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1. INTRODUCTION

This paper is a continuation of paper [12] and contains further results about
complex strictly convex spaces.

The notion of complex strictly convex space is considered in the work of
Thorp and Whitley [11] in which it is proved that L'(£2, B, P) is a complex
strictly convex space. In this paper we consider also the problem of complex
smoothness which was posed to the author by Professor GG. Kothe and also the
problem of isomorphism of a Banach space with a complex strictly convex space.

2. DEFINITIONS. SOME SUFFICIENT (CONDITIONS FOR A POINT TO BE
A ComPLEX EXTREME PoinTt

Let X be a complex Banach space and Sy = {x, xe X, | x!l =: 1}.

DerixrTion 2.1. The point # € .Sy 1s called a complex cxtreme point if
whenever there exists € X such that |, # sz 1 <71, s 7 1, then necessarily
2 = 0. X is called complex strictly convex if all points in Sy are complex extreme

points.

DerintrioN 2.2. A point u € Sy is called a point of local uniform convexity

(in short, Lu.c.) if

.1.’(x'n + .)"n) S U,
where x, € Sy and y, € S, , then x,, —u, y,, — u.

ProrosiTION 2.3. Every Lu.c. is a complex extreme point.

Proof. 'T'he proof is very simple and is as follows: Supposc that u is not a
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complex extreme point and thus we find an element zve X such that
|+ sz! <1 foralls,!s| << 1. We take s, —> 1 and define

x, =1u -+ 5,7, Yo = U — §,7,

and since # is an lu.c. we obtain that x, > and y,-»>u. But x,->u - ¢
and thus we obtain ¢ = 0. This contradiction proves the proposition.

DreFiniTION 2.4. A point ue Sy is called a point of weakly local uniform
convexity if

Hx, —v)—u (— denotes the weak convergence),
where x, € Sy and v, € Sy, then x, > u and y,, — u.

Prorosriion 2.5. Any point of weak local uniform convexity is a complex
extreme point.

Proof. Since it does not differ cssentially from the above proof we omit it.

We present now a sufficient condition for a Banach space to be complex
strictly convex. Our condition is related to a condition used for real Banach
spaces in a recent announcement of Holub [4].

DerniTION 2.6.  For every normalized pair of linearly independent elements
of X, {x,, x,}, let

[, , xs] be the set of all y == @;x, -|- a,x, with Im a; =1m a,;

C[x, , x,] be the set of all ¥y = a;x; + a,x, with Rea, - Rea, = 0.

Tureoren 2.7, If X is a complex Banach space and for every normalized pair
Xy, Xy in X the points in [x, , x,] equidistant from x, and x, are in C[x, , x,], then
X is a complex strictly convex space.

Proof. Suppose that X is not a complex strictly convex space and thus we
find a point x in Sy such that for some y € X and alls, | s <1, |x-Fsyl| < 1.

Let s, and s, be two complex numbers such that (1) | 2s, — s, | <1 and
2) Isit << 1 fori=1,2.

The clements x; —- x ~ &y and x, = x — s, ¥ have the property || x,!! =
L %23l = 1. The point 2 = (s; — 5,) ¥ is equidistant from x, and x, . Indeed,

X — =X T 5V — (5 — %)Y =%+ 5,

Xp =3 =X+ 5y — (5 — )y =x-F(255—5)y

and it follows that these are elements of Sy . Since (s, — 5,) y == %; — %, is not
in C[x, , x,] we have a contradiction.
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3. RENORMING X sucH THAT X AND X* ARE COMPLEX STRICTLY CONVEX SPACES

As is well known, if X is a real Banach space such that there exist two equi-
valent norms, |, i and ||, ||, such that (X, [, [|,) is a strictly convex space and
(X*, | ,11F) is a strictly convex space where ||, | ¥ means the norm induced by
"I, |y on the dual space, then there exists 2 new norm equivalent to the original
one such that (X, |',,) possesses both of these properties.

In what follows we prove that the same result holds for the case of complex
strict convexity.

TueorEM 3.1. Let X be a complex Banach space with an equivalent complex
strictly convex norm (i.e., the space with this norm is complex strictly convex), and
another norm whose dual norm on X* is a complex strictly convex norm. Then there
exists a new equivalent norm on X which possesses both of these properties.

Proof. The proof is a consequence of a remark concerning Asplund’s
averaging norms: If f,, g, are two functions, homogeneous of the second

degree (i.e., fo(tx) = t*f (x), goltgx) == t2gy(x) forallee X and t > 0), g, =" f, ~*
(1 *+¢)g,, then the sequences

{fn}Y {gn}
where
fa(®) = H(faa(®) 1 goa(®),  galx) = if;f{%—(fn—l(x "¥) - &aalx — N
define a function % such that

(11— 27CYh < g < h <fr < (11 2 7C) b,
8n <fn < (1/] "}' 4_nC)gﬂ .

Also, it is a consequence of these relations that for all # (see [3, p. 111])

27 o) fol 9) — 2fol(x = )/2) — C2(fo(x) = Fo(x))]

. ™
< h(x) + B(y) — 2h((x -+ ¥)i2).
Suppose now that f, or g, has the property that if for some y € X,
sup(fo(x -+ &) + folx — £9)) = 2fo(x), **)

<1

then necessarily ¥ = 0; then we show that % shares this property.
Indeed, let & = x + £y, § = x — £y in (*). Then we have

2 " folx -+ &) F folx — £9) — 2fo(x) — C2"(filx + &) + folx — )] <O,
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and this implies that

But this last relation gives that y = 0. This proves our assertion.

We remark that the same conclusion is valid if we suppose that g, has pro-
perty (**).

We remark that the function

is a subharmonic function whenever G is a convex function and positive homo-
geneous of the second degree. Applying this remark to the above situation we
conclude that

Jolx + &) = folx — &) = fo(%).

Now if fy(x) - }| xl}, go(x) =} |«x!% then we obtain using g*, the con-
jugate of f,, the functions & and A* which are both complex strictly convex on
X and X*, respectively. Then

x — [2h(x)]'/2

is a norm which satisfies the theorem.

4. COoMPLEX SMOOTHNESS
Let X be a complex Banach space and X* its dual.

DeriNiTioN 4.1. X is said to be complex smooth at x if whenever fe X*,
V1= 1and " f(x) — €g(x)| =21 for all £, }£| <1 then necessarily g = 0.

The relation between complex smoothness and complex strict convexity is
given in

TueOREM 4.2. If X* is a complex smooth space then il is complex strictly
conzex.

Proof. Suppose that X is not complex strictly convex, thus we find x and y
such that

() "x &' —=1foral g €<,

(2 v /0.
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If g is an arbitrary element of S(X*) then, if F, denotes the clement x as
element of X**, we have

(1) 'Fig)+ EF (o) < 1,
(2) | F,+ ¢F, ' = 1.

Since y + 0 we have that for some g e X*, F)(g) =- | and this implies that
F, — 0. This contradiction proves the theorem.

We do not know if the following assertion is true: If X* is a complex strictly
convex space then X is complex smooth. If the answer is ““ves’’ then the notions
of complex smooth and complex strictly convex spaces are in some scnse dual
notions.

5. A NECESSARY AND SUFFICIENT CONDITION FOR A BANACH Sprack
10 HAvE AN EqQuivALENT CoMPLEX STRICTLY CONVEX NORM

If I 1s a complex Banach space we say that £ has a complex strictly convex
norm |, "if {E, ], "} is a complex strictly convex space.

As is well known for the strict convexity there exists a very general result
about possible renormings of £ such that with the new norm the space is
strictly convex. We give now an extension of this result for the case of complex
strict convexity. We mention that our proof depends on the theory of subhar-
monic functions.

THEOREM 5.1. ] complex Banach space I has an equivalence complex strictly
convex norm iff there exists a complex strictly convex space I and a one-to-one
lineat continuous operator T2 E > F.

Proof. 1t is obvious that the condition is necessary, since in this case we can
take 7T to be the identity and F is, of course, E with the corresponding complex
strictly convex norm.

We prove that the condition is also sufficient. For this we remark that the
functions,

Mo X-bBuvy, %)
B T )

are for each x and y fixed, subharmonic functions. We define the new norm on E

by the relation,
x> {10 x| - i Ta-Rhl

and note that it is equivalent with the original norm.
Suppose that x ¢ E has the norm [ in this new norm and thus,

xr L TR o2 (**)
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If x is not a complex extreme point, we find y € E such that the norm of the
elements x + uy, for | | < 1, is equal to one. Thus for p as above we have

ey b T )2 (**)

Since the functions in (*) are subharmonic and satisfy conditions (**) and
(**=) for p, |p| < 1, their values are constant.
Thus we have
le'{_“‘y|:K1’
| T+ p) = Ks

The element Tx is a complex extreme point of the ball of radius equal to K,
and this gives that Ty is the null element. Since T is onc to one, it follows that y
is the null clement, Thus x is a complex extreme point with respect to this new

norm.

6. VERY CoMPLEX STRICTLY CONVEX SPACES

In this section we mention a possibly interesting class of complex Banach
spaces suggested by some recent results concerning the higher duals of a Banach

space [10].

DrrFiniTION 6.]. A complex Banach space E is said to be very complex
strictly convex if E as a subspace of E” has the property that every element
x e E is a complex extreme poit of the unit ball of E”.

It is easy to see that if E is very complex strictly convex then it is also complex
strictly convex. Also every reflexive complex strictly convex space is very
complex strictly convex.

An interesting problem appears in connection with Kéthe’s question trans-
lated to this setting: What is the connection between E and quotient spaces with
respect to the notion considered in Definition 6.1 ? We intend to give, in a future
paper, results in this direction as well as some related results concerning Kéthe’s
question with respect to the rotundity and smoothness.

7. AN ExaMpPLE OF A COMPLEX NORMED SPACE NOT ISOMORPHIC
TO CoOMPLEX STRICTLY CONVEX SPACE

In [2] Day gives the first example of a normed space not isomorphic to
strictly convex or smooth spaces. In what follows we show that the example of
Day can be used to give an example of a normed space (complex normed space)
which is not isomorphic to a complex strictly convex space.
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Let I be any uncountable index set and m(I) be the space of all bounded
complex-valued functions on I with the norm,

Cx - lub | G)]

and my(I) be the subspace of all those x in m(I) which vanish except on a countable
set.

T1eorReM 7.1 The space my(I) is not isomorphic to any complex strictly
congzex space.

Proof. Let U be the unit sphere in my(I) and |, | the new norm equivalent
to the usual norm of my(I). We can suppose without loss of generality that for
all x e my(I)

bx

x| s kil

for some % .- 1. The facet of L' determined by x is the set of all ¥ € U such that
2(E) - = x(2) at every point where x(7) == 0.
If we define

M, =sup{ v ,ycF,,the facet determined by x},
and

my =inf{j y 1, yeF,},
then in Day’s paper it is proved that

22xl

M, +m,

and also a sequence {x,} is constructed. With this sequence an element of my(1)
is defined: If there is an # such that x,(i) = 0 let x(7) - x,(2); if all x,(Z) -~ 0,
let x(Z) == 0. One the sphere of radius ' x ' we can find elements y such that

x - py L | since the construction of x involves onlv a countable set, and
this proves the theorem.

8. CompLex PoLyHEDRAL BaNacH Spaces

We consider now a special class of Banach spaces connected with the notion
of complex extreme points and with complex strictly convex spaces. For any
complex Banach space X, Ext.(K) denotes the set of all complex extreme points
of the set K.

DerFINITION 8.1. A complex Banach space X is said to be complex poly-
hedral iff for every finitc-dimensional subspace E of X, S(E) has only finitely
many complex extreme points.
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We give now some examples,

ExampLE 8.2. Let ¢, be the space of all sequences of complex numbers
converging to zero. We prove that any subspace of ¢, with the property that its
unit ball has a complex extreme point is finite-dimensional.

First we prove that for any complex extreme point p of S(E)

I={]x| =1}, p=(x),

and x € ¢y N E with x = 0 for i € I implies x = 0.
Indeed for any complex number £, | £] << 1 we have

1p+éxll<1

since for each i

lp+éxl<1 ™

because we can suppose, without loss of generality, that {| x|l < 1.

"The relation (*) is clear for any e and also for i ¢ I. But p is a complex
extreme point and this gives that x = 0 and thus our assertion is proved.

Since the unit ball of E has a complex extreme point p, we define the set I as
above. For each y € E we define the map

T:E—C! (C is the field of complex numbers),

by the relation
Ty = (y/I)e CL

Obviously T is a linear mapping into the finite-dimensional complex space
C.

From the above assertion about complex extreme points it follows, since the
kernel of T is zero, that E is finite dimensional.

We prove now that in fact E is a complex polyhedral space.

Indeed, since E is finite dimensional we find a basis, say {e, ,..., ¢,}, and put
V = convle;, —e;], where

fe;, —e]={x,x=—r e+ (1 —r)e;,0 <7 <1},

Clearly, V' is a convex body in E, 0 is in the interior of ¥V, and of course S,
the unit ball of E is compact. We thus find an integer m such that S is in mV.
Thus if eV and v = (v¥) we have | v' | < 1/m and similarly for u = (%)
since from the property of S(z we find an integer N such that | ¢/ | << 1/m for
l<<i<randallj > N.

In this case for each complex extreme point p we must have a subset 4, ==
{é, p; = 1} and a subset B, = {j, p; =i} and similarly for the sets —1 and —,
denoted by C, and D, , respectively.

400/71]2-19
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If A,- A4, ,.,0,=.D, it follows by an application of the property
proved at the beginning of the example that p = p, . This proves our assertion.

We give now a characterization of finite-dimensional spaces which are com-
plex polyhedral.

THeoreM 8.3. .4 necessary and sufficient condition for a finite-dimensional
space to be complex polyhedral is that all 2-dimensional subspaces will be complex
polyhedral.

Proof. 'The condition is obviously necessary. Suppose that it is satisfied.
We prove the assertion by induction. Argument:

Suppose that the assertion is true for all 7 < # and we prove it for . - |.
Let F be a subspace such that dim F -- n |- 1. If {¢;} is the set of all complex
extreme points then it is clear that the number of linearly independent complex
extreme points is less than or equal to n 4 1. We can decompose the set {e;}
in two subsets, each of them containing a number of linearly independent
points which is less than or equal to #. In this case it follows that the set of all
complex extreme points is finite, and the theorem is proved.

Remark 8.4. We think that the following assertion is true: A Banach space is
complex polyhedral if there does not exist a sequence {x,} in the Banach space
such that for everv choice of signs

ix'n :I: X . <, | Xy !, _i_ i! Xy ! - l, (*)
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