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We report on the numerical analysis of the area correlations in spin foam gravity on a single 4-simplex
considered by Rovelli [C. Rovelli, Phys. Rev. Lett. 97 (2006) 151301]. We compare the asymptotics and
confirm the inverse squared distance leading behaviour at large scales. This supports the recent advances
on testing the semiclassical limit of the theory. Furthermore, we show that the microscopic discreteness
of the theory dynamically suppresses and regularizes the correlations at the Planck scale.

© 2008 Elsevier B.V. All rights reserved.
A fundamental theory of quantum gravity is expected to im-
prove the UV behaviour of the non-renormalizable perturbative
quantization of General Relativity. The latter should nonetheless
emerge in the low-energy limit, where it can be considered as an
effective field theory. Among the key features to be reproduced
is the distance dependence of the free graviton propagator encod-
ing Newton’s law. In Loop Quantum Gravity (LQG) and its covariant
version, the spin foam formalism [1], the UV behaviour is expected
to be cured by the discreteness of spacetime at the Planck scale.
While the regularizing effect of such discreteness is clear, it is
rather non-trivial how the discreteness smooths out to a low en-
ergy limit given by the effective theory of gravitons. This is the
problem of the semiclassical limit in spin foam gravity. In this Let-
ter we give numerical evidence that a behaviour consistent with
the graviton theory at low energies is dynamically suppressed and
regularized at the Planck scale.

The study of the semiclassical limit has received a great deal
of attention over the last few years and important results have
been obtained [2]. In particular, in [3–7] a program was started to
compute the graviton propagator using correlations between geo-
metric quantities. Analytic results show that the leading order at
large scales is consistent with that of the free propagator from the
linearized quantum theory, thus providing an important piece of
evidence for the correctness of the limit. Here we confirm this re-
sult numerically, supporting the approximations made to deal with
the complexity of the calculations. Furthermore, the numerical ap-
proach also allows us to study the small scale structure of the
propagator, where the non-perturbative effects of spin foams are
dominant, and we show that the discrete structure does regularize
the typically divergent behaviour of the correlations, suppressing
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them at the Planck scale. Finally, we point out the limitations
of the model used, and discuss the relevant developments to be
made.

We consider the area correlations for 4d Riemannian quantum
gravity defined and studied in [4]. These are correlations between
fluctuations of the areas around a given background q of a 4-
simplex, and correspond to some components of the graviton prop-
agator Gμνρσ (x, y) = 〈0|hμν(x)hρσ (y)|0〉. For extensive motivation
and discussion, see [5]. We index the ten triangles of the 4-simplex
by l, and the area eigenvalues are given by Al = �2

P(2 jl + 1), with
jl half-integers. For simplicity, we choose the background to be
a regular four-simplex, with all ten areas having the same value,
A0 = �2

P(2 j0 + 1). Given two triangles a and b, we consider the
following area correlation,

Wab( j0) = 1

N
∑

jl

h( ja)h( jb)Ψq[ jl]K [ jl], (1)

where N = ∑
jl
Ψq[ jl]K [ jl] is the normalisation, Ψq is the bound-

ary state and K the propagation kernel, or path integral am-
plitude. These are model-dependent quantities, and we describe
our choices below. The quantity h( ja) ≡ (A2

a − A2
0)/A2

0 repre-
sents an area fluctuation, or equivalently, the fluctuation of the
metric tensor hμν projected along the normal nμ

a to the tri-
angle. Wab( j0) is the spin foam analogue of the projections
Gab = nμ

a nν
a nρ

b nσ
b Gμνρσ (a,b) of the continuum graviton propaga-

tor around a flat background, with the two points taken to be the
centers of the triangles. If the theory has the right semiclassical
limit, the leading order of (1) should match the leading order of
Gab , namely the free propagator corresponding to the linearized
theory, which we recall scales as the inverse squared distance be-
tween a and b.

The boundary state Ψq[ jl] represents a dynamical coherent
state peaked around both the (canonically conjugate) intrinsic and
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extrinsic 3-geometry of the classical background q chosen. Given
the discrete 4-simplex considered, this means choosing a back-
ground configuration for the areas and their conjugate variables,
the dihedral angles. Taking the simple choice of the equilateral
configuration ( j0, θ), all triangle areas are given by A0 = �2

P(2 j0 +
1) and all interior dihedral angles by θ = arccos( 1

4 ).1 The explicit
form of such a state is not known in the full theory, but control
can be gained by going to lowest order in the perturbative expan-
sion. Based on analogies with the continuum linearized theory, in
[4] the following Gaussian ansatz was made,

Ψq[ jl] = exp

{
− 1

2 j0

∑
l,m

αlmδ jlδ jm + iθ
∑

l

(2 jl + 1)

}
, (2)

where αlm is a 10 by 10 constant matrix and δ jl = jl − j0. The
matrix αlm is non-diagonal, but the symmetries of the equilateral
background reduce the number of independent entries to three
(see discussion below). Having the squared width proportional to
j0 guarantees that in the large j0 limit the state (2) is peaked
around both conjugate variables of the background q = ( j0, θ) (e.g.
[8]). The physical boundary state for the full theory is expected to
have a lowest order contribution, corresponding to the free theory,
given by (2) with a definite αlm . So if we know the full state, we
can fix αlm by looking at its perturbative expansion.2 In this Letter,
we consider an asymptotic expansion for j0 �→ ∞; as geometric
areas are given by �2

P j0, the limit j0 �→ ∞ drives the �P expansion.
Therefore, the parameter j0 has a double role: on the one hand, it
describes the background geometry of the boundary; on the other
hand, it is the parameter of the asymptotic expansion.

The kernel depends on the spin foam model chosen. As in [4],
we consider the Barrett–Crane (BC) model [9],

K [ jl] =
∏

l

(2 jl + 1)k{10 j}, (3)

where the integer k parametrizes the choice of face weight in the
measure, and the 10 j-symbol {10 j} is an SO(4)-invariant tensor
constructed with Clebsch–Gordan coefficients. To study its asymp-
totic expansion, recall that when all spins are homogeneously
large, i.e. jl = Nkl , N �→ ∞, the 10 j-symbol has a stationary phase
contribution of the form [10]

μ( jl) cos
(

SR[ jl] + φ
)
, (4)

where μ( jl) is a non-oscillating function scaling like N−9/2,
SR[ jl] = ∑

l(2 jl + 1)θl( jl) is the Regge action for a single 4-simplex
with triangle areas Al = �2

P(2 jl + 1) as independent variables, and
φ is an irrelevant phase. It was shown in [11] (see also [12]) that
this is masked by a non-oscillating contribution D( jl) that scales
like N−2. This dominant contribution corresponds to a degenerate
geometry for the 4-simplex. However, as conjectured in [4] and
proved in [6], D( jl) is negligible in the evaluation of quantities
like (1), where its non-oscillating nature fails to properly match
the phase of the boundary state (2). The work of this Letter sup-
ports these analytic calculations, and thus is the first (indirect)
numerical evidence of (4). Therefore the asymptotic behaviour of
(3) is effectively given by the kernel for area Regge calculus with
measure

∏
l(2 jl + 1)kμ( jl).

The emergence of Regge calculus in the semiclassical limit of
LQG and spin foam gravity has often been advocated [13], and
would provide a solid bridge to low-energy physics: conventional

1 Notice that for technical reasons we use here the interior angles, and not the
exterior ones as in [4].

2 In this perspective, we stress that the Gaussian ansatz is not an arbitrary choice:
any semiclassical physical state should be at leading order approximated in this
way.
Regge calculus is a discrete representation of GR known to repro-
duce the correct linearized quantum theory [14], thus if in (1) we
use Ψq and K from linearized Regge calculus, we expect to obtain
the right free graviton propagator. This suggests a possible strat-
egy to fix αlm by evaluating the boundary state in linearized area
Regge calculus [15]. In general, the matrix αlm is non-diagonal,
and this makes evaluating (1) extremely challenging. To simplify
the numerical analysis we study the case where αlm ≡ αδlm is
diagonal. Indeed, using the formula for the 10 j-symbol as an in-
tegral over SO(4), this choice allows us to perform each sum over
jl separately, which simplifies the numerical task. The resulting
9-dimensional integrals are still very difficult to compute numer-
ically, due to their oscillatory nature, but can be estimated using
adaptive Monte Carlo methods (VEGAS algorithm) with between
109 and 1010 sample points.

We then have a model with a single free parameter α, de-
termining the width of the Gaussian. For different values of α,
we study the matrix (1) as a function of j0, in particular to
test its asymptotic behaviour and support the analytic calcula-
tions which appeared in [4], which we briefly recall here. First
of all,

∏
l(2 jl + 1)kμ( jl) is a measure term in (1), thus it will

affect only the higher order corrections [7]. The leading order is
obtained by approximating (1) with (the second moment of) a
Gaussian integral, like in the continuum linearized theory, with ac-
tion Q lmδ jlδ jm given by the quadratic term in the boundary state
and the second derivatives of the Regge action,

Q lm = α

j0
δlm + i

∂2 SR

∂ jl∂ jm

∣∣∣∣
j0

. (5)

The Hessian matrix of the Regge action on the equilateral config-
uration was computed in [5], and it is a 10 by 10 matrix with a
regular structure inherited from the regularity of the equilateral
4-simplex. Fixing a triangle a, there are only three distinguishable
choices for b: the case when b is the same triangle, the six cases
when b is an adjacent triangle sharing an edge with a, and the
three cases when b is an opposite triangle sharing only a vertex
with a. Correspondingly, for each row of the Hessian there are only
three different entries,

∂2 SR

∂ jl∂ jm
= 1

j0
Hlm, Hlm = 1

2

√
3

5
flm, (6)

where, for each row, flm = −9 occurs once, 7/2 six times, and −4
three times. We can then write

Q lm = 1

j0
Alm, Alm ≡ (αδlm + iHlm). (7)

Notice that Hlm is not invertible, just like the original continuum
term, due to diffeomorphism invariance [15]. On the other hand,
Alm is invertible for any α > 0, thus the boundary state effectively
provides a gauge-fixing for the propagator.

Following the same procedure as [4], we obtain for the absolute
value of the leading order

∣∣W LO
ab (α)

∣∣ = 4

j0

∣∣A−1
ab

∣∣. (8)

If the theory has the right semiclassical limit, (8) should give the
free graviton propagator of linearized quantum gravity.3 Choosing
the harmonic gauge, the latter is given by

Gμνρσ (a,b) = −1

2

δμρδνσ + δνρδμσ − δμνδρσ

d(a,b)2
. (9)

3 We take the absolute value for a better comparison with the linearized Gab ,
because the spin foam kernel provides the complex exponential of the Regge action
(4) even in Riemannian signature. The phase of (8) is irrelevant for our work.
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Fig. 1. Numerical study of (1) (dots), versus the analytic result of the leading order, on a log–log plot. Left panel: the case α = 0.5. Right panel: the case α = 5. Raw data and
more plots are available at http://jdc.math.uwo.ca/graviton.
For the equilateral background we have chosen, there are only
three independent projections Gab , and furthermore the squared
distances are all proportional to j0. Both features are matched by
(8), which has only the three independent entries discussed above
and scales as 1/ j0.4 Note that, as a function of α, |W LO| scales as
1/α for both α 	 1 and α 
 1.

To have explicit values, we choose a and b to be opposite trian-
gles, and fix α = 0.5 and α = 5. From (8) we obtain

∣∣W LO
opp(0.5)

∣∣ = 1.02

j0
,

∣∣W LO
opp(5)

∣∣ = 0.13

j0
. (10)

In Fig. 1 we compare these analytic results with the numerical
analysis of the full formula (1), where in the kernel (3) we choose
the simple measure term with k = 0. The dots are the numeri-
cal evaluations of the absolute value of (1) for these cases, and
the error bars are one σ . The plots shown in the figures required
approximately 2 cpu years to produce on the SHARCNET clusters.
Remarkably, good agreement is reached already at j0 ∼ 50. This is
our first result: we numerically tested the inverse squared distance
asymptotic behaviour of the area correlation in spin foam gravity.
This supports the results of [4] and in particular the conjecture
that the D term drops out.

Let us now focus on the short scale behaviour. We see from
Figs. 1 and 2 that the correlations have a maximum. This peak is
very close to the Planck scale, and its exact location depends on
the value of α, but also on the measure term in (4). To show this,
in Fig. 2 we plot again the case α = 5, but this time with k = 1.
Notice that the position of the peak is slightly pushed to the right,
but the qualitative behaviour is the same. We interpret the pres-
ence of a peak as follows. The discrete microscopic structure of the
theory provides a trivial regularization already of the leading order
(8), where only half-integer steps in the distance between the two
points are allowed. The non-trivial effect of the short scale dynam-
ics is to introduce a suppression of the correlations, which instead
of increasing monotonically at shorter distances, reach a maximum
and then decrease (the effect being less noticeable for small values
of α). In this sense, the divergent behaviour of the graviton correla-
tions gets regularized at high energies by the discrete structure of
spin foams. This shows how the full theory might enhance the ef-

4 One of the three cases is the correlation of a triangle with itself. While the
continuum graviton propagator between the same two points is divergent, this is
not the case for Waa . This should not be surprising, as it is among the regularizing
effects of the discrete microscopic structure.
Fig. 2. The case k = 1, α = 5. The leading order is the same as for k = 0, and the
position of the peak shifted to the right.

fective field theory where the latter breaks down, and it confirms
the intuition that spacetime cannot be considered as fluctuating
around the flat metric at the Planck scale.

We want to conclude with an outlook for further developments
to turn this picture into a concrete prediction of the theory. This
will require enhancing both the boundary state and the kernel
used here.

The first improvement would be to remove the ambiguity in
αlm by fixing it with a dynamical requirement. To obtain a quan-
titative matching with the free graviton Gab we need the right
boundary state, with the right non-diagonal structure and values
of the entries, coming from the dynamics and a choice of gauge.
As mentioned above, a possible way to obtain this quantity is to
evaluate it in linearized area Regge calculus.

Furthermore, from analogies with conventional quantum field
theory, we expect there to exist a procedure for extracting the full
boundary state from the non-perturbative kernel. Extending this
procedure in background independent quantum gravity (see for in-
stance [16]) would be extremely useful. The full state will fix αlm
by looking at the perturbative expansion, but also contribute to
the small scale structure, thus affecting the numerical analysis pre-
sented here. This will certainly modify numerical results such as

http://jdc.math.uwo.ca/graviton
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the exact location of the peak, but will most likely not change the
qualitative picture of suppressed correlations at the Planck scale.
This regularizing effect is very likely to survive in the full theory,
because it is a facet of the discrete microscopic structure, more
than of the details of the model.

On the other hand, the kernel itself needs improvement. In-
deed the Barrett–Crane kernel does not capture the dynamics of
quantum gravity in a fully consistent way. Here we used it in the
restricted context of area correlations on a single 4-simplex, where
it provides a sensible quantum gravity amplitude. To test the full
tensorial structure of (9), we need to consider also projections that
in the discrete picture would correspond to correlations between
the dihedral angles of the boundary geometry. As pointed out in
[5,17], these correlations cannot be studied using the BC vertex
amplitude. Furthermore, the calculations presented here need to be
extended to many 4-simplices, and the large spin limit (4) of the
BC vertex precisely lacks the constraints which are needed to cor-
rectly treat the areas as independent variables. These issues have
recently been addressed, and promising new models have been
proposed [18]. It would be extremely interesting to apply the same
analysis to these new models.

In conclusion, we have presented a spin foam model where cor-
relations consistent with the graviton theory at low energies are
dynamically suppressed and regularized at the Planck scale. This
work shows that the spin foam framework for quantum gravity
naturally provides the expected regularization of the corrections at
short scales, i.e. high energies: the theory has a short length scale
appearing dynamically, which also suggests that spacetime cannot
be considered as fluctuating around the flat metric at the Planck
scale. We stress that the model presented here is not predictive,
and further work is needed before the correctness of the semiclas-
sical limit of spin foam gravity can be claimed. Our results give a
glimpse of what the qualitative picture of quantum gravity and its
bridging to low-energy physics could be like, and suggest interest-
ing new questions for further investigation.
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