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In this paper, using the Extended Trial Equation (ETEM), we get new traveling wave
solutions of the Generalized Benjamin, the Generalized Burger-Kdv Equations (GBE, GBKE).
The obtained solutions not only constitute a novel analytical viewpoint in nonlinear complex phe-
nomena, but they also form a new stand alone basis from which physical applications in this arena

tion; can be comprehended further, and moreover investigated. Furthermore, to concretely enrich this

Generalized Burger-Kdv
Equation

research production, we provide illustrative, Mathematica Release 7 based, 3D graphics of the got-
ten solutions, with well chosen, yet structure revealing parameters.

© 2013 Production and hosting by Elsevier B.V. on behalf of University of Bahrain.

1. Introduction

Nonlinear partial differential equations are widely used to de-
scribe complex phenomena in many fields of applied sciences,
such as chemistry, physics, and the engineering disciplines. Over
the last few decades, seeking new traveling wave solutions of
nonlinear partial differential equations, became a mandatory
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task, to significantly comprehend and describe complex phe-
nomena. Well designed mathematical models accurately
describing studied phenomena, can only enhance the chances
of achieving analytical solutions, thereby yielding a better phys-
ical understanding of the phenomena. In the last decade, several
techniques, such as sumudu transform method (Belgacem, 2006,
2010; Belgacem and Hussain, 2007; Katatbeh and Belgacem,
2011; Chaurasia et al., 2012; Gupta et al., 2011; Bulut et al.,
2012), ansatz method, mapping method, three-wave method,
the adomian decomposition method, soliton perturbation the-
ory (Antonova and Biswas, 2009), Euler—Lagrange operator
(Karaetal.,2013) He’s variational principle (Girgis and Biswas,
2011) have been carried out for solving these differential equa-
tions (Mittal and Nigam, 2008; Achouri and Omrani, 2009) in
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terms of singular and soliton solutions (Razborova et al., 2013;
Song et al., 2013; Ahmed and Biswas, 2013; Biswas, 2012).

In 2005, Liu (2005, 2006, 2010) initiated a different ap-
proach, which is now recognized as the Trial Equation Meth-
od, as an alternative. Recently, Gurefe et al. (Pandir et al.,
2012, 2013a,b; Gurefe and Misirli, 2010; Gurefe et al., 2011,
2013) used the trial equation method and its extended version,
to obtain new exact solutions of some generalized evolution
equations. This was an important step towards the modelling
of nonlinear complex phenomena.

In this study, we aim to provide elliptic functions and Jaco-
bi elliptic functions solutions of the Generalized Benjamin
Equation (GBE), and Generalized Burger-Kdv Equation
(GBKE), as an application of the Extended Trial Equation
Method (ETEM).

In Section 2, of this paper, we give the description of the
ETEM, while in Section 3, pursuing suggestions and using
the setup in Taghizadeh et al. (2012), we show how to get some
exact solutions to the GBE,

Uy + a(upu,\')x + ﬁuxxx.\' = 07 (1)
and the GBKE (Zhang et al., 2002),
u + av’uy + buuy, + Sugy = 0, 2)

where a, b, [, 0 and p are arbitrary constants. In the dis-
cussion, we propose an even more generalized version of
ETEM, and we will label it GETEM, for future reference.

2. The Extended Trial Equation Method

In this part of the manuscript, the Extended Trial Equation
Method will be given. In order to apply this method to the
GBE, we consider the following steps.

Step 1. We consider the Generalized Benjamin Equations
(GBE), with dependent variable, u,

Py, thyyy Uy Uy Uy - . .) = 0, (3)
on which we apply the wave transformation, for 470,

u(x,t) =u(n), n=kx—27, 4)
to get a nonlinear ordinary differential equation,

N(u, o ;W' u",...) =0. (5)

Step 2. Then, we take the trial equation,

u= iriri, (6)
=0

where, we have the rational polynomial setup, in ®(I') and
w(I)

0
Zéiri P 0
= S+ LT+ T
Y ¢ N
L '
;./

()

Consequently, we get,

O (&S O ()
u = %(ZM,F > and () :%(%mf >7

(8)

and,

L, )Y - oMWY D) (. oy
u_<><>r;><%;m—>

29%(

J
+ % (Zozi(i - 1)rl-r"2>, 9)

Substituting the relations Egs. (7)-(9) into Eq. (5), yields poly-
nomial equation in T,

Q) = p,T° +++ p, T+ py = 0. (10)

According to the balance principle, we can then compute some
values of 0, ¢ and ¢.

Step 3. Letting the coefficients of Q(I") be all null, yields a
system of algebraic equations,

p;i=0, i=0,...,s. (11)
Solving the algebraic system, helps specify the values of
(:07 517"'7 é(} and 4’07 417"'7 é’n'

Step 4. Reducing Eq. (11) to the elementary integral form,
we get,

s = [ = [\ [gpr 12

Using a complete discrimination system for polynomial to
classify the roots of ®(T"), we solve Eq. (12), with the help of
Mathematica Release 7, and classify the exact solutions to
Eq. (5). In addition, we can write the exact traveling wave solu-
tions to Eq. (3), respectively.

3. Applications

In this section, we seek the exact solution of the GBE and
GKDE by using ETEM. Subsequently, we drew 3D surfaces
of the analytical solutions obtained by using ETEM.

Example 1. We consider the GBE, suggested in (Gurefe et al.,
2011), given in Eq. (1). Many researchers have tried to get the
approximate solutions of this equation by using a variety of
methods. Let us consider the travelling wave solutions of Eq.
(1), and we perform the transformation u(x,¢) = u(n), and
n = kx — At, where k and A are constants. Hence, integrating
this equation with respect to 1, and setting the integration
constant to zero, we get,

PIE(p+ 1) + akp™? + BEA(1 = p)(v)* + iip(1

+p)w”

=0. (13)
Substituting, Egs. (7)-(9) into Eq. (13), and using balance prin-
ciple yields,
0=¢e+0+2. (14)

When this resolution procedure is applied, we get the following
cases.

Case 1. If we take e =0, J =1, and 0 = 3, then, according
to Egs. (7)-(9), with, {;70. we get,
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y :%’ (15)
. 2

V= 71(61 + ZC;;; +3&T ) 7 (16)

(v')2 _ T%(fo +ET + 6T+ 53F3) . (17)

Go

Therefore, we have a system of algebraic equations from the
coefficients of polynomial of I'. After we substitute Egs.
(15)—(17) into Eq. (13), we get an algebraic equation system.
When we solve this system by using Mathematica Release 7,
we obtain the following relations;

-2
£ = _To(ézfo3T2 5171)7 G =&, &=26&,
1
T (252‘50 - flfl)
e (18)
3
C():ik ﬁ(p2+3p+2)(262fo—5111)7 (19)

6p*at}

i 6aty(&rto — &i11) ) (20)

\/k(P2 +3p +2)(& 1 — 2&,10)
Substituting these coefficients into Egs. (7) and (12), we have,

1

i(’? - 170) - B 3 (21)
VB+CT + DI + ET
where the coefficients, B, C, D and E are defined by,
A= B (p* 4 3p +2) (6111 — 2670)
2pa ’
B= ‘53(251‘51 - 52T0)7 C= 31’%‘5(2)517
D =13158, E=1(2&51 — &1). (22)
Integrating Eq. (21), we obtain the following equations ,
A
+(n—n) = — 23
(71 770) v — oy ) ( )
/ + / —
T —1ny) = ‘ _ 2 % , o >y, (24)
Vo — o VY =0 — Ju — %
24
(1 —1no) = o3 >0 > A, (25)
0(2 — O(]

where, m = arcsin gm 2 7"1‘21 n=2=2and F(m,n) is the ellip-
tic function.Furthermore, the Values oy, op and a3 are the

roots of the polynomial equation,

B+ CT +DI* + ET? = 0. (26)
Therefore, we find the solutions,
1/p
44>
u(, 1) = o +——2 | (27)
(kx — At —ny)

u(x,t) = |:OC1 + (0 — o) sec? ((’7—’10)2@)} W, (28)

_ Y va—rv _ 1/p
u(x, 1) = |og + (00 — oc;)sn2 (= +m)von = ’otz % ,
24 o] — 03

(29)
where, A, is then given by,

g = 6ato(&r0 — &411) . (30)
\/k(]72 +3p+2)(& 1 — 2867)

For simplicity, if we take 17, = 0, then the solutions, Egs. (27)-(29),

are reduced to the rational and single kink solution, respectively,

u(x, 1) = [a] + 44 (kx — ;uz)*z] " (31)

u(x, 1) = [on + (o — o) sec? (0.5(kx — 40) A~ v/ —ar)] ",

(32)
M(X, t) = [063 + (a2 - O(3)f(l’, s)]l/p’ (33)
where, we have, r=-3"2 s= =2 and flr,s) =

1w (r(kx — At), s).

Remark 1. The solutions Eqgs. (31)-(33) were obtained by
using the Extended Trial Equation Method for Eq. (1), have
been checked by Mathematica Release 7. To our knowledge,
the rational function solution and single kink solution that we
find in this paper, are new, and are not shown in the published
literature. Consequently, we believe these results are new
Jacobi-elliptic function solutions of Eq. (1).

Case 2. If we take e =0, 6 =2, and 0 = 4, then, according
to Egs. (7)-(9), we get the following,

v =10+ 1T 4 0,I, (34)
V= (11 + ) s r2al +23f3r2 - 4§4F3 + 21,
0
« éo+flr+fzz+f3r3+f4r47 (35)
) = (11 + &I) S+ &I+ oI+ 60 + 4,1 (36)

% ’
where {;70. Therefore, we have a system of algebraic equa-
tions from the coefficients of polynomial of I'. Solving the
algebraic equation system Egs. (34)—(36) by using Mathemati-
ca Release 7, yields the following relations,

£y = QPZCOT%
K2 )b
¢ _ aP%oﬂ
L RQ+3p )
& =— ap*lyt
PR+ 3p+ B
¢ _ ap2C011
YRR +3p+ )
apzéofz
o=,
27 (24 3p+ p*)B
PR a(t? — 47y12) (37)

2kt (P +3p+2)
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Substituting these coefficients into Egs. (34)—(36), we have,
B 1

)_/\/A+BF+CF2+DF3+EF4

B, C, D and E, are defined

£(n —n dr, (38)

where the coefficients, 4,
by,

_ ap*t?

T2+ 3p+p)pn
ap*{et

F(2+3p+p)pr’

_ ap’t

AP+ 3p+p)p

ap’t

2+ 3p+p*)p

2
PP - S (39)
2k°(2 4 3p+ p*)p
Integrating Eq. (38), we obtain the solutions to the Eq. (1), as
follows,

1

=) = . (40)
V=0
+(n — = , O > 0O, 41
(n —no) PR - 0(2‘ oy > o (41)
2
+(n—no) = F(m,n), o) >0 > 03
(o — o) (02 — 3)
> 0Oy, (42)

(v—0) (o) —tg) _ (o) (e —0y)
(vfxfm;,“j)), = <a;7;)<affa3) and F(m,n)

is elliptic function. Furthermore, o, oy, o3 and o4 are the
roots of the polynomial equation,

where, m = arcsin <

A+ BT + CT* + DI’ + ET* = 0. (43)
In consequence, we find the solutions,

B 1 1/p
u(x,t) = |og £ , 44

S ’10] 44
r 1/p
_ Oy — 0
ulx, 1) = _062 = -1+ e(ﬁl—dz)(ﬂ—ﬂo)] ’ (45)
) = [P S o) =) ) RS
—op + (o — otg)sm2(r, 8) + o4

where, we have,

_ 6(”0(6270 - 5171)
VK> +3p+2) (&1 — 2810 ’
(062 - 0‘3)(061 - 9(4)

§=——"—2_ and,
(o — o) (0t — o1a)

n="kx—72t, A

(1 — 1)/ (o — o3) (02 — o) .

2
For simplicity’s sake, if we take 5, = 0, solutions to Eqs. (44)—
(46) are reduced to rational and single kink solutions,
respectively;

r=

r 1 1/p
X, t) = +— 47
) = [ 2 ) (@7)
r 1/p
N oy — 0o
u(x,t) = _062 ii,l + o —0!3):| , (48)
u(ie, 1) = [—oogsr?(r, 8) + oyon (s (r,s) — 1) + og] "7 (49)
—oty + (o) — oug)sm2(r, 8) + oy

The graphs that follow illustrate the solutions in Egs. (47)—
(49), with well chosen parameters to reveal the salient struc-
tures of each. It is feasible that other choices would reveal
other views, and other features, and we invite the reader to
delve into this dual analytical experimental approach corrobo-
rating one another. Should there be any interesting discoveries
we hereby invite the interested readers to communicate and
collaborate with us, towards hopefully, an even cumulative
and better understanding of complex nonlinear phenomena.

Remark 2. The solutions to Egs. (47)-(49) obtained by using
the ETEM for Eq. (1), have been checked by Mathematica,
Release 7. To our knowledge, the rational function solution
and single kink solution that we find in this paper, are not
found in the published literature to date, and hence make for
new elliptic function solutions for Eq. (1).

Example 2. In this application of the ETEM, we take into con-
sideration the GBKE (Zhang et al., 2002). Let us consider the
travelling wave solutions of Eq. (2) and we perform the trans-
formation u(x,t) = u(n), and # = kx — At, where k and A are
constants. Then, integrating this equation with respect to n,
and setting the integration constant to zero, we get the follow-
ing equation,

ak 5 bk, OkK(1-p)

5](3
N2 "
—— 7—0.
» T +2p 1v+ s )+ al

— 4+

(50)

Substituting, Egs. (7)-(9), into Eq. (50) and using the balance
principle, yields for Eq. (50) 0 = ¢ 4+ 20 + 2. Applying this res-
olution procedure, we design the following cases.

Case 1. If we take ¢ =0,
to Egs. (7)-(9), we get,

0 =2, and 6 = 6, then, according

; T —|—2‘52F
Vi

&+ AT+ 61+ &I + &I + 610 + £ I°, (51)

s (& 26T + 36T + 48, + 5ET + 65,T7°)

— T
v 20 (11 + 1.
. (Co+ ET + ST+ &7 + & T + &0 4 £T°)
2 ZC() ’
(52)
28,1 4 35T + 44,3 + 5ET + 66,7
(v’)2 _ (& + 25T 4 38T + 4L, 4 5T + 6&4 )(T1 i rzl")z,

G
(53)
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where 11, 12, (,#0. Thus, we have a system of algebraic
equations from the coefficients of the I' polynomial. Solving
the algebraic equation system via Mathematica Release 7,
yields the following relations,

_IBGE5E — & — 1296658

é() P ) él = 517
15552¢;
_Gs 8k,
YT, 1628 & 0 T
5& | 3&¢ .
= =5 = Eo—= 54
S 1856+ 28, =465, & =2Ce (54)
2 2 23 £232
C():*bB (1+p)2+p) 5(5¢5;§463c6) 7 (55)
1296a%p>(1 + 2p)&s&,
_ 2a(1+2p)&3 _ 24a(142p) &3¢ _ T2a(1+42p)Esél
To = b(2+p) (-3¢l +54587) n= b(2+p) (584546563 ) 7 = b(2+]1)(5§§—54§3f§) ’
(56)
L Ak (14 2p)%5 (78] — 108,665 + 3888¢, &) (57)

2
b(1 +p)(2 + p)* (58 — 54&:&5)
Substituting these coefficients into Eqs. (7) and (12), we have
A

i(7’1—’70):/ = = -
V/BHET+CT 4+ 8T 4+ DI+ £ + T
(58)
where B, C and D are defined by
PR =p) 2+ p) (58 - 54E8)°
1296a%p>(1 + 2p) &3¢ ’
g 1BGEE — & — 12968858
15552¢¢ ’
&G & 36 _ 58 3&é
= oAt e D=0 : (59)
6c 1628 &sée 185 2&sés

Integrating Eq. (58), we obtain the following solutions to Eq.
2),

A
+(n—mno) = “o—a (60)
L) = A(4v — 201 — 20) oy >, 1)

(o) — az)z (v—oy)(v—on)

where o) and o, are the roots of the polynomial equation,

B4+ ET + CT? + 6T 4+ DI 4+ ET5 + T8 = 0. (62)
Therefore, the solutions of Eq. (2) are given by,
1/p
A
u(x, 1) = |ay Lo VA (63)
2(n —no)
(o +o0)E— (o — ) (0 — n)F]

1 2 - 1 — 2 -
e, ) = | = T (64)

3247 = 2(e — %) " (n — o)
where is E=164>— (a0 — 1) (n — )%,

F= \/(O(l —a)*(n—ny)* — 164%, and y = kx — A. For sim-

plicity, if we take n, = 0, the solutions in Eqgs. (63) and (64)
reduce to the rational and single kink solutions, respectively;

1/p
A
u(x, ) = |og T : (65)
2(kx — At)
1/p
w)E —)’F

u(x, 1) = (o + 9;2) +n(o “22 7 (66)

324% — 202 (o4 — o12)
where is E=164>— 0 (o — a1)4, and

F= \/(ocl — o) — 164°.

Remark 3. The solutions to Egs. (65) and (66) computed in
Casel, were checked by means of Mathematica Release 7. We,
once more, vouch that, in our current state of knowledge of the
read literature, the gotten solutions are new traveling wave
solutions of the GBKE in Eq. (2).

Case 2. If we take, e =0, o0=1, 0 =4, with, 7;, {70, for
Egs. (7)-(9), we get the relations,
' \/§0+51r+52r2+53r3+54r4
VvV =1 ) (67)
v
26,1 + 3512 + 44,10
v// =1 él + Cz + 63 + €4 , (68)
2§,
q T4 &2 4 &1 r
(v/)ZZT%CoJrfl + &I+ G0+ &y 7 (69)
o
where 7, {,#0. Thus, we have a system of algebraic equa-

tions from the coefficients of polynomial of I'. Solving the
algebraic equation system Egs. (12)—(14) by using Mathemati-
ca Release 7 yields the following,

3 28472 (a+ 2ap + b(2 + p)t 28,7
bo=&, & = a7y ( /4 ( I’)o)+ 017

b2+ p)7] T

Eqto(da(l +2p) + 5b(2 + p)1y) | EoT2

&= I T2
b(2 + p)ti T
. 2&(a+2ap +2b(2+ p)to) _
=T b2+ )T L e )
B (1 +p)(1 +2p)oé
{o=— ( 1215212 2) 4, To=T0, T1 =T, (71)
1

5 6k&sto(at2ap+b(2+p)o) + &ymi(a+2ap+2b(2 +p)wo)

(2+Tp+Tp*+2p*) &
(72)

Substituting these coefficients into Egs. (7) and (12), we have,

1
o) = A4 T 3 >
VI* 4+ B+ CI? + DT + E
where, B, C, D and E are defined by,

+(n— dr, (73)
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Figure 1

The 3D surfaces of the solution Eq. (31) corresponding to the values p = —3, p = —4, p = =5, from left to right, when
GL=b=tn=u=a=k=a==02,

—10<x<10 and O0<t<1.

Figure 2 The 3D surfaces of the solution Eq. (32) corresponding to the values p = —3, p = —4, p = =5, from left to right, when
Gi=G=a=k=u=§=2, rp=1=3, 0=023

—S5<x<5 and O0<t<1.

o‘
R

o

A
S,

AN

Figure 3 The 3D surfaces solutions for Eq. (33) corresponding to the values, p = =3, p = —4, p = =5, from left to right,
flzfzzazk:ﬂzl T0:T1=37 061:0.1, 0(2:0.27 063:0.3,

—100 < x < 100, and 0<t<1.

o =—-1, 0<x<5

Figure 4 The 3D surfaces of the solution Eq. (47) corresponding to the values p = =3, p = —4, p = =5, from left to right
L=b=rn=1=a=k==0.2, and 0<z<1.

, when
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Figure 5 The 3D surfaces of the solution Eq. (48) corresponding to the values p = =3, p = —4, p = =5, from left to right, when
G=b=a=k=0u=0=2, 10=11=3, =03 -5<x<5 and 0<t<]1.

Figure 6 The 3D surfaces solution for Eq. (49) with values, p= -3, p=—-4, p= -5 from Ileft to right,
G=b=a=k==2, 1v=1,=3, =01, =02, 03=03, o=04 —-10<x<10, and O0<t<1.

Figure 7 The 3D surfaces of the solution Eq. (65) with values p=3, p=4, p=25, from left to right, when
&= G=a=k=p=2, 1p=711=3, o =01, =02 6=-3, 3=03 ou=04 0<x<10, and O0<t<]1.

Figure 8 The 3D surfaces solution to Eq. (66) with values p = =3, p = —4, p = =5, from left to right, when &, =1, & =2, & =3,
é=4, =5 §E=6, a=b=k=p=0=02, o=1, =3 -10<x<0, and 0<r<]1.
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Figure 9  The 3D surfaces solution Eq. (82) with values p = =3, p = —4, p = =5, from left to right, for &, = 0.1,
o = 1.12,

166.767, & =1688, & =2, 1=t =a=k=b=p=3,

£ =13.0889, ¢& =

0=-3, -20<x<20, and O<r<1.

Figure 10 The 3D surfaces of the solution Eq. (83) corresponding to the valuesp = =3, p = —4, p = =5, from left to right, when

&= 0.1, & —13.0889,8 — 166767, & —1688,¢,=2, to—=ti—a—k=b=f=3, o =112, o=08 d5=-3, —20<
x<20, and 0<r<1.
1

A= L, B= 2a+2ap + 262 + p)to) , 16470y — oy (o1 — )’ (1 — )’ "

Ve b2 +p)u Ut = 1 e (0 =)’ (n—ne)* | 0
o lda(l+2p) + 562+ p)r) | Gth ’

b(z —0—[))‘5{ 547% ’ ( t) 2(0(1 — O(z)(O(l — ZX3)

222(a+2ap + b2+ p)ry)  2&T & W =n - =) ) ’

D=="2 eEDE Ty E= 7% (74) 20 — 0y — 03 + COS h(w) (o3 — )

Integrating Eq. (73), we obtain the following solutions to Eq.
),

24
i(”_%):al,v’ 0 =0 = 03 = O, (75)
44 fv— oy
+(n — — - = > = = 76
(7’ ’70) o — o v — 0(3’ oy [£5] o3 Ol4, ( )
24

£(n—mo) = TN RS
 log (\/E — o) (1 —5) = /(= o) (1 — >)

V=) (o —az) + /(v — o) (00 — 22)
(77)
where o; and o, are the roots of the polynomial equation,
I+ B+ Cr’+ DT+ E=0. (78)
Therefore, we find the following solutions for Eq. (2),
24 17
u(x, 1) = {ozl + . "Io] , (79)

(81)

where, = kx — At. For the case, 1, = 0, the solutions to Eqs.
(79)-(81), are reduced to the rational and single kink solutions,
respectively;

1/p
u(x, 1) = {zx] :t%ﬂ , (82)
2 _ . 2 5 1/p
u(x, 1) = 164 ai o (o oczz) n 7 (83)
164~ — (o — )12
u(x’ l) — o — 2(0(1 — 062)(061 - 063)

200 — oy — o3 + (o3 — ) cos h(%)

(84)

Remark 4. The new rational and hyperbolic function solutions
for Eq. (2), via Egs. (82)-(84) with respect to Case 2., have
been checked by Mathematica Release 7. We believe that these
solutions have not appeared in the published literature.
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Figure 11
& =0.1, & = 13.0889, &, =166.767,
-3, -20<x<20 and O0<t< 1.

¢ =1688, & =2,

4. Conclusions

In this paper, the ETEM has been applied to the equation pair
Generalized Benjamin Equation and Generalized Burger-Kdv
Equation (GBE, GBKE), in a respective manner, only to ob-
tain new analytical solutions. The new solutions are found in
terms of logaritmic functions, rational, elliptic and Jacobi ellip-
tic functions. Moreover, when we consider all Figs. 1-11, and
Mathematica Release 7, checked computaions, we conclude
that our method is reliable, and yields an effective approach
for finding solutions of nonlinear equations, arising in applied
physics and engineering.

To our current state of knowledge, we do believe that the
obtained analytical solutions are new and have not appeared
in the literature previously. Therefore, they can be used to
serve and enhance our state of knowledge, in the realm of non-
linear complex phenomena.

Furthermore, the ideas introduced in this paper, and the
applications provided, may well serve as a guide to us and to
research scholars treading the path of nonlinear differential
equations.
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