d, tend to 0, the PCA bounding box of the convex polytope Pd converges to a hypercube with side
lengths

√
d, i.e., the volume of the PCA bounding box of Pd converges to dd/2. Now, we rotate Pd , such that it fits into the

cube [− 1
2 , 1

2 ]d
. For d = 2k , we can use a rotation matrix

Rd = 1√
2

( R d
2

R d
2

R d
2

−R d
2

)
, (12)

where we start with the matrix R1 = (1). A straightforward calculation verifies that Pd rotated with Rd fits into the cube
[−0.5,0.5]d .

(b) Before we prove this part of the theorem, we would like to note that the derivation of Rd in (a) can be traced back
to a Hadamard matrix.

A Hadamard matrix of order d × d, denoted by Hd , is a ±1 matrix with orthogonal columns.
Alternatively, we can define Rd as

Rd = 1√
d

Hd, (13)

where



778 D. Dimitrov et al. / Computational Geometry 42 (2009) 772–789
Table 1
Lower bounds for the approximation factor of PCA bounding boxes for the first 12 dimensions.

dim. R R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

R
10

R
11

R
12

lower bound 1 2 4 16 16 32 64 4096 4096 8192 16384 2985984

Hd =
( H d

2
H d

2

H d
2

−H d
2

)
, (14)

and

H2 =
(

1 1
1 −1

)
. (15)

From the construction in the proof for (a), it follows that the theorem holds for all dimensions d for which a d × d
Hadamard matrix exists. In (a), it was shown that a Hadamard matrix always exits when d = 2k , k ∈ N \ {0}. Hadamard con-
jectured that a Hadamard matrix also exists when d = 4k, k ∈ N\{0}. This conjecture is known to be true for d � 664 [7]. �

We can combine lower bounds from lower dimensions to get lower bounds in higher dimensions by taking Cartesian
products. If κd1 is a lower bound on the ratio between the PCA bounding box and the optimal bounding box of a convex
polytope in R

d1 , and κd2 is a lower bound in R
d2 , then κd1 · κd2 is a lower bound in R

d1+d2 . This observation together with
the results from this section enables us to obtain lower bounds in any dimension.

For example, for the first 12 dimensions, the lower bounds we obtain are given in Table 1.
One can observe big gaps between the bounds in R

7 and R
8, and between the bounds in R

11 and R
12. The bound

in R
7 is obtained as a product of the lower bounds in R

3 and R
4, and the bound in R

11 is obtained as a product of the
lower bounds in R

3 and R
8, while the bounds in R

8 and R
12 are obtained directly from Theorem 3. This indicates that for

dimensions that are not covered by Theorem 3, one can expect much bigger lower bounds. It is an interesting open problem
to develop techniques for such improvements.

4. Upper bounds

In this section, we present upper bounds on the approximation factors of PCA bounding boxes in R
2 and R

3. As it
was shown in Proposition 1, the considered bounds for discrete point sets tend to infinity. Thus, we are interested in PCA
bounding boxes for continuous point sets, especially for the convex hull of point sets. In Proposition 2, it was shown that
the only two cases, related to the convex hull of the point set, when the approximation factor does not tend to infinity, are
those when the whole convex hull, or the boundary of the convex hull are considered. The corresponding approximation
factors were denoted by κd,d and κd,d−1. In this section, we present upper bounds on κ2,1, κ2,2 and κ3,3.

Starting from the principle that the study of the worst case examples (established by the known lower bounds) could
give an idea how to prove upper bounds, we make a surprising observation: Since most of the worst case examples have
minimum-volume bounding boxes with unit lengths of all sides, it is trivial that any bounding box approximates with a

factor at most
√

d
d

. Thus, we have a trivial upper bound for all point sets with an optimal bounding box of unit lengths
of all sides. Moreover, in R

2 this argument can be generalized to a parametrized upper bound depending on the ratio η
between the lengths of the longest and the shortest side of the minimum-volume bounding box. Again, this is not a special
upper bound for the PCA-algorithm, it applies to all “tight” bounding boxes with respect to any orthonormal coordinate
system. Thus, we need a second upper bound argument that makes use of the special properties of PCA, and that works
well when the ratio η is large. To obtain the final upper bound we consider the lower envelop of both parametrized bounds
and search for it maximum (over all η � 1).

Upper bounds in R
2. The first parametrized bound in R

2 is common for both κ2,1 and κ2,2. It depends on the param-
eter η. The bound is presented in Lemma 3, and it is based on a simple estimation of the diameter of the point set. It is
good for a small values of the parameter η.

The second parametrized bounds on κ2,1 and κ2,2 are presented in Lemmas 6 and 9, respectively. Both are good for big
values of the parameter η. The essence of deriving these bounds is an estimation of the distance of the continuous point
set to its best fitting line. However, the techniques used to obtain the estimations differ for κ2,1 and for κ2,2. For κ2,1, we
exploit arguments from discrete geometry (Lemmas 4 and 5), while for κ2,2 we use ideas from integral calculus (Theorems 5
and 6).

An upper bound in R
3. We present an upper bound on κ3,3. We follow the ideas from the derivation of the upper bounds

on κ2,2. However, in R
3 there are two main differences with respect to R

2. First, the density function of the convex hull
in R

3 (see Section 4.3 for the definition) is not convex. Instead of convexity, another property of the density function (de-
scribed in Proposition 3) is used. Second, the higher dimensionality of the problem requests an additional relation between
the sides lengths of the minimum-volume bounding box and PCA bounding box, which is obtain in Lemma 13.
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Fig. 4. A convex polygon P , its PCA bounding box and the line lpca , which coincides with the first principal component of P (a). The optimal bounding box
and the line l 1

2
, going through the middle of its smaller side, parallel with its longer side (b).

Fig. 5. The convex polygon P , its optimal bounding box, and the staircase polygon BBS (depicted dashed).

4.1. An upper bound on κ2,1

Given a point set P ⊆ R
2 and an arbitrary bounding box BB(P ) we will denote the two side lengths by a and b, where

a � b. We are interested in the side lengths aopt(P ) � bopt(P ) and apca(P ) � bpca(P ) of BBopt(P ) and BBpca(2,1)(P ), see Fig. 4.
The parameters α = α(P ) = apca(P )/aopt(P ) and β = β(P ) = bpca(P )/bopt(P ) denote the ratios between the corresponding
side lengths. Hence, we have κ2,1(P ) = α(P ) · β(P ). If the relation to P is clear, we will omit the reference to P in the
notations introduced above.

Since the side lengths of any bounding box are bounded by the diameter of P , we can observe that in general
bpca(P ) � apca(P ) � diam(P ) �

√
2aopt(P ), and in the special case when the optimal bounding box is a square κ2,1(P ) � 2.

This observation can be generalized, introducing an additional parameter η(P ) = aopt(P )/bopt(P ).

Lemma 3. κ2,1(P ) � η + 1
η and κ2,2(P ) � η + 1

η for any point set P with fixed aspect ratio η(P ) = η.

Proof. We have for both apca and bpca the upper bound diam(P ) �
√

a2
opt + b2

opt = aopt

√
1 + 1

η2 . Replacing aopt by η · bopt in

the bound on bpca we obtain αβ � η(
√

1 + 1
η2 )2 = η + 1

η . �

Unfortunately, this parametrized upper bound tends to infinity for η → ∞. Therefore, we are going to derive another
upper bound that is better for large values of η. In this process we will make essential use of the properties of BBpca(2,1)(P ).
In order to distinguish clearly between a convex set and its boundary, we will use calligraphic letters for the boundaries,
specifically P for the boundary of CH(P ) and B Bopt for the boundary of the rectangle BBopt(P ). Furthermore, we denote by
d2(P , l) the integral of the squared distances of the points on P to a line l, i.e., d2(P , l) = ∫x∈P d2(x, l)ds. Let lpca be the line
going through the center of gravity and parallel to the longer side of BBpca(2,1)(P ) and l 1

2
be the bisector of BBopt(P ) parallel

to the longer side. By Lemma 1, part (ii), lpca is the best fitting line of P and therefore,

d2(P , lpca) � d2(P , l 1
2
). (16)

Lemma 4. d2(P , l 1
2
) � bopt

2aopt
2 + bopt

3

6 .

Proof. If a segment of P intersects the line l 1
2

, we split this segment into two segments, with the intersection point as a

split point. Then, to each segment f of P flush with the side of the PCA bounding box, we assign a segment identical to
f . To each remaining segment s of P , with endpoints (x1, y1) and (x2, y2), where |y1| � |y2|, we assign two segments: a
segment s1, with endpoints (x1, y1) and (x1, y2), and a segment s2, with endpoints (x1, y2) and (x2, y2). All these segments
form the boundary B B S of a staircase polygon (see Fig. 5 for illustration). Two straightforward consequences are that
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Fig. 6. The convex polygon P , its PCA bounding box, and a construction for a lower bound on d2(P, lpca).

Fig. 7. Two polylines P ′
upp and P ′

low (depicted dashed) formed from P .

Fig. 8. Two types of chains of segments (depicted dashed and denoted by R), and their corresponding triangles’ edges (depicted solid and denoted by t).
The base-point of t corresponds to the most left point of Tupp from Figs. 6 and 7.

d2(B B S , l 1
2
) � d2(B Bopt, l 1

2
), and d2(s, l 1

2
) � d2(s1, l 1

2
) + d2(s2, l 1

2
), for each segment s of P . Therefore, d2(P , l 1

2
) is at most

d2(B B S , l 1
2
), which is bounded from above by

d2(B Bopt, l 1
2
) = 4

bopt
2∫

0

x2 dx + 2

aopt∫
0

(
bopt

2

)2

dx = b2
optaopt

2
+ b3

opt

6
. �

Now we look at P and its PCA bounding box (Fig. 6). The line lpca divides P into an upper and a lower part, Pupp and
Plow . lupp denotes the orthogonal projection of Pupp onto lpca , with U1 and U2 as its extreme points, and llow denotes the
orthogonal projection of Plow onto lpca , with L1 and L2 as its extreme points. Tupp = �(U1U2U3) is a triangle inscribed in
the upper part of the PCA bounding box (the part above lpca), where point U3 lies on the intersection of Pupp with the
upper side of the PCA bounding box. Analogously, Tlow = �(L1L2L3) is a triangle inscribed in the lower part of the PCA
bounding box.

Lemma 5. d2(P , lpca) � d2(Tupp, lpca) + d2(Tlow, lpca).

Proof. Let Q denote a chain of segments of P , which does not touch the longer side of the PCA bounding box, and whose
one endpoint lies on the smaller side of the PCA bounding box, and the other endpoint on the line lpca . We reflect Q at
the line supporting the side of the PCA bounding box touched by Q . All such reflected chains of segments, together with
the rest of P , form two polylines: P ′

upp and P ′
low (see Fig. 7 for illustration). As a consequence, to each of the sides of the

triangles Tlow and Tupp , L1L3, L2L3, U1U3, U2U3, we have a corresponding chain of segments R as shown in the two cases
in Fig. 8. In both cases d2(t, lpca) � d2(R, lpca). Namely, we can parametrize both curves, R and t , starting at the common
endpoint A that is furthest from lpca . By comparing two points with the same parameter (distance from A along the curve)
we see that the point on t always has a smaller distance to lpca than the corresponding point on R . In addition t is shorter,
and some parts of R have no match on t .

Consequently, d2(P ′, lpca) � d2(Tupp ∪ Tlow, lpca) = d2(Tupp, lpca) + d2(Tlow, lpca), and since d2(P ′, lpca) = d2(P , lpca) =
d2(Pupp ∪ Plow, lpca), the proof is completed. �

Since P is convex, the following relations hold:



D. Dimitrov et al. / Computational Geometry 42 (2009) 772–789 781
|lupp| � b′

bpca
apca, and |llow| � bpca − b′

bpca
apca. (17)

The value

d2(Tupp, lpca) =

√
a2

1+b′ 2∫
0

(
α√

a2
1 + b′ 2

b′
)2

dα +

√
a2

2+b′ 2∫
0

(
α√

a2
2 + b′ 2

b′
)2

dα = b′2

3

(√
a2

1 + b′ 2 +
√

a2
2 + b′ 2

)

is minimal when a1 = a2 = |lupp|
2 . With (17) we get

d2(Tupp, lpca) � b′3

3bpca

√
a2

pca + 4b2
pca.

Analogously, we have for the lower part:

d2(Tlow, lpca) � (bpca − b′)3

3bpca

√
a2

pca + 4b2
pca.

The sum d2(Tupp, lpca) + d2(Tlow, lpca) is minimal when b′ = bpca
2 . This, together with Lemma 5, gives:

d2(P , lpca) �
b2

pca

12

√
a2

pca + 4b2
pca. (18)

Combining (16), (18) and Lemma 4 we have:

1

2
aoptb

2
opt + 1

6
b3

opt �
b2

pca

12

√
a2

pca + 4b2
pca �

b2
pca

12
apca. (19)

Replacing aopt with ηbopt on the left side, b2
pca with β2b2

opt and apca with αaopt = αηbopt on the right side of (19), we obtain:(
η

2
+ 1

6

)
b3

opt � β2αη

12
b3

opt

which implies

β �
√

6η + 2

αη
.

This gives the second upper bound on κ2,1(P ) for point sets with parameter η:

αβ �
√

(6η + 2)α

η
�

√√√√6η + 2

η

√
1 + 1

η2
. (20)

Lemma 6. κ2,1(P ) �
√

6η+2
η

√
1 + 1

η2 for any point set P with fixed aspect ratio η(P ) = η.

This implies the final result of this subsection.

Theorem 4. The PCA bounding box of a point set P in R
2 computed over the boundary of CH(P ) has a guaranteed approximation

factor κ2,1 � 2.737.

Proof. The theorem follows from the combination of the two parametrized bounds from Lemma 3 and Lemma 6 proved
above:

κ2,1 � sup
η�1

{
min

(
η + 1

η
,

√√√√6η + 2

η

√
1 + 1

η2

)}
.

It is easy to check that the supremum s ≈ 2.736 is obtained for η ≈ 2.302. �
Although this result concerns a continuous PCA version, the proof is mainly based on arguments from discrete geometry.

In contrast to that, the upper bound proofs for κ2,2 and κ3,3, presented in the next two subsections, essentially make use
of integral calculus.
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Fig. 9. A convex hull of the point set P , its PCA bounding box (a) and its optimal bounding box (b).

Fig. 10. Construction of the lower bound on d2(CH(P ), lb1 ).

4.2. An upper bound on κ2,2

First, we note that due to Lemma 3, we already have a parametrized upper bound on κ2,2. Since this bound tends to
infinity for η → ∞, we are going to derive another upper bound on κ2,2 that is better for large values of η. We derive such
a bound by finding a constant that bounds β from above. In this process we will make essential use of the properties of
BBpca(2,2)(P ). We denote by d2(CH(P ), l) the integral of the squared distances of the points on CH(P ) to a line l, i.e.,

d2(CH(P ), l
)= ∫

s∈CH(P )

d2(s, l)ds.

Let lpca be the line going through the center of gravity, parallel to the longer side of BBpca(2,2)(P ), and lopt be the line going
through the center of gravity, parallel to the longer side of BBopt(P ) (see Fig. 9). By Lemma 1, part (ii), lpca is the best fitting
line of P and therefore,

d2(CH(P ), lpca
)
� d2(CH(P ), lopt

)
. (21)

We obtain an estimate of β by determining a lower bound on d2(CH(P ), lpca) that depends on bpca , and an upper bound on
d2(CH(P ), lopt) that depends on bopt . Having an arbitrary bounding box of CH(P ) (with side lengths a and b, a � b) the area
of CH(P ) can be expressed as

A = A
(
CH(P )

)=
b∫

0

a∫
0

λCH(P )(x, y)dx dy =
b∫

0

g(y)dy,

where λCH(P )(x, y) is the characteristic function of CH(P ) defined as

λCH(P )(x, y) =
{

1 (x, y) ∈ CH(P ),

0 (x, y) /∈ CH(P ),

and g(y) = ∫ a
0 λCH(P )(x, y)dx is the length of the intersection of CH(P ) with a horizontal line at height y. In the following

we call g(y) the density function of CH(P ) for computing the area with the integral
∫ b

0 g(y)dy. Since CH(P ) is a convex set,
g(y) is continuous and convex in the interval [0,b] (see Fig. 10(a) for an illustration). Let b1 denote the y-coordinate of the
center of gravity of CH(P ). The line lb1 (y = b1) divides the area of CH(P ) into A1 and A2.

Theorem 6, which is derived from the generalized first mean value theorem of integral calculus (Theorem 5), is our
central technical tool in derivation of the lower and the upper bound on d2(CH(P ), lb ).
1
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Theorem 5 (Generalized first mean value theorem of integral calculus). If h(x) and g(x) are continuous functions on the interval [a,b],
and if g(x) does not change its sign in the interval, then there is a ξ ∈ (a,b) such that

b∫
a

h(x)g(x)dx = h(ξ)

b∫
a

g(x)dx.

Theorem 6. Let f (x) and g(x) be positive continuous functions on the interval [a,b] with
∫ b

a f (x)dx = ∫ b
a g(x)dx, and assume that

there is some c ∈ [a,b] such that f (x) � g(x), for all x � c and f (x) � g(x), for all x � c. Then

b∫
a

(x − b)2 f (x)dx �
b∫

a

(x − b)2 g(x)dx and

b∫
a

(x − a)2 f (x)dx �
b∫

a

(x − a)2 g(x)dx.

Proof. We start from the assumptions
∫ b

a f (x)dx = ∫ b
a g(x)dx and f (x) � g(x) for all x � c and f (x) � g(x) for all x � c.

Thus,

c∫
a

(
g(x) − f (x)

)
dx =

b∫
c

(
f (x) − g(x)

)
dx = � (22)

and the integrands on both sides are non-negative. Applying Theorem 5 to the following integrals we obtain

c∫
a

(x − b)2(g(x) − f (x)
)

dx = (ξ1 − b)2

c∫
a

(
g(x) − f (x)

)
dx = (ξ1 − b)2�,

and

b∫
c

(x − b)2( f (x) − g(x)
)

dx = (ξ2 − b)2

b∫
c

(
f (x) − g(x)

)
dx = (ξ2 − b)2�,

for some ξ1 ∈ [a, c] and ξ2 ∈ [c,b]. Therefore,

c∫
a

(x − b)2(g(x) − f (x)
)

dx = (ξ1 − b)2� � (ξ2 − b)2� =
b∫

c

(x − b)2( f (x) − g(x)
)

dx.

It follows that
b∫

a

(x − b)2(g(x) − f (x)
)

dx =
c∫

a

(x − b)2(g(x) − f (x)
)

dx −
b∫

c

(x − b)2( f (x) − g(x)
)

dx � 0,

which proves the first claim

b∫
a

(x − b)2 f (x)dx �
b∫

a

(x − b)2 g(x)dx.

The proof of the second claim follows by symmetry. �
The following theorem was discovered independently by Grünbaum [5] and Hammer (unpublished manuscript), and later

rediscovered by Mityagin [9]. We use it to prove a lower and an upper bound of the variance d2(CH(P ), lb1 ).

Theorem 7 (Grünbaum–Hammer–Mityagin). Let K be a compact convex set in R
d with non-empty interior and centroid μ. Assume

that the d-dimensional volume of K is one, that is, Vold(K ) = 1. Let H be any (d − 1)-dimensional hyperplane passing through μ with
corresponding half-spaces H+ and H− . Then,

min
{

Vold(K ∩ H+),Vold(K ∩ H−)
}

�
(

d
)d

.

d + 1
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Fig. 11. Construction of the upper bound on d2(CH(P ), lb1 ).

Moreover, the bound ( d
d+1 )d is best possible.

Lemma 7. The variance d2(CH(P ), lb1) is bounded from below by 10
243 Ab2 .

Proof. We split the integral
∫ b

0 (y − b1)
2 g(y)dy at b1 (recall that b1 is the y-coordinate of the center of gravity of CH(P )),

and prove lower bounds on both parts in the following way: For the left part consider the linear function f1(y) = h1
b1

y such

that
∫ b1

0 f1(y)dy = ∫ b1
0 g(y)dy = A1 (see Fig. 10(b) for an illustration). From

∫ b1
0 f1(y)dy = A1, it follows that f1(y) = 2A1 y

b2
1

.

Since g(y) is convex, g(y) and f1(y) intersect only once, at a point b′ ∈ (0,b1). By Theorem 6, we have

b1∫
0

(y − b1)
2 g(y)dy �

b1∫
0

(y − b1)
2 f1(y)dy =

b1∫
0

(y − b)2 2A1

b1
2

dy = A1b2
1

6
. (23)

Analogously, for the right part consider the linear function f2(y) = h2
b1−b (y − b) = h2−b2

(y − b) such that
∫ b

b1
f2(y)dy =∫ b

b1
g(y)dy = A2 (see Fig. 10(c) for an illustration). From

∫ b
b1

f2(y)dy = A2, it follows that f2(y) = 2A2
b2

2
(y − b). Since g(y) is

convex, g(y) and f2(y) intersect only once, at a point b′′ ∈ (b1,b). By Theorem 6, we have that

b∫
b1

(y − b1)
2 g(y)dy �

b∫
b1

(y − b1)
2 f2(y)dy =

b∫
b1

(y − b1)
2 2A2

(b − b1)2
(y − b1)dy = A2b2

2

6
. (24)

From (23) and (24) we obtain that

d2(CH(P ), lb1

)=
b1∫

0

(y − b1)
2 g(y)dy +

b∫
b1

(y − b1)
2 g(y)dy �

A1b2
1

6
+ A2b2

2

6
.

From the Grünbaum–Hammer–Mityagin theorem, we know that A1, A2 ∈ [ 4
9 A, 5

9 A]. Also, we know that b1,b2 ∈ [ 1
3 b, 2

3 b].
It is not hard to show that, under these constrains, the expression

A1b2
1

6 + A2b2
1

6 achieves its minimum of 10
243 Ab2 for A1 =

4
9 A, b1 = 5

9 b or A1 = 5
9 A, b1 = 4

9 b. �
Lemma 8. The variance d2(CH(P ), lb1 ) is bounded from above by 29

243 Ab2 .

The proof of Lemma 8 is similar to the proof of Lemma 7. Here, the functions we use to derive the upper bound on
d2(CH(P ), lb1 ) are given in Fig. 11 (functions f3(y) and f4(y)).

Now, we are ready to derive an alternative parametrized upper bound on κ2,2(P ) which is better than the bound from
Lemma 3 for big values of η.

Lemma 9. κ2,2(P ) �
√

2.9(1 + 1
η2 ) for any point set P with aspect ratio η(P ) = η.

Proof. Applying Lemma 7 and Lemma 8 in (21) we obtain

10
Ab2

pca � d2(P , lpca) � d2(P , lopt) � 29
Ab2

opt. (25)

243 243
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From (25) it follows that β = bpca
bopt

�
√

2.9. We have for apca the upper bound diam(P ) �
√

a2
opt + b2

opt = aopt

√
1 + 1

η2 . From

this, it follows that α �
√

1 + 1
η2 . Putting this together, we obtain αβ �

√
2.9(1 + 1

η2 ). �
Theorem 8. The PCA bounding box of a point set P in R

2 computed over CH(P ) has a guaranteed approximation factor κ2,2 � 2.104.

Proof. The theorem follows from the combination of the two parametrized bounds from Lemma 3 and Lemma 9:

κ2,2 � sup
η�1

{
min

(
η + 1

η
,

√
2.9

(
1 + 1

η2

))}
.

It is easy to check that the supremum s ≈ 2.1038 is obtained for η ≈ 1.3784. �
4.3. An upper bound on κ3,3

Some of the techniques used here are similar to those used in Subsection 4.2 where we derive an upper bound on κ2,2.
One essential difference is that for the upper bound on κ3,3, we additionally need a bound for the ratio of the middle sides
of BBpca(3,3)(P ) and BBopt(P ), which we derive from the relation in Lemma 13.

Given a point set P ⊆ R
3 and an arbitrary bounding box BB(P ), we will denote the three side lengths of BB(P ) by

a, b and c, where a � b � c. We are interested in the side lengths aopt � bopt � copt and apca � bpca � cpca of BBopt(P )

and BBpca(3,3)(P ). The parameters α = α(P ) = apca/aopt , β = β(P ) = bpca/bopt and γ = γ (P ) = cpca/copt denote the ratios
between the corresponding side lengths. Hence, we have κ3,3(P ) = α · β · γ .

Since the side lengths of any bounding box are bounded by the diameter of P , we can observe that in general cpca �
bpca � apca � diam(P ) �

√
3aopt , and in the special case when the optimal bounding box is a cube κ3,3(P ) � 3

√
3. This

observation can be generalized, introducing two additional parameters η(P ) = aopt/bopt and θ(P ) = aopt/copt .

Lemma 10. κ3,3(P ) � ηθ(1 + 1
η2 + 1

θ2 )
3
2 for any point set P with aspect ratios η(P ) = η and θ(P ) = θ .

Proof. We have for apca , bpca and cpca the upper bound

diam(P ) �
√

a2
opt + b2

opt + c2
opt = aopt

√
1 + 1

η2
+ 1

θ2
.

Thus,

αβγ � apcabpcacpca

aoptboptcopt
�

a3
opt(1 + 1

η2 )
3
2

aoptboptcopt
.

Replacing aopt in the nominator once by ηbopt and once by θcopt we obtain κ3,3(P ) � ηθ(1 + 1
η2 + 1

θ2 )
3
2 . �

Unfortunately, this parametrized upper bound tends to infinity for η → ∞ or θ → ∞. Therefore, we are going to derive
another upper bound that is better for large values of η and θ . We derive such a bound by finding constants that bound β

and γ from above. In this process we will make essential use of the properties of BBpca(3,3)(P ). We denote by d2(CH(P ), H)

the integral of the squared distances of the points on CH(P ) to a plane H , i.e., d2(CH(P ), H) = ∫s∈CH(P )
d2(s, H)ds. Let Hpca

be the plane going through the center of gravity, parallel to the side apca × bpca of BBpca(3,3)(P ), and Hopt be the bisector of
BBopt(P ) parallel to the side aopt × bopt . By Lemma 1, part (ii), Hpca is the best fitting plane of P and therefore,

d2(CH(P ), Hpca
)
� d2(CH(P ), Hopt

)
. (26)

We obtain an estimation for γ by determining a lower bound on d2(CH(P ), Hpca) that depends on cpca , and an upper
bound on d2(CH(P ), Hopt) that depends on copt . Having an arbitrary bounding box of CH(P ) (with side lengths a, b, and c,
a � b � c), we denote by Hab the plane going through the center of gravity, parallel to the side a × b. The volume of CH(P )

can be expressed as

V = V
(
CH(P )

)=
c∫

0

b∫
0

a∫
0

χCH(P )(x, y, z)dx dy dz =
c∫

0

g(z)dz,

where χCH(P )(x, y, z) is the characteristic function of CH(P ) defined as

χCH(P )(x, y, z) =
{

1 (x, y, z) ∈ CH(P ),
0 (x, y, z) /∈ CH(P ),
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Fig. 12. Construction of the intersection of f (z) and g(z).

Fig. 13. Construction of the lower and upper bounds on d2(CH(P ), Hab).

and g(z) = ∫ b
0

∫ a
0 χCH(P )(x, y, z)dx dy is the area of the intersection of CH(P ) with the horizontal plane at height z. As before

we call g(z) the density function of CH(P ). Let c1 denote the z-coordinate of the center of gravity of CH(P ). The line lc1

(y = c1) divides the volume of CH(P ) into V 1 and V 2 (see Fig. 13(a) for an illustration).
Note that g(z) is continuous, but in general not convex in the interval [0,b]. Therefore, we cannot use linear functions to

derive a lower and an upper bound on the function d2(CH(P ), Hab), as we did in Subsection 4.2, because a linear function
can intersect g(z) more than once, and we cannot apply Theorem 6. We will show that instead of linear functions, quadratic
functions can be used.

Proposition 3. Let g(z) be the density function of CH(P ) defined as above, and let f (z) = kz2 be the parabola such that
∫ c1

0 f (z)dz =∫ c1
0 g(z)dz. Then, ∃c0 ∈ [0, c1] such that f (z) � g(x) for all z � c0 and f (z) � g(z) for all z � c0 .

Proof. We give a constructive proof. Let c0 := inf{d | ∀z ∈ [d, c1] g(z) � f (z)}. If c0 = 0, then f (z) = g(z), and the proposition
holds. If c0 > 0, then consider the polygon which is the intersection of CH(P ) with the plane z = c0. We fix a point p0 in
CH(P ) with z-coordinate 0 and construct a pyramid Q by extending all rays from p0 through the polygon up to the
plane z = c1 (see Fig. 12 for an illustration). Since, f (c0) = g(c0) the quadratic function f (z) is the density function of Q .
Therefore, since the part of Q below c0 is completely included in CH(P ), we can conclude that f (z) � g(z) for all z � c0.
On the other hand, f (z) � g(x) for all z � c0 by the definition of c0. �

Now, we present a lower and an upper bound on the variance d2(CH(P ), Hab), from which we can derive a bound on
γ = cpca

copt
.

Lemma 11. The variance d2(CH(P ), Hab) is bounded from below by 7
256 V c2 .

Proof. We split the integral
∫ c

0 (z − c1)
2 g(z)dz at c1, and prove upper bounds on both parts in the following way: For the

left part consider the parabola f1(z) = h1
c2

1
z2 such that

∫ c1
0 f1(z)dz = ∫ c1

0 g(z)dz = V 1 (see Fig. 13(b) for an illustration). From∫ c1
0 f1(z)dz = V 1 we have that f1(z) = 3V 1

c3
1

z2. Since f1(z) and g(z) define the same volume on the interval [0, c1], they must

intersect, and by Proposition 3 we know that if f1(z) �= g(z), then they can intersect only once, at a point c′ ∈ (0, c1). Under
these conditions, we can apply Theorem 6, and obtain

c1∫
(z − c1)

2 g(z)dz �
c1∫
(z − c1)

2 f1(z)dz =
c1∫
(z − c1)

2 3V 1

c3
1

z2 dz = V 1c2
1

10
. (27)
0 0 0
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Analogously, for the right part consider the parabola f2(z) = h2
(c1−c)2 (z−c)2 = h2

c2
2
(z−c)2 such that

∫ c
c1

f2(y)dy = ∫ c
c1

g(z)dz =
V 2 (see Fig. 13(b) for an illustration). From

∫ c
c1

f2(y)dy = V 2 we have that f1(z) = 3V 2
c3

2
(z − c)2. By similar arguments as

above in the case of f1(z), we can show that g(z) and f2(z) intersect only once, at a point c′′ ∈ (c1, c). Applying Theorem 6
we have that

c∫
c1

(z − c1)
2 g(z)dz �

c∫
c1

(z − c1)
2 f2(z)dz =

c∫
c1

(z − c1)
2 3V 2

c3
2

(z − c)2 dz = V 2c2
2

10
. (28)

From (27) and (28) we obtain that

d2(CH(P ), Hab
)=

c1∫
0

(z − c1)
2 g(z)dz +

c∫
c1

(z − c1)
2 g(z)dz �

V 1c2
1

10
+ V 2c2

2

10
.

From the Grünbaum–Hammer–Mityagin theorem, we know that V 1, V 2 ∈ [ 27
64 V , 37

64 V ]. Also, we know that c1, c2 ∈ [ 1
4 c, 3

4 c]. It

is not hard to show that, under these constrains, the expression
V 1c2

1
10 + V 2c2

2
10 achieves its minimum of 7

256 V c2 for V 1 = 27
64 V ,

c1 = 3
4 c or V 1 = 37

64 V , c1 = 1
4 c. �

Lemma 12. The variance d2(CH(P ), Hab) is bounded from above by 12729
71680 V c2 .

The proof of Lemma 12 is similar to the proof of Lemma 11. Here, the functions we use to derive the upper bound on
d2(CH(P ), Hab) are given in Fig. 13(c) (functions f3(z) and f4(z)).

As a consequence of Lemma 11 and Lemma 12, we have the following upper bound on γ .

Proposition 4. γ < 2.5484.

Proof. By Lemma 11, we have

7

256
V cpca

2 � d2(CH(P ), Hpca
)
. (29)

On the other hand, by Lemma 12, it follows that

d2(CH(P ), Hopt
)
� 12729

71680
V copt

2, (30)

From (29), (30) and (26), we obtain

γ = cpca

copt
�
√

12729

1960
< 2.5484. �

We are now ready to present a new parametrized bound on κ3,3(P ), which is good for a large values of η and θ . The
additional crucial relation we exploit in its derivation is the fact given in the following lemma.

Lemma 13. Let (x1, x2, . . . , xd) and (y1, y2, . . . , yd) be two sets of orthogonal base vectors in R
d. For any point set P ∈ R

d it holds
that

d∑
i=1

var(P , xi) =
d∑

i=1

var(P , yi).

Proof. We have that

d∑
i=1

var(P , xi) =
d∑

i=1

1

n

∑
p∈P

d2(p, Hxi ),

where Hxi is a hyperplane orthogonal to the vector xi , passing through the origin of the coordinate system, d2(p, Hxi )

denotes the Euclidean distance of p to Hxi , and n = |P |. Since
∑d

i=1 d2(p, Hxi ) is the squared distance of p to the origin of
the coordinate system, it can be expressed as the sum of squared distances to the (d − 1)-dimensional hyperplanes spanned
by any set of orthogonal base vectors. Therefore,
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d∑
i=1

d2(p, Hxi ) =
d∑

i=1

d2(p, H yi ),

and

d∑
i=1

var(P , xi) = 1

n

∑
p∈P

d∑
i=1

d2(p, Hxi ) = 1

n

∑
p∈P

d∑
i=1

d2(p, H yi ) =
d∑

i=1

var(P , yi).

When P is a continuous point set,

var(P , xi) = 1

Vol(P )

∫
p∈P

d2(p, Hxi )ds

and the claim can be shown as in the discrete case. �
Lemma 14. κ3,3(P ) � 6.43

√
1 + 1

η2 + 1
θ2 for any point set P with aspect ratios η(P ) = η and θ(P ) = θ .

Proof. Let xpca, ypca, zpca be a set of basis vectors that determine the direction of BBpca(3,3)(P ), and let xopt , yopt , zopt be a
set of basis vectors that determine the direction of BBopt(CH(P )). By Lemma 13, we have that

var
(
CH(P ), xpca

)+ var
(
CH(P ), ypca

)+ var
(
CH(P ), zpca

)= var
(
CH(P ), xopt

)+ var
(
CH(P ), yopt

)+ var
(
CH(P ), zopt

)
. (31)

By Lemma 1, part (i), the variance of CH(P ) in the direction xpca is the biggest possible, and therefore,

var
(
CH(P ), xpca

)
� var

(
CH(P ), xopt

)
. (32)

Combining (31) and (32) we obtain

var
(
CH(P ), ypca

)+ var
(
CH(P ), zpca

)
� var

(
CH(P ), yopt

)+ var
(
CH(P ), zopt

)
. (33)

We denote by Hapbp the plane orthogonal to zpca , going through the center of gravity, and parallel with the side apcabpca of
BBpca(3,3)(P ). Similarly, we define Hap cp , Haobo and Haoco . We can rewrite (33) as

d2(CH(P ), Hapbp

)+ d2(CH(P ), Hap cp

)
� d2(CH(P ), Haobo

)+ d2(CH(P ), Haoco

)
. (34)

By Lemma 11, the lower bound on d2(CH(P ), Hapbp ) is 7
256 V c2

pca , and the lower bound on d2(CH(P ), Hap cp ) is 7
256 V b2

pca .

By Lemma 12, the upper bound on d2(CH(P ), Haobo ) is 12729
71680 V c2

opt , and the lower bound on d2(CH(P ), Haoco ) is 12729
71680 V b2

opt .
Plugging these bounds into (34) we obtain

7

256
V c2

pca + 7

256
V b2

pca � 12729

71680
V c2

opt + 12729

71680
V b2

opt. (35)

Applying γ = cpca
copt

in (35), we obtain

7

256
b2

pca �
(

12729

71680
− 7

256
γ

)
c2

opt + 12729

71680
b2

opt. (36)

By Proposition 4, it follows that 12729
71680 − 7

256γ � 0, and since bopt � copt , we get from (36) that

β = bpca

bopt
�
√

12.99 − γ 2. (37)

The expression
√

12.99 − γ 2γ (� βγ ) has its maximum of 6.495 for γ ≈ 2.5484. This together with the bound α �√
1 + 1

η2 + 1
θ2 gives

κ3,3(P ) = αβγ � 6.495

√
1 + 1

η2
+ 1

θ2
. �

Lemma 10 gives us a bound on κ3,3(P ) which is good for small values of η and θ . In contrary, the bound from Lemma 14
behaves worse for small values of η and θ , but better for big values of η and θ . Therefore, we combine both of them to
obtain the final upper bound.

Theorem 9. The PCA bounding box of a point set P in R
3 computed over CH(P ) has a guaranteed approximation factor κ3,3 < 7.81.
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Proof. The theorem follows from the combination of the two parametrized bounds from Lemma 10 and Lemma 14:

κ3,3 � sup
η�1,θ�1

{
min

(
ηθ

(
1 + 1

η2
+ 1

θ2

) 3
2

,6.495

√
1 + 1

η2
+ 1

θ2

)}
.

By numerical verification we obtained that the supremum occurs at ≈ 7.807. �
5. Open problems

Improving the upper bound on κ3,3, κ2,2 and κ2,1, as well as obtaining an upper bound on κ3,2 is of interest. The
approaches we exploit to obtain the upper bounds require an estimation of the length ratios between all corresponding side
pairs of the minimum-volume bounding box and the PCA bounding box. However, even in R

4, we do not know how to
obtain the estimations of the length ratios for all corresponding side pairs. We believe that obtaining upper bounds on the
approximation factor on the quality of PCA bounding boxes in arbitrary dimension requires different approaches than those
presented in this paper.
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