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Tetherin (ST2/CD317) is a cellular protein that restricts the release from cells of some enveloped viruses
including HIV-1. To examine if influenza virus is affected by tetherin, MDCK cells constitutively expressing
human tetherin and control MDCK cells were infected with influenza virus. No difference was observed in
infectious titers, at 24 h or 48 h post-infection. In contrast, tetherin expression inhibited influenza virus-like
particle (VLP) release into the media. Expression of the HIV protein Vpu overcame the tetherin block of
influenza virus VLPs. A human tetherin mutant that lacks a C-terminal GPI anchor attachment signal
(tetherin-ΔGPI) was constructed to test if this mutant could be incorporated into the released virus or VLP
particles. Whereas tetherin-ΔGPI was incorporated into influenza VLPs it was not incorporated into influenza
virions. Taken together these data suggest that influenza virions may contain a tetherin antagonist.
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Introduction

To combat viral infections cells have developed a variety of
strategies to restrict virus infections at various points in their life
cycles. Tetherin (also known as CD317/BST-2/HN1.24) is an interfer-
on-inducible integral membrane protein that contributes to the
establishment of the anti-viral state; however, there is a basal
constitutive level of expression in many cell types (reviewed in
Evans et al., 2010).

Tetherin is a type II integral membrane protein with a cytoplasmic
N-terminus and an extracellularly localized C-terminus that is post-
translationally modified by addition of a glycosylphosphatidylinositol
(GPI) membrane anchor. Thus, the tetherin molecule is anchored in
the membrane at both of its termini. Tetherin is expressed at the
plasma membrane and is localized to lipid rafts (Kupzig et al., 2003).
Tetherin is a homodimer that is disulfide-linked through three
extracellular cysteine residues. The ectodomain is also glycosylated
by two N-linked carbohydrate chains that are heterogeneously
modified (possibly by polylactosaminoglycan) that cause tetherin to
migrate on SDS-PAGE as a smear of 28–45 KDa (Perez-Caballero et al.,
2009).

The first enveloped virus shown to be restricted in its release from
infected cells by tetherin was human immunodeficiency virus (HIV-1)
(Neil et al., 2008; Van Damme et al., 2008). More recently tetherin has
been shown to have a broad activity against diverse families of
enveloped viruses including human immunodeficiency virus 2 (HIV-
2), simian immunodeficiency virus (SIV), Ebola virus and Marburg
virus, Lassa fever virus, vesicular stomatitis virus and Kaposi's
sarcoma herpes virus (KSVH) (Jouvenet et al., 2009; Kaletsky et al.,
2009; Radoshitzky et al., 2010; Sakuma et al., 2009; Weidner et al.,
2010). Many viruses can overcome restriction of budding by tetherin
using diverse viral proteins: Vpu for HIV-1; Env for HIV-2; Env/Nef
interplay for SIV, GP for Ebola virus and protein K5 of KSHV (Gupta et
al., 2009; Jia et al., 2009; Kaletsky et al., 2009; Le Tortorec and Neil,
2009; Mansouri et al., 2009; Neil et al., 2008; Van Damme et al., 2008).
Vpu is thought to antagonize tetherin by removing it from the sites of
virus assembly through internalization and proteasomal degradation
(reviewed in Evans et al., 2010).

Many of the studies performed to analyze the role of tetherin in
restricting the release of an enveloped virus have been performed
using virus-like particles (VLPs). Recently it has been observed that
whereas the release of Ebola virus VLPs are restricted by tetherin,
infectious Ebola virus is not restricted by tetherin (Radoshitzky et al.,
2010). This suggests that Ebola virions contain a tetherin antagonist
probably excluding tetherin from the virions.

Tetherin is a lipid raft-associated apically-expressed membrane
protein (Kupzig et al., 2003) and as influenza virus utilizes lipid rafts
as a budding platform (Takeda et al., 2003) it was of interest to
examine the effect of tetherin on influenza virus budding and on the
budding of influenza VLPs. We found that whereas tetherin
expression did not affect influenza virus budding, influenza VLP
budding was restricted.

https://core.ac.uk/display/82428493?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.virol.2011.05.006
mailto:ralamb@northwestern.edu
http://dx.doi.org/10.1016/j.virol.2011.05.006
http://www.sciencedirect.com/science/journal/00426822


51R. Watanabe et al. / Virology 417 (2011) 50–56
Results

Influenza virus growth is not restricted by expression of tetherin

AnMDCK cell line that constitutively expresses a N-terminally HA-
tagged tetherin protein was generated. On SDS-PAGE, tetherin
migrated heterogeneously (Fig. 1a), due to carbohydrate modification
(Perez-Caballero et al., 2009), whichwe speculate is due to addition of
polylactosaminoglycan. MDCK andMDCK-tetherin cells were infected
with influenza virus A/Udorn/72 and A/WSN/33 at a multiplicity of
infection of 1 plaque forming units (PFU)/cell and at 24 h and 48 h
post-infection (p.i.) the infectivity of the released virus was
determined. The virus titers were found to be very similar whether
the virus was grown in MDCK or MDCK-tetherin cells (Fig. 1b).
Analysis of the accumulation of virus-specific polypeptides in infected
cells and in released virions at 24 h p.i. showed that they were
comparable when influenza A/Udorn/72 virus was used to infect
MDCK or MDCK-tetherin cells (Fig. 1c).
Fig. 1. Human tetherin expressed in MDCK cells does not restrict influenza virus budding. (
SDS-lysis buffer and polypeptides separated by SDS-PAGE followed by immunoblotting w
migrating glycosylated tetherin species. (b) Infectious titer at 24 and 48 h p.i. of influenza v
efficiency of wt Udorn from MDCK or MDCK/tetherin cells at 24 h p.i.. Infected cells were la
virions were immunoprecipitated using goat anti-Ud. C = intracellular polypetides; V = pol
the released viral polypeptide as a percentage of total cell+virus. (d) Effect of tetherin on in
plated onto gelatin-coated 6-well plate at a density of 0.3×106/well the day before transfecti
and pCAGGS tetherin. After 24 h incubation, cells were infected with influenza virus A/Udorn
(A/Udorn/M2S71) or 7 h (VSV/ΔG) p.i. and the infectious titer was determined as described b
assay using M2CK cells as described previously (Chen et al., 2007). To determine the infecti
harvested at 24 h p.i. and GFP (+) cells were detected by flow cytometry (FACSCalliber Be
percentage of GFP (+) cells in the population.
To compare influenza virus to another virus, vesicular stomatitis
disease virus (VSV), that had been shown to be restricted by tetherin
expression (Weidner et al., 2010) we used a trans-complementation
strategy (Pawliczek and Crump, 2009). This was done to circumvent
the viral titer derived from infected cells that were not transfected
with DNA, due to the difficulty of being unable to transfect all the cells
in a culture but being able to infect all the cells with virus. We used
two defective viruses, influenza A/Udorn/M2S71 (Chen et al., 2008)
and VSV/ΔG/GFP (Takada et al., 1997), a VSV that expresses green
fluorescent protein in place of the G gene. Influenza A/Udorn/M2S71
was complemented by expression ofM2 protein and VSV/ΔG/GFPwas
complemented by expression of G protein. 293 T cells were
transfected with cDNA expressing tetherin and M2 or tetherin and
G and 24 h later cells were infected with influenza A/Udorn/M2S71 or
VSV/ΔG/GFP, respectively. For influenza virus, titers were measured
by plaque assay on M2CK cells (Chen et al., 2007) and for VSV titers
were determined by flow cytometry (Watanabe and Lamb, 2010). It
was found that tetherin expression reduced VSV yield by 6-fold
a) Constitutive expression of HA-tagged Hu tetherin in MDCK cells. Cells were lysed in
ith anti-HA Ab to detect the HA-tagged tetherin. A bar indicates the heterogeneously
irus (A/Udorn/72 and A/WSN/33) grown in MDCK or MDCK/tetherin cells. (c) Budding
beled with 35[S] Trans-label and influenza virus-specific polypeptides in both cells and
ypeptides released into media as virus. Numbers below bands indicate quantification of
fluenza virus and VSV budding using a trans-complementation assay. 293 T cells were

on. 293 T cells were transfected with 0.5 μg plasmid DNA pCAGGS-M2 or pCAGGS-VSV G
/M2S71 or VSV/ΔG/GFP/VSV G at MOI=3.3. Culture supernatant was harvested at 24 h
elow. The infectious titer of influenza virus A/Udorn/M2S71 was determined by plaque
ous unit of VSV/ΔG/GFP, BHK cells were infected with serially diluted virus. Cells were
cton Dickinson, Franklin Lakes, NJ). VSV infectious units were calculated based on the



Fig. 2. Electron micrographs of influenza virus in 293 T cells with or without tetherin
expression at 12 h p.i. (A) and (C) Thin sections of negative stained control infected 293
T cells. (A and B) Longitudinal section (C and D) tangential section. (B) and (D) 293 T
cells infected with influenza virus (A/Udorn/72) and expressing human tetherin. 293 T
cells were transfected with human tetherin and 24 h post-transfection were infected
with influenza virus (A/Udorn/72). Cells were processed for electron microscopy at
12 h p.i. as described previously (Leser and Lamb, 2005).

Fig. 3. Tetherin expression restricts the budding of influenza VLPs. (a) Dose-dependent restr
constant amount of plasmid DNAs for VLP production and increasing amounts of human teth
and VLPs collected by ultracentrifugation. Upper panel: immunoblot of influenza virus-specifi
to detect HA-tagged human tetherin. (b) Co-expression of Vpu overcomes tetherin restriction
and tetherin and Vpu plasmid cotransfected as indicated. Upper and lower panels in (b) ar
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(p=0002), whereas influenza virus titers were not affected
(p=0.76).

To examine the morphology of budding influenza virus we chose
to use 293 T cells because N90% transfection efficiency could be
achieved in these cells as determined by flow cytometry after
transfection of a plasmid expressing green fluorescent protein. At
24 h post-transfection with and without tetherin, 293 T cells were
infected with influenza A/Udorn/72 virus and at 12 h p.i. the cells
were processed for thin sectioning and electron microscopy. Over 50
cells were examined and they all appeared indistinguishable in that in
both longitudinal and horizontal sections tetherin expression did not
alter budding morphology (Fig. 2).

Tetherin expression restricts the budding of influenza virus VLPs

It has been found for Ebola virus that tetherin expression does not
restrict virus budding but it does restrict the release of VLPs from cells
(Radoshitzky et al., 2010). Previously we have shown that influenza
virus forms VLPs on expression of PB1, PB2, PA, NP, HA, NA, M1 and
M2 (Chen et al., 2007). We tested the effect of co-expression of
varying amounts of tetherin with the VLP complete plasmid set. It was
found that increasing levels of tetherin expression decreased the yield
of released VLPs (Fig. 3a). However, VLPs were not found at the
plasma membrane with sufficient abundance to make a meaningful
examination of budding with and without tetherin expression by EM
analysis.

Tetherin expression at the cell surface is antagonized by
expression of HIV Vpu, most likely due to Vpu causing internalization
and degradation of tetherin (Iwabu et al., 2009; Neil et al., 2008; Van
Damme et al., 2008). To test if influenza VLP budding restriction was
sensitive to expression of Vpu, VLPs were formed in the presence of
tetherin, with or without Vpu expression. As shown in Fig. 3b, Vpu
antagonizes tetherin restriction of budding and VLP release was
restored to levels similar to that found without tetherin expression.
iction of VLP budding by human tetherin expression. 293 T cells were transfected with a
erin expression vector. The culture supernatant was harvested at 48 h post-transfection
c polypeptides using anti-Udorn sera. Bottom panel: immunoblot using HA 12CA5MAb
of VLP budding. 293 T cells were transfected with the plasmid DNAs for VLP production,
e as in (a).

image of Fig.�2
image of Fig.�3


Fig. 4. Canine tetherin does not restrict influenza VLP production in MDCK cells. A full-length cDNA clone to canine tetherin was obtained by RT-PCR of RNA from MDCK cells and
engineered to have a HA-tag. (a) The effect of expression of canine (Ca) tetherin and human (Hu) tetherin on VLP formation. Upper panel: Immunoblot of cell and VLP polypeptides.
Lower panel: Immunoblot of HA-tagged Hu and Ca tetherin. (b) The effect of increasing amounts of Ca tetherin expression on VLP formation. Upper and lower panels as in (a).
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Canine tetherin does not restrict influenza virus VLP release

Influenza virus replicates to high titer in MDCK cells (Choppin,
1969). Thus, we were interested in determining if over-expression of
canine tetherin restricted influenza VLP release. Canine BST-2
(tetherin) (GenBank XM_860510.1) has the same three domains as
human tetherin, the three cysteine residues involved in disulfide bond
formation and two sites for N-linked glycosylation are conserved.
Overall, there is 40% amino acid identity. A cDNA expressing canine
tetherin was isolated using MDCK cell RNA and appropriate
oligonucleotide primers. Whereas expression of human tetherin
restricts influenza virus VLP release, expression of canine tetherin
did not restrict VLP release (Fig. 4a). Increasing levels of canine
expression had no effect on the amount of VLP release (Fig. 4b).

Human tetherin ectodomain is important for restriction of influenza VLPs

To examine the region of the human tetherin molecule important
for influenza VLP restriction we expressed human/canine chimeric
tetherin molecules between the N-terminal cytoplasmic region (cyt),
the transmembrane domain (TM) and the ectodomain (ecto) (Fig. 5a).
The four chimeric molecules were all expressed and formed disulfide-
linked dimers (Fig. 5b). It was found that canine tetherin expression
restricted the release of HIV VLPs (Fig. 5c) and that all the chimeric
molecules restricted HIV VLP release. In contrast only chimeric
tetherin molecules that contained the human tetherin ectodomain
were capable of restricting influenza VLP release (Fig. 5d). However, it
was noted that the chimeric molecules gave intermediate results
between those observed for canine or human tetherin (Fig. 5e).

Human tetherin is incorporated into VLPs but not influenza virions

To investigate the reason influenza VLPs are restricted by tetherin
whereas influenza virions are not being restricted by tetherin, we
examined the possibility that tetherin was incorporated into VLPs but
not into virions. To prevent tetherin linking one VLP to another we
used a construct originally designed for studies with HIV-1 in which
the C-terminus of human tetherin lacks 20 amino acids to avoid
addition of a C-terminal GPI anchor (ΔGPI tetherin) (Perez-Caballero
et al., 2009). 293 T cells were either transfected with the VLP plasmid
set and ΔGPI tetherin or were transfected with ΔGPI tetherin and 24 h
later infected with influenza A/Udorn/72 as described above. Released
VLPs and influenza virions were analyzed by immunoblotting forΔGPI
tetherin incorporation. As shown in Fig. 6 ΔGPI tetherin was
expressed in cells (Fig. 6a) and showed three–four species (Perez-
Caballero et al., 2009). When VLPs and virions were examined it was
found that ΔGPI tetherin was incorporated into VLPs but in contrast
ΔGPI tetherin was barely detectable in virions.

Discussion

Since it was first recognized that tetherin restricted the release of
HIV-1 from cells (Neil et al., 2008; Van Damme et al., 2008) it has been
discovered that the release of several enveloped viruses is restricted
by tetherin, including HIV-2, SIV, Lassa fever virus, KSHV and VLPs of
Ebola virus (Jia et al., 2009; Jouvenet et al., 2009; Kaletsky et al., 2009;
Radoshitzky et al., 2010; Sakuma et al., 2009; Weidner et al., 2010). A
common feature of many enveloped viruses that are restricted by
tetherin is that they bud from lipid rafts (Bavari et al., 2002;
Lindwasser and Resh, 2001; Nguyen and Hildreth, 2000; Ono and
Freed, 2001). This observation is consistent with the fact that tetherin
is localized to lipid raft domains in the plasma membrane. As
influenza virus is known to use lipid rafts as a scaffold for budding
(Scheiffele et al., 1999; Takeda et al., 2003) we investigated the effect
of over-expression of tetherin on influenza virus release from cells.
Data from both cells constitutively expressing tetherin and from cells
transiently expressing tetherin indicated that tetherin does not
restrict influenza virus release. However, in contrast when influenza
VLPs were generated by expressing PB1, PB2, PA, NP, M1, NEP (NS2),
M2, HA and NA i.e. all of the virus encoded proteins except NS1, VLP
release was restricted by tetherin expression. These data are related to
the finding that release of NA-containing vesicles (VLPs that budded
due to NA expression) were restricted in budding by the expression of
tetherin (Yondola et al., 2011). Analysis of the protein composition of

image of Fig.�4


Fig. 5. The inhibition of VLP release is specified by the tetherin ectodomain. (a) Schematic diagram for Hu and Ca chimeric tetherins. Tetherin was divided into three parts (Cyt:
cytoplasmic domain, TM: transmembrane domain, and ecto: ectodomain). Hu and Ca tetherin components are represented as open and shaded boxes, respectively. The chimeric
molecules are designated H or C for the origin of the domain, in order Cyt, TM and ecto. (b) Dimer formation of chimeric tetherins. 293 T cells transfected with expression plasmids for
tetherin chimeras were lysed into SDS-PAGE sample buffer with or without DTT. The expressed protein was visualized by immunoblotting with anti-FLAG Ab. Nomenclature of chimeras
follows Hu or Ca origin of Cyt, TM or ecto. (c) Inhibition for HIV-VLP release by both human and canine tetherin. HIV-VLP was produced in 293 T cells as described (Schmitt et al., 2005) in
the presence of Ca or Hu tetherin or the Ca/Hu chimeric molecules. Released HIV-VLPs were harvested by ultracentrifugation through 30% sucrose cushion (upper panel). Released and
intracellular HIV-VLPs were detected by immunoblotting using p24 antibody. (d and e) Analysis of the region of tetherin conferring restriction of influenza VLP release. 293 T cells were
transfected with plasmids for VLP formation and Ca tetherin, Hu tetherin or the Ca/Hu chimeric tetherin constructs. VLP release was examined as described in the legend to Fig. 2.

Fig. 6. Influenza virus excludes human tetherin from virions. (a) The expression and dimer
formation of human tetherin mutant lacking addition of GPI (ΔGPI). The sample was
prepared in the presence or absence of DTT and tetherin expression was detected by
immunoblottingwith anti-FLAG antibody. (b) Tetherin incorporation into released VLPs and
influenza virions. VLP and virus released from ΔGPI tetherin expressing 293 T cells were
harvested after 35[S] radio labeling. Virus proteins and tetherinwere immunoprecipitated by
anti-Udorn and anti-FLAG antibodies, respectively, and polypeptides analyzed by SDS-PAGE.
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influenza virus particles and VLPs derived from cells expressing ΔGPI
tetherin provided further evidence for the difference between
influenza virus and VLPs. When ΔGPI tetherin, that can only be
anchored in cells via its TM domain, was expressed it was
incorporated into VLPs but not incorporated into influenza virus
particles. This provides a simple explanation for tetherin restricting
VLP release but not release of virions.

Tetherin restriction of VLPs but not virions is very similar to the
report that tetherin restricts the release of Ebola VLPs but not Ebola
virus (Radoshitzky et al., 2010). These data suggest that both
influenza virus and Ebola virus infections antagonize either tetherin
function or tetherin expression. For influenza virus the big difference
between VLP and virus production is the lack of expression of NS1 in
the VLP system. NS1 down-regulates the host innate immune system
by impairing interferon (INF) production and NS1 interferes with the
establishment of the INF-induced anti-viral state (reviewed in
Ehrhardt et al., 2010; Hale et al., 2008). As tetherin expression is
induced by INF treatment (Kawai et al., 2008) it is likely that NS1
expression down-regulates tetherin expression. However, it is not
simple to test this hypothesis in cells expressing the DNA-dependent
RNA polymerase II transcripts for VLP formation as another function of

image of Fig.�5
image of Fig.�6
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NS1 is to inhibit polyadenylation of host mRNAs, which in turn affects
transport of mRNAs out of the nucleus (Nemeroff et al., 1998).
However, the activities of NS1 on tetherin expression cannot be the
only processes involved in giving rise to the difference between VLP
release and influenza virus particle release, becauseΔGPI tetherin was
expressed in influenza virus-infected cells but was poorly incorpo-
rated into virions. We speculate that the tetherin TM domain is forced
out of the budding patch, the budozone, by the high levels of
expression of the HA and NA TM domains.

In our study a separate finding of some interest is that canine
tetherin did not restrict influenza VLP release. Analysis using the
canine/human chimeric tetherin molecules, indicates that the main
determinant in restriction of influenza VLPs is the human ectodomain.
For HIV-1 analysis of chimeric tetherin constructed from structurally
related elements from very different proteins led to the finding that
the overall topology/structural elements of tetherin were the critical
determinants for HIV-1 restriction (Perez-Caballero et al., 2009).
Although canine and human tetherin show 40% sequence identity, it
may be that specific ectodomain sequence differences are important
for influenza VLP release restriction. It has also been observed that
whereas dimerization of tetherin is required for HIV restriction
(Perez-Caballero et al., 2009), it is not important for tetherin
restriction of Lassa fever virus and Marburg VLPs. Thus, there may
be differences in the precise mechanism by which tetherin interacts
with various VLPs.

Although tetherin may not be an important host restriction factor
for influenza virus, other host restriction factors such as viperin
(Wang et al., 2007), IFITM III (Brass et al., 2009), and ISG15 (Zhao et
al., 2010) do restrict influenza virus. These findings combined with
the discovery of other host restriction factors against other viruses,
such as APOBEC3 (Sheehy et al., 2003) and TRIM5α (Stremlau et al.,
2004) for HIV-1, suggest that some viruses may encounter several
host restriction factors.

Materials and methods

Cells, viruses, and antibodies

293 T (human embryonic kidney) andMDCK (Madin-Darby canine
kidney) cells weremaintained in Dulbecco's modified Eagle's medium
(DMEM) supplemented with 10% fetal bovine serum (FBS). MDCK
cells stably expressing influenza virus M2 protein (M2CK cells) (Chen
et al., 2008) were maintained in DMEM supplemented with 10% FBS,
200 μg/ml Geneticin (G418; InvivoGen, San Diego, CA), and 2 mM
amantadine (Sigma-Aldrich [Sigma], St. Louis, MO).

To establish MDCK cells constitutively expressing human tetherin,
pCR/HA-tetherin transfectedMDCK cells were selectedwith Geneticin
(G418) (2 mg/ml) and cloned by limiting dilution method. Resistant
clones were examined for tetherin expression by immunoblotting and
clones expressing the highest levels of tetherin were selected. The
resulting MDCK-tetherin cells were maintained in DMEM supple-
mented with 10% FBS and G418 (200 μg/ml).

Influenza virus A/Udorn/72 and A/WSN/33 were amplified in the
allantoic cavity of embryonated chicken eggs and infectious titers
determined by plaque assays on MDCK cells. Recombinant influenza
virus A/Udorn/72 possessing an M2 ion channel protein lacking 27 C-
terminal amino acid residues (Udorn/M2S71) was described previ-
ously and propagated in M2CK cells (Chen et al., 2008). VSV
possessing the GFP gene in place of its G protein gene (VSV/ΔG/
GFP) was a kind gift from Dr. J. Rose (Yale University) and was
propagated in BHK-21 cells transiently-expressing VSV-G protein by
transfection of pCAGGS-VSVG.

Goat serum raised to purified influenza A/Udorn/72 (goat anti-Ud)
was used to detect HA, NP, and M1 proteins in immunoblotting and
immunoprecipitation. Mouse anti-Flag monoclonal antibody (Flag-
M2, Sigma) and anti-HA monoclonal antibody (12CA5) were used to
detect Flag-tagged or HA-tagged tetherin proteins, respectively, in
both immunoblotting and immunoprecipitation.

Plasmids

A full-length human tetherin cDNA was amplified with PCR by
using pCR/HA-tetherin vector (a gift from Dr. P. Bieniasz) as a
template. An open reading frame encoding canine tetherin was
amplified by RT-PCR using whole RNA extract from MDCK cells as a
template and specific primers using the reported canine BST-2 protein
sequence (GenBank XM_860510). Chimeric tetherins were con-
structed by using 4-primer PCR. All fragments were designed to
carry a Flag tag sequence at the 5′-terminus and DNAs were cloned
into the pCAGGS expression vector. The nucleotide sequences of all
constructs were confirmed using an Avant-3100 DNA Sequencer
(Applied Biosystems). Expression plasmids used for influenza VLP
production were described previously (Chen et al., 2008).

VLP production

Influenza VLP, were produced as described previously (Chen et al.,
2008) with slight modifications. Briefly, 293 T cells were split into 6-
well plates at a density of 0.3×106/well on the day before
transfection. The plasmid set for VLP production was transfected
with or without tetherin expression plasmids using Lipofectamine
and PLUS reagent (Invitrogen, Carlsbad, CA). Transfection mixtures
were replaced with DMEM supplemented with 10% FBS, nonessential
amino acids, and sodium pyruvate at 4 h post-transfection and
incubated for a further 48 h. The supernatant was collected and
concentrated by ultracentrifugation (Beckman, Ti70.1 rotor,
45,000 rpm, 2 h), lysed with protein loading buffer (PLB) and
subjected to SDS-PAGE followed by immunoblotting with goat anti-
Udorn to detect the released VLP proteins. The cells were lysed into
PLB and examined for protein expression by immunoblotting. For the
quantitative VLP budding assay, the transfected cells were starved at
24 h post-transfection in DMEM deficient in methionine and cysteine.
The cells were labeled with 50 μCi/well of 35S-Trans label and
incubated for a further 20 h. The released VLPs were collected by
ultracentrifugation and lysed with RIPA buffer. Cells were also lysed
with RIPA buffer and the debris was removed by centrifugation. Each
fraction was subjected to immuneprecipitation using goat anti-Udorn
and protein G Sepharose to precipitate viral proteins. Proteins were
analyzed by SDS-PAGE on a 15% polyacrylamide gel. Radiolabeled
proteins were detected by using a Fuji BioImager FLA-5100 and
quantified by MultiGauge v3.0 software (Fuji Medical Systems,
Stanford, CT).

Trans-complementation and virus titration

To avoid the problems associated with being unable to transfect
all the cells in a culture but being able to infect all of the cells we
used cells infected with a replication defective virus and trans-
complemented the defective gene by transfection of the cDNA
encoding the wt protein. This approach was established for herpes
virus to limit virus replication only to the cells expressing the proteins
of interest after plasmid transfection (Pawliczek and Crump, 2009).
Replication incompetent influenza Udorn/M2S71 or VSV/ΔG/GFP
were used in combination with the co-transfection of pCAGGS-M2
or pCAGGS-VSVG, respectively. In brief, 293 T cells were split onto
gelatin-coated 6-well plates at a density of 0.3×106/well on the day
before transfection. Cells were transfected with plasmid DNA and
after 24 h incubation, cells were infected with Udorn/M2S71 or VSV/
ΔG/GFP at MOI=0.33 or 3.3, respectively. Culture supernatant was
harvested at 24 h (Udorn/M2S71) or 7 h (VSV/DG) post infection (p.i.)
and the infectious titer of the complemented virus was determined as
described below. The infectious titer of influenza Udorn/M2S71 was
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determined by plaque assay using M2CK cells as described previously
(Chen et al., 2007). To determine the infectious unit of VSV/ΔG/GFP,
BHK cells were infected with serially diluted virus. Cells were
harvested at 24 h p.i. and GFP (+) cells were detected using a
FACSCalliber flow cytometer (Becton Dickinson, Franklin Lakes, NJ).
Infectious units were calculated based on the percentage of GFP (+)
cells in the population.

Tetherin incorporation assay

The incorporation efficiency of tetherin into the released particle
was obtained by comparing the intracellular to released protein ratio
for both tetherin and viral proteins. Briefly, 293 T cells were split into
6 cm dishes at a density of 1×106/dish the day before transfection.
The cells were transfected with pCAGGS/Hu tetherinΔGPI alone or in
combination with the plasmid set for VLP production. The cells
transfected with pCAGGS/Hu tetherinΔGPI alone were infected with
wild type influenza A/Udorn/72 at a MOI=3 at the day after
transfection. The cells were labeled with 100 μCi of Promix at 6 h p.i.
(or 24 h post-transfection for VLP) and incubated for 20 h. Viral
proteins and tetherin were immunoprecipitated from both the
released particle fraction and the cellular fraction as described
above. The anti-Flag M2 monoclonal antibody was used for immuno-
precipitation of the flag-tagged tetherin.
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