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Abstract In Drosophila, developing germline cysts in testis are
enveloped by two somatic cyst cells essential for germline devel-
opment and male reproduction. The cyst cells continue develop-
ment along with the germline. However, the mechanisms of
somatic gene expression in testes are poorly understood. We re-
port transcriptional up-regulation of the Ku heterodimer in cyst
cells. The initial up-regulation is independent of germline, and
transcription is further augmented during spermatogenesis.
Abundance of Ku in the cyst cell cytoplasm suggests the role
for Ku subunits in the regulation of sperm individualization.

© 2007 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

Testicular somatic cells represent an essential component of
male reproductive system. In mammals, germline cells main-
tain interactions with the somatic Sertoli cells throughout
development. In insects, groups of developing germline cells
are encased in the envelope composed of the two somatic cyst
cells that are functionally similar to the Sertoli cells. Interac-
tions between cyst cells and germline are required for differen-
tiation of germline cells throughout spermatogenesis and
spermiogenesis. Genetic studies have demonstrated that a spe-
cific cyst cell/germline interaction that involves dpp (TGFp/
BMP) signaling plays critical role in differentiation of sperma-
togonia into spermatocytes [1]. Further, mutations that affect
cyst cells impair spermatocyte development, indicating require-
ment for the cyst cells at this stage [2]. Finally, transcriptional
dysregulation in the cyst cells leads to failure in sperm matura-
tion [3].

Therefore, cyst cells appear to play different, essential roles
at every major stage of germline development. This evolution
of the functional role is accompanied by significant changes
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in cell morphology. In the beginning of spermatogenesis, two
cyst cells provide the envelope around the cyst of dividing sper-
matogonia and establish contacts with the cells within cyst by
extending the processes between the germ cells. This general
organization remains in place during spermatogenesis, but
spermatid differentiation leads to complete displacement of
the cyst cells to the surface of the spermatid bundles where
the tail cell forms a thin sleeve around the bundle [4].

Enhancer trap studies have demonstrated that gene expres-
sion pattern in cyst cells may be changing during germline
development [5]. These observations imply existence of the so-
matic gene expression program in testes that parallels the
germline gene expression in spermatogenesis. The underlying
mechanisms that may control somatic gene expression in testes
are poorly understood. Perhaps the furthermost advance in
this direction is provided by the studies of Fabrizio et al. [2]
who demonstrated that the transcriptional regulators eya and
so are required in cyst cells for proper spermatocyte develop-
ment. Identification of the role of endopeptidase NEP2 in cyst
cells [6] provides an example of a possible downstream target
of the transcriptional regulatory mechanism. However, the
very limited numbers of the known putative transcriptional
regulators and target genes impedes further understanding of
the mechanism of somatic gene expression in testes. Here, we
report transcriptional up-regulation of the Ku heterodimer
subunits in cyst cells. Our data indicate that up-regulation oc-
curs primarily in the testicular somatic cells independent of
germline, and then transcription is further augmented during
spermatogenesis. Thus, the Ku subunit genes represent the tar-
gets for transcriptional regulatory mechanism(s) that may
establish identity of testicular somatic cells and control further
developmental changes in these cells that accompany develop-
ment of the germline.

2. Materials and methods

2.1. Fly stocks

Drosophila melanogaster stocks were maintained on the yeast-molas-
ses media at room temperature. The wild-type flies used were Oregon-
R for transcription assays, and the mixture of Oregon-R and y w for
biochemical purification of proteins. The stocks carrying the muta-
tions aly' [7], sa' [7), TAFI2LX% and rud' [8] were obtained from
the Bloomington Drosophila Stock Center at Indiana University.

2.2. Reverse transcription and real-time PCR

RNA was extracted from manually dissected tissues and from adult
flies with the Trizol reagent (Invitrogen). Each sample represented the
combined tissues from 50 to 100 animals. Reverse transcription reac-
tions were performed using 1 pg of total RNA as a template, with
the PowerScript reverse transcriptase (Clontech). 0.5% of the reverse
transcription reaction was used as a template for a 20 ul real-time
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polymerase chain reaction (PCR) reaction. Reactions were run in trip-
licates in the ABI 5700 Sequence Detector, using SYBR Green chem-
istry (Applied Biosystems).

2.3. Western analysis

Proteins were separated by SDS-PAGE in the 4-15% gradient pre-
cast minigels (Bio-Rad) and transferred onto the Nybond-C membrane
(Amersham) by electroblotting in the Tris—glycine buffer containing
20% methanol. Membranes were blocked overnight at 4 °C in 5%
non-fat dry milk (NFDM) solution in phosphate buffered saline con-
taining 0.05% Tween-20 (PBST). The primary polyclonal antibodies
were raised in chicken against the peptide ERKVIYDND-
KEDKMLKDK derived from the Ku80 sequence and were affinity-
purified at the Aves Labs, Inc. On the Western blot of whole
Drosophila adults, the antibody recognized a single band of ca.
80 kDa, consistent with the size of Ku80 protein. After blocking, mem-
branes were incubated with 1 pg/ml of the primary antibodies in PBST
containing 2.5% bovine serum albumin (BSA) for 1h at 4 °C, and
washed extensively in PBST. Secondary antibodies (goat anti-chicken
horseradish peroxidase conjugated, Aves Labs) were used at concentra-
tion of 20 ng/ml, in PBST containing 2% NFDM. After 1 h incubation
with the secondary antibodies at 4 °C, membranes were washed in PBST
and developed using the SuperSignal West Femto substrate (Pierce).

2.4. Indirect immunofiluorescence

Testes were dissected in phosphate buffered saline (PBS) and fixed in
4% formaldehyde, 8% sucrose in PBS for 25 min on ice, then washed
three times with cold PBS. Fixed testes were placed on the Super-
frost/Plus microscope slide (Fisher) in drop of PBS and let to attach
to the glass. Most of the PBS was removed by aspiration, testes were
covered by another Superfrost/Plus slide and the resulting sandwich
was frozen in liquid nitrogen. Slides were pried apart with razor, and
incubated in ice-cold PBS containing 4% formaldehyde and 0.1% Tri-
ton X-100 for 30 min, then washed three times with PBS and blocked
overnight in PBS containing 3% BSA, 0.03% Triton X-100 and 0.05%
Tween-20 at 4 °C. Primary antibodies were diluted in the blocking
solution and incubated with the slides overnight at 4 °C. The chicken
polyclonal antibody against Ku80 (described above) was diluted to
0.7 pg/ml; the rat monoclonal antibody DCAD2 against D-cadherin
(obtained from the Developmental Studies Hybridoma Bank at Uni-
versity of Iova) was diluted 1:200. The slides were washed five times
for 20 min in PBST supplemented with 1% BSA at room temperature
and incubated for 1.5 h at 4 °C with the secondary antibodies (goat
anti-chicken AlexaFluor 594 conjugated, and rabbit anti-rat Alexa-
Fluor 488 conjugated, Molecular Probes) diluted to 4 pg/ml in the
blocking solution. Slides were washed four times as described above
followed with overnight incubation in the washing solution at 4 °C,
briefly air-dried and mounted in the DAPI-containing VectaShield
medium (Vector). Fluorescence was observed in the Leica TCS SP2
confocal microscope coupled with the Coherent Mira 900 femtosecond
laser at GRASP center, TuftsyNEMC. Images were imported into
Adobe Photoshop and processed using automated level correction.

2.5. Protein extracts from dissected tissues and EMSA

Testes, heads, and ovaries were manually dissected from adult flies in
phosphate buffered saline (PBS), and homogenized in microcentrifuge
tubes in ice-cold extraction buffer (20 mM Tris-HCI, 1.5M KClI,
2mM EDTA, 0.4% Triton X-100, 0.04% B-mercaptoethanol, 10%
glycerol, 1 mM PMSF, and 1 pg/ml of each of pepstatin, leupeptin,
and trypsin inhibitor, pH 7.5) using disposable pestles. Debris was sed-
imented by centrifugation at 16000 x g for 10 min at 4 °C, and super-
natants were dialyzed against the binding buffer (20 mM HEPES,
50 mM KCl, 5 mM MgCl,, | mM CaCl,, 0.05% Triton X-100, 0.04%
B-mercaptoethanol, 10% glycerol, pH 7.9) using the 10 kDa MWCO
Slide-a-lyser cassettes (Pierce). Protein concentrations were deter-
mined with the Bradford assay. Double-stranded oligonucleotide
AGCTTTGATCGTAGTGTGCCTTTGGGGGAAATTCTG labeled
to specific activity of 3 x 10° dpm/pmol with polynucleotide kinase
(Invitrogen) and [p->>P] ATP (Perkin Elmer) was used as the probe
for electrophoretic mobility shift assay (EMSA). EMSA (20 pul) reac-
tions contained 5 pg of protein extracted from the tissues, 2 pug of acet-
ylated BSA (New England Biolabs), 1.0 x 10° dpm of labeled probe,
and 0.5 pg poly-dIdC (Sigma) in the binding buffer. After 25 min of
incubation at room temperature, reaction products were separated
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by electrophoresis in 5% acrylamide gels containing 0.5x TBE and
10% glycerol. For analysis of fractions during purification of the Ku
heterodimer, a fixed volume of fraction (1 pl) rather than a fixed
amount of protein was added to reactions.

2.6. DNA affinity matrix

DNA beads were prepared using the streptavidin-coated magnetic
beads (Dynabeads M-280, Dynal). The sequence AGCTTTGATCG-
TAGTGTGCCTTTGGGGGAAATTCTG (the “TSE” sequence)
was flanked with the TC overhang at the 5’-end and with the AG com-
plementary overhang at the 3’-end, to drive the “head-to-tail” concat-
enation. Single-stranded oligonucleotides TSE-U and TSE-L (obtained
from Integrated DNA Technologies) were phosphorylated at the 5'-
end. One of the oligonucleotides (TSE-Lbio) was also synthesized with
the 3’-biotin-TEG modification. A mixture of 10 parts of TSE-U, 9
parts of TSE-L, and 1 part of TSE-Lbio was annealed to generate
the double-stranded TSE oligonucleotides, and these were concate-
nated by DNA ligase (New England Biolabs). Ligation products were
analyzed by gel electrophoresis, to confirm polymerization. The aver-
age product length was 300-400 bp, which corresponds to ten tandem
repeats of the TSE sequence. Biotinylated DNA (200 pmol) fragments
were loaded onto 2 mg of streptavidin-coated magnetic beads, accord-
ing to the manufacturer’s recommendations.

2.7. Purification of the non-specific dsDN A-binding activity

Adult D. melanogaster (300 g) frozen at —80 °C were homogenized
in 11 of the ice-cold nuclei isolation buffer (NIB) (20 mM HEPES,
50 mM KCl, 5 mM MgCl,, 0.04% B-mercaptoethanol, 10% glycerol,
1 mM PMSF, and 1 pg/ml of each of pepstatin, leupeptin, and trypsin
inhibitor, pH 7.9) by blending in the Kitchenaid KSB5MC4 blender
for 4 min at 4 °C at the highest speed. The nuclei were pelleted by cen-
trifugation at 3000 x g for 20 min at 4 °C, resuspended in 1 | of ice-cold
NIB, and pelleted again. Nuclei were extracted in 600 ml of ice-cold
extraction buffer (30 min at 4 °C), and the extracts were cleared by cen-
trifugation at 15000 x g for 20 min at 4 °C. Solid ammonium sulfate
was gradually added to the supernatant to concentration of 1.2 M,
and precipitated proteins were removed by centrifugation at
15000 x g for 20 min at 4 °C. The supernatant was diluted with the
buffer Q (20 mM Tris—-HCI, 50 mM KCI, 2 mM EDTA, 0.05% Triton
X-100, 0.04% B-mercaptoethanol, 10% glycerol, pH 7.5) to final 1 M
concentration of ammonium sulfate, cleared by centrifugation again
as described above, and loaded on to the 250 ml Octyl-Sepharose col-
umn (XK50/20, Amersham) at 15 ml/min using the BioLogic LP sys-
tem (Bio-Rad). The column was washed by 700 ml of the buffer Q
containing 1 M ammonium sulfate, and the bound proteins were eluted
with the buffer Q in the 300 ml volume. The solution was desalted on
the Sephadex G-50 column (11 bed volume, XK50/60, Amersham) at
15 ml/min, with the buffer being exchanged to the buffer S (20 mM
MES, 50 mM KCIl, 0.05% Triton X-100, 0.04% B-mercaptoethanol,
10% glycerol, pH 7.0), and loaded on the 50 ml SP-sepharose column
(XK26/20, Amersham) at 2 ml/min. The bound proteins were eluted
with the buffer S containing 0.5 M KCl in the 30 ml volume. The solu-
tion was desalted on the 70 ml Sephadex G-50 column (XK26/20,
Amersham) with the buffer being exchanged to the buffer D (10 mM
K-Phosphate, 50 mM KCI, 5mM MgCl,, 0.05% Triton X-100,
0.04% B-mercaptoethanol, 10% glycerol, pH 7.0), and loaded onto
the 20 ml Heparin-Sepharose column (XK16/20, Amersham) at 2 ml/
min. For this and the further steps we used the BioLogic DuoFlow sys-
tem (Bio-Rad). The column was developed with 300 ml of the 0-1 M
linear gradient of KCl in the buffer D. The 2 ml fractions were ana-
lyzed by EMSA, and the fractions containing the dsDNA-binding
activity were pooled, desalted on the 70 ml Sephadex G-50 column
(XK26/20, Amersham), and loaded on the Uno Q-1 anion exchange
column (Bio-Rad) at 0.5 ml/min. The proteins were eluted by 15 ml
of the 0—1 M linear gradient of KCl in the buffer D. The 1 ml fractions
positive for the dsDNA-binding activity by EMSA were pooled and
dialyzed against the buffer D in the 10 kDa MWCO Slide-a-lyser cas-
settes (Pierce). The solution was supplemented with CaCl, to 1 mM
and with the poly-dIdC to 20 pg/ml (as described for EMSA), and
incubated with 0.2 mg of the DNA affinity beads per 1 ml of reaction
volume for 30 min at room temperature. The beads were captured
using the magnetic stand (Promega), washed four times with the buffer
D containing 1 mM CaCl, and 20 pg/ml of the poly-dIdC, then three
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times with the buffer D containing 1 mM CaCl,, and eluted with the
50 ul volumes of buffer D containing increasing concentrations of
KClI ranging from 0.1 M to 3 M.

2.8. Size exclusion chromatography

The solution (0.5 ml) containing the dsDNA-binding activity after
the UnoQ purification step (see above) was loaded onto the Super-
dex-200 gel filtration column (Amersham), and eluted with the buffer
D at 0.2 ml/min. The 1 ml fractions were analyzed for the dsDNA-
binding activity by EMSA. The column was calibrated using the set
of molecular weight standards (Sigma) that includes the Blue dextran
(MW ca. 2000 kDa), B-amylase from sweet potato (200 kDa), alcohol
dehydrogenase from yeast (150 kDa), bovine serum albumine
(66 kDa), bovine carbonic anhydrase (29 kDa), and horse cytochrome
¢ (12.4 kDa).

2.9. LCIMSIMS

Proteins were fractionated by SDS-PAGE in the 4-15% gradient gel
and stained using colloidal Coomassie Blue (Invitrogen). The protein
bands were excised with razor blade, soaked in 50% acetonitrile/water
and sent for identification to Harvard Microchemistry Facility (Cam-
bridge, MA) using liquid chromatography/tandem mass spectrometry
(LC/MS/MS).

3. Results

3.1. Transcriptional up-regulation of the Ku heterodimer
subunits in testes is independent of the meiotic arrest genes

Our studies that identified a number of Drosophila testes-
biased genes using expressed sequence tag database analysis
[9] suggested testes-biased transcription pattern for the Ku80
subunit of the Ku heterodimer. To confirm the observations
and to extend them on the other Ku subunit, the Ku70 and
the Ku80 transcripts were quantitated in testes and in other tis-
sues using reverse transcription followed with real-time PCR.
Constitutive transcripts of the genes Rp/9 and His3.34 were
used as the cDNA template loading controls: the observed dif-
ferences in the amounts of the Ku subunit transcripts were
normalized by the average of the differences observed for
Rpl9 and His3.3A4. The analysis showed that the Ku80 and
the Ku70 transcripts in testes are up-regulated 10-fold or more
as compared to the other adult tissues including heads, ovaries,
and whole gonadectomized males (Table 1).

The vast majority of testes-biased genes are up-regulated in
the male germline where their transcription is under the con-
trol of the testes-specific components of transcriptional
machinery, including the putative chromatin remodeling Aly-
containing complex and the testes-specific TFIID subunits
(tTAFs) [7]. In addition, we recently found that a number of
testes-specific genes are positively regulated by the multifunc-

Table 1
Relative levels of transcripts for the Ku subunits in Drosophila tissues
RNA source Ku80 Ku70

Average S.D. Average S.D.
Adult gonadless male 1.0 0.2 1.0 0.1
Adult testes 17.5 14 18.2 2.1
Adult heads 1.0 0.1 1.0 0.1
Ovaries 1.0 0.1 2.4 0.6

Amounts of transcripts were measured by real-time RT-PCR relative
to the levels in gonadectomized males, and normalized to the levels of
constitutively expressed transcripts Rp/9 and His3.34 used as the
template loading references. S.D. values were calculated for the re-
peated real-time PCR assays.
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tional protein Modulo [10]. However, real-time RT-PCR
experiments showed that the levels of Ku80 and Ku70 tran-
scripts in testes were not drastically affected by the mutation
in aly: the Ku80 transcript was down-regulated two to three-
fold (0.41; S.D. 0.12), while the apparent level of the Ku70
transcript in the aly mutant testes was even slightly higher than
in the wild type (1.8; S.D. 0.6). For comparison, germline-spe-
cific transcripts that depend on the Aly complex are down-reg-
ulated in the aly group mutants hundreds- to thousands-fold
[10]. The Ku subunit transcripts also appear to be independent
of tTAFs: the Ku70 transcript level in testes of the mutant for
the tTAF sa is higher than in the wild-type (2.1; S.D. 0.9). We
also have shown that the Ku80 transcription in testes does not
depend on tTAFs Sa and Rye, or specific transcription factor
Modulo [10]. Thus, the drastic up-regulation of the Ku subunit
transcripts in testes is not under the control of the major tran-
scriptional mechanism that operates in male germ line, raising
the possibility that up-regulation occurs in other cell types
within testes.

3.2. Abundant Ku80 expression in testicular somatic cells

In order to localize the Ku80 protein within testes, we devel-
oped an anti-peptide polyclonal antibody against Ku80. Wes-
tern analysis confirmed up-regulation of Ku80 in testes. A
protein of expected size of ca. 80 kDa was detected. Even
though more material from the gonadectomized males had
to be loaded to obtain appreciable signal (as demonstrated
by the control silver staining), the signal in testes was still
stronger than in gonadectomized males (Fig. 1A). Semi-quan-
titative studies (Fig. 1B) showed that the levels of Ku80 in tes-
tes are approximately 10 times higher than in gonadectomized
males, consistent with 17-fold up-regulation of the transcript
(Table 1). Immunostaining of the male accessory glands re-
vealed nuclear localization typical of the Ku heterodimer
(Fig. 2a—c); control treatments in the absence of the primary
antibody did not produce appreciable staining (data not
shown).

In contrast, in testes the observed distribution of Ku80 was
rather unusual. The protein was up-regulated in the zone

B
wt gon- ‘ testes 1 gon-
tes male tud achi sa wt wto.3 wto.1 male
s - ‘-""f — — —
e -

Fig. 1. Up-regulation of Ku80 in testicular somatic cells. Hand-
dissected testes of the tud', achi/vis!, and sa' mutants and of the wild
type and the whole gonadectomized males were homogenized in the
Laemmli SDS-PAGE loading buffer. Proteins were separated in 4—
15% gradient SDS-PAGE gels. Upper panel: after electrophoresis,
proteins were analyzed by Western blotting using anti-Ku80 antibody.
Lower panel: identical gels were stained using (A) SilverSnap reagents
(Pierce) or (B) colloidal Coomasie Blue (Invitrogen) to show protein
loading on the lanes. (A) Ku80 is overexpressed in wild type testes (wt
tes) as compared to the gonadectomized males. (B) Expression of Ku80
in the mutant and wild type testes, and gonadectomized males. For
semi-quantitative analysis, the samples containing 30% (wt 0.3) and
10% (wt 0.1) of the amount of wild type testes extract loaded on the
lane “wt” were also analyzed.
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Fig. 2. Localization of the Ku80 protein in testes by immunofluorescence. Testes of the y w males (a—c, j—0), of the transgenic y w males carrying male
germline-specific Sdic:: GFP transgene [11] (d—i), of the sons of fud' mutant mothers (p,q) and of the T4 FI12L59°%%4¢ mutant (r) were stained using the
anti-Ku80 antibody. This staining was detected in the red channel using the AlexaFluor 594-conjugated secondary antibody (left column). In
addition, preparations in (a—c, j—0) were stained using the anti-D-cadherin antibody that was visualized in the green channel using the AlexaFluor
488-conjugated secondary antibody. GFP expression in germline (d—-i) was also detected in the green channel (middle column). Right column: the red
and the green channels merged with the DAPI nuclear stain (blue). (a—c) control staining of the accessory gland epithelium reveals nuclear
localization of Ku80. (d—f) Ku80 is expressed at relatively low level at the tip of testis occupied by spermatogonia (sg), but is up-regulated in somatic
cells associated with early (esc) and maturing (sc) spermatocytes marked by the Sdic::GFP expression. (g-i) Prominent Ku80 signal outlines
cytoplasm of the cyst cells that encase the cysts of round (rsd) and elongating (esd) spermatids and form the sleeves around spermatid bundles (sdb).
(G-1) Ku80 signal co-localizes with the D-cadherin staining that outlines the cyst cell/germline junctions at the periphery of germline cysts. (m—o)
zoom-in view of the area between two germline cysts shows that Ku80 is localized distal to the adherens junctions revealed by the anti-D-cadherin
staining, i.e. outside the germline cells. (p,q) Ku80 is abundantly expressed in somatic cells that fill the rudor mutant testes; cells released from the
disrupted testis (q) show nuclear localization of Ku80 (arrow), (r) in the meiotic arrest mutant TAFI12L5%%94 Ku80 is observed around the
spermatocyte cysts, similar to the wild type.
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occupied by early spermatocytes, and expression level further
increased with progression of spermatogenesis and spermio-
genesis: the highest signal was detected in the area of testes
filled with the bundles of elongating spermatids (Fig. 2d-i).
Analysis of testes in which male germline was marked by
expression of the Sdic::GFP transgene [11] (Fig. 2d—i) showed
that up-regulation of Ku80 does not occur within the cells of
male germline, and the protein is not accumulated in the nuclei
of spermatogonia, spermatocytes, or round spermatids. In-
stead, the signal was confined to the periphery of the cells, in
particular periphery of the cysts containing spermatocytes
and round spermatids. During spermatid elongation, accumu-
lation of Ku80 at the periphery of cysts was further rectified so
that the spermatid bundles were encompassed by the thin
Ku80-rich envelope.

To further localize Ku80 at the periphery of the germline
cells, testes were co-stained with the antibodies against
Ku80, and against D-cadherin that is localized at the cell sur-
face (within the cells) at the adherens junctions. Distribution of
adherens junctions in testes outlines the contacts between
germline and cyst cells that encase developing spermatocyte
cysts [2]. General pattern of the staining revealed co-localiza-
tion of Ku80 with the zones enriched with adherens junctions
(Fig. 2j-1). At high magnification, it was evident that Ku80 is
localized not at the adherens junctions formed by the germ line
cells, but distal to the junctions and thus outside the germ cells
(Fig. 2m-o).

Thus, Ku80 is enriched at the periphery (and, in fact, out-
side) of germ line cells in the areas that contain extensive
adherens junctions. In particular, the Ku80 signal outlines
the outer envelope of spermatocyte and spermatid cysts and
bundles. This localization is matching the pattern expected
from the testicular cyst cells that are associated with the germ-
line cysts and form the thin sleeve around spermatid bundles.
Therefore, the Ku heterodimer is probably up-regulated in the
somatic cyst cells of testes, rather than in germline. To test this
possibility, we analyzed testes of the fudor mutant progeny that
lack germline [12]. Western analysis demonstrated that testes
of sons of the tudor mutant mothers still contained elevated
amounts of the Ku80 protein. The amount of Ku80 was ca.
2 times less than in wild type testes, but at least 3 times higher
than in the tissues of gonadectomized males (Fig. 1B). Immu-
nostaining of testes of the tudor mutant progeny showed abun-
dant expression of Ku80 in the somatic cells present within the
testes, however the protein was predominantly localized to the
nuclei (Fig. 2p and q). In contrast, in testes of the meiotic
arrest mutant TAFI2LX009%46 Ku80 was observed at the
periphery of arrested spermatocyte cysts, similar to its localiza-
tion around spermatocytes in the wild type (Fig. 2r).

3.3. Ku80 is further up-regulated in cyst cells during germline
development

Analysis of testes of the meiotic arrest mutants achilvis' and
sa' using Western blots revealed the levels of Ku80 expression
in testes that were similar to the wild type and exceeded the lev-
els observed in the fudor mutants (Fig. 1B). However, the testes
of the meiotic arrest mutants are overfilled with premeiotic
spermatocytes that significantly contribute to the total protein
content of the testis. The proportion of the material derived
from the somatic cyst cells in these testes is quite modest, as
opposed to the tudor mutant testes that are filled exclusively
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Fig. 3. Real-time RT-PCR analysis of testes of developing larvae
shows up-regulation of Ku80 (but not Ku70) during spermatogenesis.
Testes were dissected from larvae (L) or pupae (P) of different age
ranging from four (4d) to seven (7d) days in culture, total RNA
isolated, converted into cDNA and analyzed by real-time PCR.
Amounts of the Ku70 (white bars) and Ku80 (grey bars) transcripts in
the samples, as compared to the adult testes, are shown; vertical bars
represent S.D.

with somatic cells. Thus, the difference in Ku80 expression in
somatic testicular cells between the tudor and the meiotic arrest
mutants is even higher than observed on Western blots. These
observations suggest that Ku80 is up-regulated in cyst cells
during spermatogenesis, and this additional up-regulation re-
quires interaction with germline. Immunostaining of testes
with the antibody against Ku80 supports this hypothesis, since
intensity of the cyst cell staining increases with progression of
germline from spermatogonia to maturing spermatocytes
(Fig. 2d-f).

Up-regulation of Ku80 could result from transcriptional
activation or from the post-transcriptional effects. To identify
the mechanism, we analyzed the Ku80 transcript levels in testes
of developing larvae. As soon as the testes are readily discern-
ible in the second instar larvae (the 4th day of culture in our
conditions), they already contain young spermatocytes. Matu-
ration of the first wave of spermatocytes continues through the
third instar of larvae, and the cells commit to meiosis at the on-
set of pupation or soon thereafter [13]. Testes of the larvae of
different age were dissected and analyzed by real-time RT-
PCR, as described above. We found that the Ku80 transcript
is fourfold up-regulated prior to pupation (meiosis). At the
same time, the levels of the Ku70 transcript in testes did not
substantially change throughout larval development (Fig. 3).
Thus, Ku80 (but not Ku70) is up-regulated during spermato-
genesis at the level of transcription.

3.4. Up-regulation of the Ku subunit transcripts in testicular

cyst cells manifests increased activity of the functional

Ku heterodimer

Transcripts of the both subunits of the Ku heterodimer are

up-regulated in testes to the similar extent. Using antibody
against Ku80, we confirmed its accumulation at the protein le-
vel and localized it to the testicular cyst cells. To demonstrate
that the observed effects reflect up-regulation of the functional
Ku heterodimer, we assayed testes extracts for the presence of
non-sequence-specific double stranded DNA (dsDNA)-bind-
ing activity that is characteristic for Ku [14]. We found that
testes are enriched with dsDNA-binding activity that is not
suppressed in the presence of poly-dIdC, but is inhibited by
addition of heterologous double stranded oligonucleotides or
PCR fragments (Fig. 4A). The representative example of an
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Fig. 4. Non-sequence specific dSSDNA binding activity is abundant in
Drosophila testes. (A) Protein extracts from heads (h), whole gona-
descomized males (m), testes (t) and ovaries (o) were incubated with
radiolabeled oligonucleotide TSE probe and analyzed by EMSA in the
presence of poly-dIdC competitor. Arrowheads indicate two pro-
tein:DNA complexes enriched in testes. (B) Extracts from testes were
incubated with radiolabeled 200 bp PCR fragment in the presence of
poly-dIdC alone (c), or in the presence of poly-dIdC and increasing
concentrations of double-stranded DNA (dsDNA, the 100 bp DNA
ladder, New England Biolabs) or single-stranded sheared salmon
sperm DNA (ssDNA). Each of the two DNA competitors was used in
amounts of 0.5, 1.5, and 5.0 ng (corresponding to ca. 3x, 10x, and 30x
excess to the labeled probe), increasing as shown above.

inhibition experiment is shown on Fig. 4B. Denatured, sheared
single stranded salmon sperm DNA (ssDNA) was about 10
times less efficient in inhibition than the double-stranded frag-
ments, indicating strong preference of the binding protein to
dsDNA. The extent of inhibition was the same for the unla-
beled probe (the specific competitor) and for any other
double-stranded DNA fragments (including five different dou-
ble-stranded oligonucleotides and eleven PCR fragments, data
not shown), indicating that the observed dsDNA-binding
activity is not sequence-specific.

The observed traits of the DNA-binding activity up-regu-
lated in testes, including lack of sequence specificity, strong
preference to dsDNA, and lack of specificity towards poly-
dIdC, are characteristic for Ku. In the vast majority of somatic
tissues of flies and mammals alike, Ku heterodimer has been
localized in the nucleus. Thus, we analyzed subcellular distri-
bution of the observed dsDNA-binding activity in somatic tis-
sues (whole adult gonadectomized flies) and, as expected,
found that it is enriched in the nuclei rather than in the cyto-
plasm (data not shown). To further confirm the identity of tes-
tes-enriched dsDNA binding activity, we developed a
biochemical procedure for its purification (Fig. 5). Whole flies
were used for the purification; therefore nuclei were isolated as
the first step. Proteins extracted from the nuclei with 1.5 M salt
were fractionated by ammonium sulfate precipitation and
purified by series of hydrophobic interaction, ion exchange,
and heparin affinity chromatography. Purification of the
dsDNA-binding activity was monitored by EMSA. The par-
tially purified protein was applied on the magnetic beads cov-
ered with dsDNA, and eluted with 0.5-1.0 M salt. This final
step yielded two protein species, one with the mobility in
SDS-PAGE corresponding to about 75 kDa and another of
about 80 kDa, present in approximately equal amounts
(Fig. 6). Size exclusion chromatography showed that the
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Fig. 5. Outline of purification of the dsDNA-binding activity. The
media used for purification are indicated on the left.

dsDNA binding activity elutes with the fractions correspond-
ing to the molecular weight of 150-200 kDa (Fig. 7), indicating
that both the ca. 75 kDa and the ca. 80 kDa proteins contrib-
ute to the activity by forming the heterodimer, as is expected
for the Ku subunits. The observed mobility of the purified pro-
teins was consistent with the predicted size of the proteins en-
coded by Ku70/Irbp (72.5kDa) and by Ku80 (79.8 kDa).
Analysis of the purified protein species by nano-LC/MS/MS
confirmed their identity as the Drosophila Ku80 and Ku70,
providing more than 50% sequence coverage for each protein.

4. Discussion

4.1. Up-regulation of the Ku subunits in cyst cells reveals somatic
gene expression program in testes

We demonstrated that both Ku subunits are strongly up-reg-
ulated in testes. Independence of this up-regulation of the
major germline-specific transcriptional regulators indicates
expression outside of the germline. Localization of the Ku80
protein in testes is consistent with this suggestion and shows
high level of expression in cyst cells. Interestingly, analysis of
the tudor mutant testes reveals elevated expression of KuS§0.
In these testes, germline cells are absent. Therefore, up-regula-
tion of Ku80 in testicular somatic cells occurs independently of
the germline. Such up-regulation may manifest the regulatory
mechanism that defines the identity of cyst cells in testes, and
suggests that such mechanism may not require interaction with
germline. However, such interaction may be necessary for
cytoplasmic localization of Ku80 in somatic cells, because in
the absence of germline (in fudor mutant testes) Ku80 is local-
ized to the nuclei of somatic cells.

Analysis of the Ku70 and Ku80 transcription during
spermatogenesis shows that these two genes are regulated
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Fig. 6. Final stage of purification of the dSDNA-binding activity on the DNA affinity magnetic beads. (A) Collected fractions analyzed by EMSA.
Arrowheads indicate two protein:DNA complexes enriched in testes. L, protein sample loaded onto the beads; S, supernatant containing proteins
that did not bind to the beads; W1-W7, washes; 0.1-3.0, elution with the KCI concentration indicated in Moles. (B) SDS-PAGE analysis of the
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Positions of the protein size standards (Bio-Rad) are indicated on left.
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Fig. 7. Size of the protein that corresponds to the dsDNA-binding
activity in testes, determined by size exclusion chromatography.
Proteins were separated on the Superdex-200 gel filtration column,
and fractions assayed by EMSA. The void volume (v) and the elution
volumes for the protein size standards (Sigma) are indicated on top.

differently. Transcription of Ku80 is up-regulated during sper-
matogenesis, and is followed with up-regulation of the Ku80
protein. In contrast, the level of Ku70 transcript does not sub-
stantially change during germline development. Considering
that both transcripts are up-regulated in adult testes to similar
extent, these data indicate that up-regulation of Ku70 is com-
pleted in early cyst cells, perhaps using the same mechanism
that mediates the initial germline-independent up-regulation
of Ku80. In addition, Ku80 is subject to the additional germ-
line-dependent regulation that further augments its expression
during spermatogenesis.

4.2. Ku is expressed in testes as functional heterodimer

We demonstrated that transcriptional regulation of the Ku
subunits leads to up-regulation of the functional heterodimer
that, in fact, represents the major non-specific dsDNA end-
binding activity in Drosophila testes. Different expression pro-
files of the Ku subunit genes during spermatogenesis indicate
that at early stages of development, Ku70 is present in excess
and the Ku80 levels draw alongside later. Therefore KuS80
may be the limiting subunit of the Ku heterodimer, hence
the pattern of the Ku activity may follow the pattern of the

Ku80 expression. In agreement with this suggestion, overex-
pression studies have demonstrated that Ku70 is not the limit-
ing factor for the non-homologous end-joining (NHEJ) DNA
repair mediated by the Ku heterodimer [15]. In mammals,
Ku70 is present in excess and is needed to stabilize the newly
synthesized Ku80 by forming the heterodimer; otherwise
Ku80 is rapidly degraded [16]. In addition, at early stages of
spermatogenesis abundant Ku70 can be involved in interac-
tions with proteins other than Ku80 in cytoplasm.

4.3. Paucity of Ku80 in male germline nuclei

The major documented activity of Ku in the NHEJ DNA re-
pair requires nuclear localization. However, we have not de-
tected appreciable Ku80 signal in germline nuclei even
though control staining of the accessory gland epithelium dem-
onstrated that the used antibody is able to recognize nuclear
Ku80 protein. A similar observation has been made in mam-
mals where a marked paucity of Ku70 [17,18] and Ku80 [18]
in late spermatogonia and primary spermatocytes has been ob-
served. It has been proposed that down-regulation of Ku in
meiotic prophase funnels double strand break (DSB) repair
into the HR pathway, thus facilitating meiotic recombination
[17]. Ku reappears later in spermatogenesis, where it acts in
collaboration with members of the HR pathway to complete
DSB repair before the meiotic checkpoint [18,19]. Interest-
ingly, in Drosophila male germline meiotic recombination is
absent [20], nevertheless Ku80 is still underrepresented in the
nuclei. Thus, paucity of Ku in male germline nuclei may be
conserved between distant species and not necessarily linked
to the meiotic recombination.

4.4. Abundant Ku80 expression in cytoplasm of the cyst cells
Coordinated up-regulation of the Ku subunit genes in testes
suggests the functional role for the protein complex. It is pos-
sible that Ku is involved in the NHEJ DNA repair pathway. In
addition, Ku is capable of regulation of template-associated
protein kinase that phosphorylates C-terminal domain of
DNA polymerase II [21] and may be involved in transcrip-
tional activation in spermatogenesis, similar to its role in gene
regulation in mammalian development [22,23]. However, ob-
served abundant presence of Ku in the cyst cell cytoplasm sug-
gests other possible roles. Extranuclear activities of Ku have
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been reported, in particular extracellular membrane-bound Ku
has been implicated in intercellular signaling, cell adhesion and
motility, and in tissue remodeling through recruitment of
matrix metalloproteinase [24-30]. In addition, studies in mam-
mals showed that cytoplasmic Ku70 is involved in regulation
of apoptosis [31]. Ku70 binds pro-apoptotic factor Bax of
Bcl protein family, sequestering it in cytoplasm and preventing
its localization to mitochondria [31]. If not sequestered, Bax
relocates into mitochondria and starts a cascade of events lead-
ing to release of cytochrome C, caspase activation, and apop-
tosis in mammalian cells (reviewed in [32]).

The similar mechanism of apoptosis was discovered in Dro-
sophila. Bax homolog Debcl contains the membrane anchor
(MA) domain and localizes to mitochondria when overexpres-
sed [33,34]. Overexpression of Debcl in mammalian cells in-
duces release of cytochrome C and activation of caspases in
the same way as mammalian Bax [34]. Although cytochrome
C release has not been documented in Drosophila, the other
homologs of mammalian apoptosome complex, including
caspases Drice and Dronc, appear to localize in proximity of
mitochondria upon their activation [35].

It has been shown that the elements of apoptotic machinery
are necessary at certain stages in spermatogenesis [36]. In Dro-
sophila, the same caspases as involved in apoptosis — Drice and
Dronc are expressed in spermatid bundles during individuali-
zation, and the caspase activity is necessary for normal individ-
ualization of spermatids [36]. The mechanisms of the timely
caspase activation have not been discovered yet. However,
drawing parallels with mammalian cells, we can propose the
regulatory role for Ku70 and Ku80 in this process. We suggest
that early in spermatogenesis Ku70 binds Bax homolog Debcl,
preventing it from entering mitochondria. With progression of
spermatogenesis, however, the expression of Ku80 increases
and Ku70 is increasingly recruited to the Ku heterodimer,
therefore releasing Debcl and allowing activation of the apop-
totic pathway. The observed expression profiles of Ku70 and
Ku80 as well as the peak expression of the Ku80 protein at
the elongated spermatid stage — right before individualization
— support the proposed scenario.
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