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Introduction

The main object of this paper is to study convergence properties of
solutions of variational inequalities such as

ue Ki{Tu,v —u> =0 forall veKk, ()

where T 1s a monotone hemicontinuous mapping from a real reflexive
Banach space X to its dual X* and K is a non-empty closed convex
subset of the domain of T, when T and K are subjected to a perturbation.

We consider a sequence (7,,) of monotone hemicontinuous mappings
from X to X*, a sequence (K,) of closed convex subsets of X, K,
contained in the domain of T, , and for each # the variational inequality

u, e K, {Touy, , v — 1> =0 forall vek,, (1)

and we ask under what condition the solutions of (1,) “converge” to the
solutions of (1), as T, “converges” to T and K, “converges” to K.
Real parametrized perturbations 7. and K_ would require only minor
changes.

* This research has been supported in part by C.N.R. (Comitato Nazionale Matema-
tico, Gruppo 46).

! Present address: Istituto Matematico, Universita degli Studi, Piazzale delle Scienze,
00185 Roma, Italy.
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VARIATIONAL INEQUALITIES 511

It is well known that for any 7 and K as stated above, the solutions
of (1) are a (possibly empty) closed convex subset of K. Therefore, to
pose our problem more precisely, we need to specify: (/) the convergence
of T, to T as n — -+ oo, (2) the convergence of a sequence (S,) of closed
convex subsets of X to a closed convex subset S of X.

As for (1), we require that any point {v, T} in the graph of T is the
limit in the product strong topology of X X X* of a sequence of points
{vn s Tpv,}, €ach one in the graph of T, , as n — +- 0.

We introduce convergence (2) by means of the topological notion of
Lim S, in the strong topology of X and (sequential) Lim S, in the
weak topology of X; see Definition 1.1 of Lim S,, .

In Section 1 we give the main properties of Lim S, and consider some
examples. Moreover, by means of a notion of “local gap” between two
closed convex sets, we relate such convergence with the Hausdorft
metric convergence for closed sets and with the “gap” or “opening”
convergence for linear subspaces.

In Section 2 we state our results in the case that the T,’s are uniformly
coercive in X and the solution of (1) unique. Namely, we answer with
Theorem A the following questions: weak convergence of u, to u (as
well as convergence of (T, u, — Tu, u, — u) to 0); strong convergence of
u,, to u; uniform boundedness of %, .

In Section 5 we also deal with the degenerate case of 7, non-coercive
and solution of (1) non-unique. The device that we shall use is the so
called “elliptic regularization”, that consists in adding to each T, a
coercive perturbation n—*M, o > 0, which vanishes as n — - 0.
Again we find that the approximate solutions converge to a solution of
(1), provided T, and K, converge sufficiently fast to T'and K, respec-
tively, as n — - 00. This result is stated in Theorem C of Section 5.

We make a parallel (and equivalent) study for inequalities of type

ue X:{Tu,v —u) = f(u) — f(v) forall velX, (2)

where f is a lower-semicontinuous convex function from X to (— o,
+ ], f %= + 0. We reduce these inequalities to inequalities of type (1)
in the space X X R and we apply the theorems quoted above to prove
Theorem B of Section 2 and Theorem D of Section 5. By taking T = 0,
we obtain some results on the continuous dependence on f of the mini-
mizing vector and the minimum value of a functional such as f. The
convergence of a sequence (f,) of convex functions is defined in terms of
convergence in the space X X R of the convex sets epi f,, , where epi f
is the set of all {o, B} e X x R with 8 = f(v).

607/3/4-7



512 UMBERTO MOSCO

In Section 3 we show that our results can be applied in two directions:

(1) The approximation of the solution of (1) by solutions of
inequalities (1,) relative to finite-dimensional spaces X, , with K, some
kind of finite-dimensional approximation of K;

(2) To obtain results on the continuous dependence on the
constraints of the solution of a variational problem such as (1); for
example, of the problem

jue K

KAy —v',o —u) =0 forall zek,
where A4 is a partial differential operator of type

Au = Z D4 (x, u,..., D"™u)
laj<m
and K is a closed convex subset of the Sobolev space W™»(R) defined in
terms of the boundary conditions imposed upon u.

The main properties of inequalities (1) and (2) are summarized in
Section O, where also some references to the literature can be found.

The results proved in this paper generalize and extend previous
results obtained by the author in case T is a linear accretive operator in
a Hilbert space (34). Some extensions to the nonlinear case were already
stated, without proof, in (35).

0. Preliminary Remarks

1. Notation

We shall denote by X a real normed space, by X* the dual space of X.
We shall denote strong convergence in X, i.e., convergence in the strong
topology of X, by s-lim or —, and weak convergence in X, i.e. con-
vergence in the weak topology of X, by w-lim or —. We shall also use
the same notation to denote convergence in the strong topology and the
weak* topology of X*.

The pairing between v € X and ¢’ € X* will be denoted by (v, v).
Both the norm of # in X and the dual norm of o’ in X*, by || .|

2. Some Definitions
Let A be a mapping of a subset D(4) of X to X*:
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A is monotone if
{(Au — Av,u —v)> =0 for all u and v in D(4);
A is strictly monotone if A is monotone and
{Au — Av,u —v)> >0 whenever u # v;

A is hemicontinuous if D(A)is convex and for any # and » in D(A4), the
map t — A(tu + (1 — t)v) of [0, 1] to X* is continuous for the natural
topology of [0, 1] and the weak topology of X* (see T. Kato, (27) for
a discussion of this and related continuity properties of monotone
operators);

A is coercive (in X) on a subset K of D(A), if there exists a function c:
(0, + ) — [— o0, + ©], with ¢(r) - + 0 as r — + 00, such that

lollelol) < (4o, v) forall vek.

Thus, A is coercive on K whenever K is bounded, while A4 is coercive
on an unbounded X if and only if

(dv, vy
ol

— 4+ as o] — 4+ o0, ve K.

3. Variational Inequalities for Convex Sets

Let A be a map from X to X*. If K is a (non-empty) subset of the
domain D(A) of A, we shall denote by

S(4, K)
the set of all vectors # of X such that
ue K:{Au,v —u) =20 forall ve kK. €]

The basic, though not the most general, results for inequality (1) can
be summarized as follows:

S(4, K) is a (possibly empty) subset of K, which is closed and convex,
provided K is such and 4 is monotone and hemicontinuous;

If, in addition, X is a reflexive Banach space and A4 is coercive on K in
X, then S(4, K)is non-empty [existence of solutions of (1)];

If A4 is strictly monotone, then S(A4, K) consists at most of a single
vector [uniqueness of the solution of (1)].
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Let us notice a special case of (1). Let ¢" be a vector of X* and 4 — ¢
the map v > Av — v’ of D(A4) to X*. Suppose I)(A) is a dense linear
subspace of X. Then, the set

S(4 — o', D(4))
coincides with the set of all solutions # in D(A4) of the equation
Au = 7.

4. References for Inequalities (1)

Inequalities such as (1) were introduced, and the existence theorem
was proved, by G. Stampacchia, (38), for A an aceretive linear operator
in a Hilbert space, as a generalization to non-symmetric 4 and one-side
constraints of the Euler-Lagrange equation for a variational problem.
A further study of this special case of problem (1), also for non-coercive
A, was done by J. L. Lions and G. Stampacchia in the joint papers,
(27) and (28), with applications to elliptic and parabolic unilateral
boundary value problems.

The existence theorem in the general form stated above (and its
extension to semi-monotone operators) was obtained by F. E. Browder
(12) and P. H. Hartman-G. Stampacchia (20) by using the ‘“‘mono-
tonicity” approach to nonlinear problems previously developed for
operator equations in Hilbert space by E. H. Zarantonello (41),
G. Minty (37) and F. E. Browder (5), (6) and for equations involving
operators from a Banach space X to its dual X* by F. E. Browder
(7), (8), G. Minty (32) and J. Leray-]J. L. Lions (25). A survey of the
theory and further references to the literature can be found in F. E.
Browder (9).

5. Variational Inequalities for Convex Functions

Now we show how inequality (1) can be written by replacing the subset
K of X by a function on X with extended real values.

For any subset K of X, let 85 (the indicator function of K) be the
function defined on X by putting

Sx(v) =0 if vek,
Sg(v) = + if v¢K
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Then, it is easy to verify that the vector u of K is a solution of (1) if and
only if u is a vector of X such that

CAu, v — > > S(u) — 8g(v)  forall veX.

Therefore, we are led to consider, as a generalization of (1), inequalities
of the following type:

ue X: (Au,v —uy = f(u) —f(v) forall veX, (2

where f is an arbitrary function on X with values in (— o0, 4+ 0].
We shall discuss inequalities (2) in Subsection 7 below. First, we
recall a few standard definitions from the theory of convex functions.

6. Some More Definitions

By function on X we mean a mapping f of X into [—o0, +o0]. A
function f on X is proper, if f(v) > —oo for all ve X. The effective
domain of f is the subset of X

dom f = {v e X: f(v) < 4 00}.
The epigraph of f is the subset of X x R
epif = {{v, B} e X X R: f(v) > B}.

A function f on X is convex, if epi f is a convex subset of X X R, thatis,
if for all # and v in X, we have

fOu + (1 — o) < M) + (1 — ) flo)

for all A with 0 < A < I (we assume 00 + (—o) = —o0 + (400) =
+ o). F is stricly convex if it is convex and, besides, one has

2f (“5-2) <f6) + fCo)

A convex function on X is lower-semicontinuous in X if epif is a
(convex) closed subset of X X R. By the convexity of epif, we can
regard X X R as endowed with the product topology of either the
strong or the weak topology of X, and the natural topology of R. There-
fore, f is lower-semicontinuous in X if and only if we have

f(@) <liminff(v,) a n— +too,
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for any sequence (,) converging (weakly or strongly) to v in X.

7. Properties of inequalities (2)

Let A be a map from X to X*. If f is a proper function on X, with
@ # dom f C D(A), we shall denote by

S(4,f)

the set of all vectors u of D(A4) which are solution of inequality (2)
above.

The properties of inequalities (2) are quite similar to those of
inequalities (1). Namely, the following results hold:

S(A4,f) is a (possibly empty) subset of dom f, which is closed and
convex, provided f is lower semicontinuous and convex and A4 is mono-
tone and hemicontinuous;

S(4, f) is non-empty, if, in addition, X is a reflexive Banach space and
either dom f is bounded or the following coerciveness condition is
satisfied:

(Ao, o) +f@)flvl— +o as o] +o, vedomf,

which is the case whenever A4 is coercive on dom f.
If either A is strictly monotone or f is strictly convex, then S(4, f)
consists of, at most, a single vector.

[The uniqueness of the solution of (2) in case f is strictly
convex, which seems not to have been noted explicitly in the
literature, can be simply proved as follows: suppose u; and u,
in S(4, 1), u; # u, ; we have

CAuy v — uyy = f(wy) — f(v),
{(Auy , v — uy)y = f(us) — f(v)

for all v € X; putting v = (u; -+ #,)/2 and adding, we find

U + Uy

CAuy — Auy , uy — uy) = flug) + flus) — 2f (T) ;

hence, since A is monotone

2f (4T > fan) + fla),

which contradicts the strict convexity of f.]
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A significant special case of (2) is obtained for A = 0. Then, S(0, f)
is the set of all # in X which minimize f on X (actually, on the effective
domain of f).

8. References for Inequalities (2)

The inequalities (2) were introduced as a generalization of (1) by
C. Lescarret (26), for A an accretive linear operator in a Hilbert space.
This special case was also studied by J. L. Lions—G. Stampacchia (28).

The results stated in Subsection 7 above, are due to F. E. Browder (13)
who has also considered non-coercive A (Ref. (14)), by making use of the
duality mappings of X to X* to obtain an “elliptic regularization” of 4.

As we shall see below, any inequality such as (2) can be written as an
inequality of type (1) in the space X X R. This makes it possible to
deduce the properties of (2) from the corresponding properties of (1).
A proof along this line of the existence theorem stated in Subsection 7
has been given by the author (36).

9. Equivalence of Inequalities (1) and (2)
We shall denote by X @ R the space X X R, normed by
o, BYl = (ol + | B %)

We identify the dual (X @ R)* of X @ R with X* @ R, the pairing
between {v,8}e X DR and {v',f}e X* DR being

<{vlv B,}’ {7)) B}> = <7J” v+ B,B'
For any map 4 of D(A4) in X to X*, we shall denote by

A@1

the map {9, 8} - {do,1} of D(AP1)=DA)PR in XPR to
X* DR

Clearly, 4 @ 1 is monotone, hemicontinuous, provided A4 is such.

Let A4 be given and let f be a proper function on X, with
@ # dom fC D(A4). According to our notation of Subsection 3,
S(4 @ 1, epif) is the set of all {u, o} € epi f such that

AD 1w, o}, {0, 8 —{u,a}> >0  forall {v,Bieepif,
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that is, the set of all u € X, a € R, with o > f(u), such that
(Au,v —u> + B —a =0

for all v € X and B e R, with 8 > f(v).
It follows that

{u,0 € S(A @ 1, epif)
if and only if
ueS(4,f) and o = f(u).

Further extensions and applications of the theory have been given by
F. E. Browder (15) (where further references can be found) and G. Minty
(33), who consider also multivalued maximal monotone operators, and
by H. Brezis (3), who replaces the monotonicity assumption by suitable
continuity properties of A.

In this paper we shall restrict our study to monotone (single-valued)
mappings from a real reflexive Banach space to its dual. However, many
of our results could be proved in the more general setting of linear
spaces in duality.

1. Convergence of Convex Sets and Convex Functions

The classical Hausdorff definition of a metric for the space of closed
subsets of a (compact) metric space has been generalized by many
authors, who have introduced a topology, or a pseudo-topology, or
simply a convergence, in the space of closed subsets of a topological
space, see for instance L. Vietoris (40), C. Kuratowski (24), C. Choquet
(19), and E. Michael (30).

However, in view of the applications given in this paper, we have found
it more convenient to define a special convergence for convex closed
subsets of a normed space X, in which both the strong and weak
topologies of X are involved, see Definition 1.1 below. Let us notice,
incidentally, that this convergence can be defined in any locally convex
topological vector space.

As in Refs. (24) and (19), we have used the classical notions of lim inf
and lim sup of sets (for these, see also C. Bouligand (2) and G. T.
Whyburn (39)): the former relative to the strong topology of X, the
latter to the weak one [actually, it suffices for our purposes to define
lim sup in terms of weakly convergent sequences only].
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In Subsection 4 we shall establish the connection between the con-
vérgence so defined and a convergence defined “locally”’ in terms of
Hausdorff distance for closed sets, which generalize the “opening”
convergence for linear subspaces of X (for this, see for instance T. Kato
(22), where further references are given).

1. Definition of Lim S,
Let (S,) be a sequence of subsets of X. We shall denote by
s-Lim S, ,
the set of all v in X, such that
v = s-lim o, in X as n— +o0,

for a sequence (v,,), with v, € S, for all large =.
We shall denote by

w-Lim S, ,
the set of all  in X, such that
v = w-lim v, in X as k— 40,

for a sequence (v;), with v, € S, for every k and (S,,) a subsequence of

(Sh)-
Definition 1.1. A sequence (S,) of subsets of X converges in X, if
s-Lim S, = w-Lim S, ;

(S,) converges to S in X, if (S,) converges and S is a subset of X, such
that

s-Lim S, = w-Lim S, = S.

If (S,) converges to S, then we write either

S, — S,
or

S —Lim S, .
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Note that if S, — S and S # @, then S, # @ for every n > n,,
n, > 0. On the other hand, we may have S, # @ for all n, while
S=LmS, = o.

In case S, consists, for each #n, of a single vector v,, of X, then we have
S, — Sin Xand S # o, if and only if (v,) converges strongly in X to
avector v of X and S = {o}.

2. Definition of w-Lim S,
We shall also use a weaker limit of (.5,,). Namely, let us denote by
w-Lim S,
the set of all v in X, such that
7 = w-lim 2, in X as n-—> o0,

for a sequence (v,) with v, € S, for all large a.
Then we give the following

Definition 1.2. A sequence (S,) of subsets of X converges weakly
in X to a subset S of X, if we have

w-Lim §, = w-Lim S, = S.

Then we write
S =w-Lim S, .

Clearly, if S, = {v,} for each n, then S = w-Lim S, # &, if and
only if v, converges weakly to a vector v of X as n — 00 and S = {o}.

3. A Convergence for Convex Sets

Let (S,) be a sequence of closed convex subsets of X. If S, = S in
X, then clearly S is a closed convex subset of X. Moreover, we have

S, — Sin X, if and only if
(@) S Cs-Lim S,
(ii) w-Lim S, C S,

and (1) is trivially satisfied if S C S, for every n, while (ii) holds whenever
S, C S for every n.
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In particular,

(a) If S is a closed convex subset of X and S,, = S for every n, then
(S,) converges and S = Lim S, .

If (S}) is a subsequence of (S,) we have the obvious inclusions
s-Lim S, Cs-Lim S}/
w-Lim S’ Cw-Lim S, .

Therefore, we have
(b) If S,, — S and (S}) is a subsequence of (S,), then S} — S.
Furthermore, as we shall see below, the following property holds:
(c) If any subsequence (S,') of (S,,) contains a subsequence (Sy) which
converges to S in X, then (S,) converges and S = Lim S, .

Therefore, the mapping (S,) — Lim S, , since (a), (b) and (c) are
satisfied, gives to the family of all closed convex subsets of X a structure
of space £*, in the terminology of Kuratowski (23).

[(c) can be proved as follows:
First, suppose S # @. Note that for any v of X, we have
v es-Lim S, if and only if d(v, S,) > 0 as n — 40, where

dv, U) = inf{lo —ul|: ue U}

for any subset U of X, U # . Now we prove that (i) holds.
In fact, suppose there exists vy € S such that v, does not belong
to s-Lim S, . Then, d(v,, S,) +~ 0 as n — + o0, hence there
exists p > 0 and a subsequence (S)') of (S,), such that
d(v,, S;') > p for all k. On the other hand, since (S,') contains
a subsequence (S}) converging to S in X, there exists for each 4
a vector v, € Sy, , such that ¢, = s-lim v, in X as h — -+ 0.
Hence we find a contradiction. Let us prove now that (ii) holds.
If v € w-Lim S, , there exists a subsequence (S,,’) of (S,) such
that v = w-lim v, , with v, € S}’ for each k. Thus, if (S;) is a
subsequence of (S,’) which converges to S, we have
v € w-Lim S, hence v& S. Therefore, we have proved that
S,—S.

Now suppose S = @. To prove that S, — S, it suffices to
prove that w-Lim S, = @. On the contrary, it would exists
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a subsequence (.S;’) of (.S,,) and for each k a vector ;. € .S}/, such
that v, — v, with v € X; whereas, since (S,’) has a subsequence,
say, (Sy), converging to S and S = @, we should have
w-Lim S;, = @. Hence, a contradiction.]

4. The “Local Gap”

We intend now to compare the convergence we have introduced in the
previous subsection with a convergence defined in terms of the Hausdorff
metric for closed sets. Let us notice that the remainder of the paper is
independent of this subsection.

Following the definition of “gap”, or “opening”, between two closed
linear subspaces of X—see for instance T. Kato (22)—we can define for
each R > 0 a “local gap”

or(Sy 5 Sy)
between two closed convex subsets .S, and S, of X, by setting

ox(S1,S) = max{o(S,%, S,), U(SzR: Sl)})
where
SR={veX:veS, |z <R}

for any subset .S of X, and
o(U, V) = sup{d(u, V): ue U}

for any couple of closed subsets of X, with the additional convention
that o(U, V) = 0 when both U and V are the empty set, while
o(U, V) = 4 o if only one of them is &.

On every family of uniformly bounded non-empty closed convex
sets, o, for each R large enough, reduces to the classical Hausdorff
metric.

On the other hand, since the “gap” §(M, N) between two closed
linear subspaces M and N of X can be characterized as the maximum
of the smallest %, and %, , such that

dv, Ny < pylto|| for all ve M,
d(v, M) < nyll v || forall »2e N

(see T. Kato, loc. cit.), then we have for every R > 0

ox(M, N) = R§(M, N).
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Therefore, for closed linear subspaces of X, the convergence according
to & is equivalent to convergence according to o for every R.

We send to the reference quoted above for a discussion of § and for
further references on the subject.

Let (S,) be a sequence of closed convex subsets of X, S a closed
convex subset of X. For any R > 0, we have

or(S,,S)—0 as n—> 400,

if and only if for any p > 0, there exists #n, > 0 (possibly depending on
R) such that, for all # > n,, either S, = § = &, or both the following
conditions are satisfied

6) @ # SRCLS,,
() g # S,RCILS,
where

ILU={veX:d@ U)<p}

for any non-empty closed subset U of X.

[In fact,
og(Sn, S) <p

is equivalent to
oS5, S,) <p, oS5, S) <p,
hence either to S, = S = @, or to

d(v, Sy

y<p forall ve SR SR £ g
d(v, S)

<
<p forall veS,® S,®+# o,

which are the same as (j) and (jj).]

Lemma 11. Let S be a non-empty closed convex subset of X, (S,)
a sequence of closed convex subsets of X. Then,

(a) If we have

op(S,,S)—0 a n—> oo, (1.1)
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for every R > Ry, Ry > 0, then
S,— S in X as n—> 00, (1.2)

according to Definition 1.1.
(b) If X has finite dimension, then the converse of (a) is true.

Remark 1.1. As we will show below by examples, in an infinite
dimensional X the converse of (a) may be false, even if the S, are
uniformly bounded.

Proof of Lemma 1.1. Let us suppose that (I.1) holds for every
R > R, . Then, (j) and (jj) are satisfied for all R > R, . Let us prove
that (i) of Subsection 3 holds. Let v € S and R > max{R,, || v |}. For
any p > 0, we have by (j) for all # large enough

vel,sS,,

which is to say
d(wr Sn) < p-

Therefore, we have d(v, S,) — 0 as n — + o0, that is, v es-Lim S, .
Thus (i) has been proved. Let us prove (ii) of Subsection 3. Let v € X,
v, € S, for every k, with (.S;’) a subsequence of (S,), and suppose that

v = w-lim 7, as k— o0,

There exists R > R, such that|| v, || < R for all &, hence
v, eS8k for every &,
which implies, by (jj), that for any given p > 0 we have
v, €IS
for all & sufficiently large. Thus, since 7, is closed and convex, we find
vel,S,

which implies, since p is an arbitary positive number, that v € S. This
proves (ii). Therefore, S = Lim §,, and part (a) of the lemma has been
proved.

Let us suppose now that X has finite dimension and prove that (1.2)
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implies that (1.1) holds for all R > R, for some R, > 0. Let S* 3= &
for all R > R, . Since S® is compact, for any given p > 0 there exists
a finite number of vector v, ,..., vy of S%, such that

N
SECU Lofos}-

i=1

By (1.2), there exists 7, such that for all # > »,, we have

d(w;, S,) <pf2 forall i=1,.,N.
This implies
Lp{vCLS,, i=1,..,N,
hence
SRCLS,;
thus (j) holds.

Now, let S,®R £ & foral R > R, > 0 and all » > n, > 0. Let us
suppose that there exists R > R, and 5 > 0, such that

SR¢IS
for a subsequence (S}) of (S,). There exists then a sequence (z;), with
v,eSR v ¢lS

for all &, which is bounded in X, hence containes a subsequence (v}")
converging to a vector v of X as  — - 0. By (ii), we should have v € S,
whereas we have v ¢ IS, p < p. Therefore, also (jj) holds and part (b)
of the lemma has been proved. ||

Let us consider the Hilbert space I, , of all sequences

v = (oW,..., oM,..), o™ c R,

with
o 1/2
v = (2 | o™ |2) .
r=1

Let us consider the following (uniformly bounded, closed convex)
subsets of I, :

1 for all A},

S=Bn{vel:0<<o® L
< o™ < 1 + nh for all A},

S, =Bni{vel:0
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where B = {vel,:|v| <2}, o is a given positive number and
n=12,...
Then, S, — Sin [, as n — -- 00, according to Definition 1.1, whereas
it is false that for any p > Q we have
S, CIS

for all » sufficiently large.
Now let us take

S=BnC, S, =BnC,,
where
C = c0{(1,0,...), (0, 1,0,...),..., (0,..., 0, [, 0,..),..}
C, — wof(l +n0,.),(0, 1 +21%0,..),..., 0, ..., 0, | + hn=,0,...),...}

Then, again we have S, — S in [, as n — + 0, but it is not true that
for any p > 0 we have

SCLS,
for all large .

5. Examples

In this subsection we collect some examples, of geometrical or
functional nature, of sequences of closed convex subsets of a normed
space X, which converge according to Definition 1.1.

Lemma 1.2. Let (S,) be an increasing sequence of closed convex
subsets of X, S, C S,,if n < m. Then, (S,) converges in X and

Lim S, = S,

where S s the closure of |J, S, in X.

Proof. S is a closed convex subset of X, hence S is weakly closed.
Therefore (ii) of Subsection 3 holds. Moreover, (i) holds, for d(v, S,) — 0
as n — + oo for each v € S, because (S,,) is increasing. |

Lemma 1.3. Let (S,) be a decreasing sequence of closed convex subsets
of X, S, CS,.ifn = m. Then, (S,) converges in X and

LimSn:ﬂS,L.
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Proof. Put S = (), S, . Clearly, (i) holds. If w-Lim S, = @&, the
conclusion is trivial. Suppose there exists v € w-Lim S, and that (S,")
isa subsequence of (S,) such that v = w-Lim v,,, with ¢, € S, for each
k. Since (S;') is decreasmg, for each k, > 0 we have v, € Sy for all
k > k,, hence, since S; k, 18 weakly closed vE Sk Therefore, v € N, S}/,
which implies v € S. Thus w-Lim S, C S, that is (ii) holds. ||

Lemma 1.4. Let K be a closed convex subset of X, whose interior is
nonempty, and (S,) a sequence of closed convex subsets of X, such that
S,—>SimXasn— 4. Then, KNS, > KN SinXasn—4co.

Remark 1.2. The lemma is trivially false, if we suppress the
hypothesis that the interior of K is nonempty, as it can be seen by taking
K consisting of a single vector v of /, with v'® = 0 for infinitely many &
(or the one-dimensional linear subspace spanned by such a v), and S,
the n-dimensional linear subspace V,, of [, , spanned by the first # vectors

1,0,.), (0, 1,0,..),..., 0,..., 0, 1, 0,...).

Proof of Lemma 1.4. First we prove that
w-LimKn S, CKnS,

In fact, if v = w-lim v, with 9, € K N S,” and (S},") a subsequence
of (S,), then v € K, for K is weakly closed, and, besides, v € w-Lim S, .
Hence ve KN S. If KNS = @, it follows that KN S, - KN S. If
KNS # @, it suffices to prove that

KNSCsLimKnS,.

Let 4, € int K, int K being the interior of K, and let N(u,) be a strong
neighbourhood of #, contained in K. Let # be an arbitrary vector of
K N S and let C be the convex cone generated by # and N(u,). Clearly,
CCK. Let N(u) be any strong neighbourhood of # and take
u, € int C N N(u), int C the interior of C. Such a vector u, exists, because
it can be chosen of type u; = nu, + (1 — n)u for n > 0 small enough.
Let N(u,) be a strong neighborhood of #, contained in C N N(u). Since
S, — S, we have S, " N(u,) # @ for all n > ny, ny, > 0. Hence,
we have (K N S,) N N(u) #= & foralln > n,. Thus,u €s-Lim K N §,
and the proof is complete. |

Lemma 1.5. Let X bé a Hilbert space, K a bounded closed convex

607/3/4-8
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subset of X, and (P,) a sequence of symmetric (linear) operators in X, with
D(P,) = X, such that

Pv—v in X as n— +oo  forall velX. (1.3)
Then,
P,K—~K in X as n— 400,

where for each n, P,K = {ve X:v = P,w,we K}.

Remark 1.3. The lemma is false if we omit the hypothesis that K is
bounded. In fact, take X = /,,

K = w{(1},0,...), (0, 2!, 0,...),..., (0,..., 0, &1, 0,...),...}

and let P, be for each n the orthogonal projection on the z-dimensional
linear subspace V, of [, considered in Remark 1.2. Then, 0 € P, K for all
n, whereas 0 ¢ K.

That can happen even if K is a closed linear subspace. Indeed, let K
be the closed linear subspace of I, which is spanned by the vectors
(11, 21, 0,..), (0, 21, 31, 0,...),..., (0,..., 0, A!, (h + 1)}, 0,...). Then, K 7 I, ,
while P, K = V, for every n.

However, the hypothesis of boundedness of K can be obviously
replaced by the assumption

P,KCK  forevery n.

Proof of Lemma 1.5. The inclusion (i) of Subsection 3 is an immediate
consequence of (1.3). It remains to prove that w-Lim P,K C K. Let us
consider an arbitrary subsequence of (P,), say still (P,), and suppose
that v, = P,w, , with w, € K for every »n, and that

U, — Uy in X as n— +oo, vy € X.

We must prove that v, € K.
Suppose v, ¢ K. By the Hahn-Banach theorem, there exists a vector
7, € X, such that

(%o, v0) = 1,
(v, w) =0 forall wek,

where ( , ) denotes the inner product in X. Therefore, since

0 = (v, wn) = (v, vn) + (¥, @, — V)
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for every n, we find
lim(y, v, — w,) == lim(vy, v,) = (vy, y) =1

as n — +00. On the other hand, we have for each n, by the symmetry
of P, ,

(o, P, — ,) = (P — vy, ).
Since (w,) is bounded in X, we have by (1.3),
lim(v,', v, —w,) =0 as n— 400,

hence a contradiction. ||
If S is a subset and v a vector of X, we shall denote by

S+ o

the set {ze X: 2 =w+ v, we S} if S # &, and the empty set if
S=g.

Lemma 1.6. Let (S,) be a sequence of subsets of X, such that S, — S
in X as n — +0, (v,) a sequence of vectors of X, such that v, — vin X
as n — -+ 00, v a vector of X. Then,

S, +tv,—-S+9o in X as n— +oo.

Proof. Clearly S 4 v Cs-Lim (S, + v,). Let 2 be a vector of
w-Lim (S, + v,), thatis, ¥ = w-lim 2, , with 2, = w, + v,/ € S}/ + v,
for each &, (S, + v,’) being a subsequence of (S,, + 2,). Since v,/ — v
as k — -+ 00, then w, converges weakly to 2 — v in X as k2 — 0.
Hence 2 — vew-Lim S, , therefore 2 —ve S, that is z€ S + ».
Thus, w-Lim (S, + 2,)C S + 2. |}

The special case of Lemma 1.6 with S, = S for every n and S a
closed convex subset of X, shows that

v, —> v in X as n— oo,
implies
S+9,—-S+9o in X as n— -+oo.

A functional example of that will be considered in Lemma 1.7 below.
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We recall before a few definitions relative to the Sobolev spaces
Wmp(82) and W{P(82), that will be also used in Section 3.

Let R® be the s-dimensional (real) Euclidean space. We denote
by x» = (%, ¥%3,..., x,) the general point in R*® and for any s-tple
o = (o , & ,..., ;) Of NON-negative integers we put

¢

Da:lli(axi)ai, ’a[:igai.

Let £2 be a bounded open subset of R* with a smooth boundary 242,
m a positive integer and p a real, with 1 < p << 4-c0.

Wmp(£2) is the space of all real functions v € L?(£2), whose distribution
derivatives D™, with | o | < m, also belong to L?(£2). With the norm

19l ={ T 198no)

la| <m

Wme(£2} is a reflexive Banach space.
W3P(£2) is the closure in W™»(£2) of the linear subspace C,*(£2) of all
infinitely differentiable (real) functions on 2 with a compact support.
Following W. Littman—G. Stampacchia—H. T. Weinberger, (29), if
ve WyP(R) and E is a closed subset of 2, we shall say that v is non-
negative on E in the sense of W?(2), and write

220 on E,
if
ve P(E, Q),
where Py(E, 2) is the closure in W1 P(£2) of the convex cone
P(E, Q) ={pe Cy*(2):¢ > 0o0n E}.

According to this definition, if # and v belong to Wy'?(2), we shall
write

v>u on E
to mean that

v — ue Py(E, Q).
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Finally, we recall that the p-capacity (relative to £2) of a compact
subset E of £, is defined by setting

p-cap E = inf 3 P ‘Paci”i,,m) 1 e Cy®(82),p = 1on E; , (1.4)
-1

where ¢, = 9p/0x; ; see Ref. (29), quoted above.

Lemma 1.7. Let Q2 be a bounded open subset of R® with a smooth
boundary, E a closed subset of 2 and 1 < p < + 0. Let u e WyP(Q),

K={veWlt¥Q):v>uonkE}
(u,,) a sequence in Wy'?(Q) and
K, ={peWtn():v>u, onE}

for each n. Then, K, — K in W'?(Q) as n — + co, provided u,, converges
strongly to win Wi2(8) asn — + co.

Proof: It suffices to apply the special case of Lemma 1.6 con-
sidered above, taking into account that K = Py(E, £2) + u and
K, = P(E, ) + u, for every n. ||

n

Lemma 1.8. Let (E,) be a sequence of compact subsets of Q2. Then, we
have'

W»(Q) = Lim Wi¥Q — E,)

in the space W'-P(Q) according to Definition 1.1, if and only if for any
compact subset 2" of 2 we have

pcap (E,N)—0 a5 n—+o0.

Proof of Lemma 1.8. Let us prove first the “if”’ part of the lemma.
Let v be an arbitrary function of C;*(£2), £’ a compact subset of £
containing the support of v, and for each = let us put

E'=E nQ

1 For aﬁy closed subset E of £2, we identify the space W}'*(£2 — E) with the subspace
of W12(2) which is the closure in W#(Q) of all functions ¢ € Cy°(£2) such that ¢ =
oii E.
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Since by our hypotesis p-cap E," — 0 as n — 40, there exists
a sequence (g,) of functions of Cy*(£2), such that ¢, > 1 on E,’ for
each n and

Z ”(q)n)zl ”Iljv(g) —0 as n— +(XD
i=1

Obviously, we can suppose that ¢, > 1 on E,’. By the Poincaré
inequality, we also have || ¢, |, , = 0 as n — + 0. It follows that the
functions 4, = min{gp, , 1}, n = 1, 2,... are such that for each n, ¢, = 1
on a neighborhood of E,’ and, moreover, ¢, € W'-»(£2) and

lebplyp—O as n— oo,

By making a suitable regularization of i, , we can find for every »
a function ¢, * € C;*(2) with ¢,* = 1 on E,’, such that

¢ —d*lhp,—>0 as n— foo.
Now let us consider the function
Wy = v — ¥
Clearly, w, belongs to Cy*(£2) and w, = 0 on E,, , hence
w, e WhHQ — E ).
Moreover, since

< ” ‘l’n‘v ”1.1) _'_ H(l/’n* - '/’n)'v ”1,11
< max {sup ||, sup | v, [Hll ¥l + 1% — ¥ lh.0)s

i=1,

“ U — W, “1,11
it follows that

o —w,ll,,—>0 as n-—> 400,

Therefore, we have proved
| C2(@) C s-Lim W@ — E,)
which implies, since s-Lim W;?(2 — E,) is closed in W'-»(£), that
Wi(©) C s-Lim Wio(Q — E,). (1.5)
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Since Wp?(2 — E,) C Wi'?(Q) for every n, it follows
Wi(2) = Lim W2 — E,). (L6)

Conversely, suppose that (1.6) holds; hence (1.5) holds. Let £’ be an
arbitrary compact subset of £ and « a function of Cy™(£2) such that
a=1 on .

Since ae WyP(R), there exists, by (1.5), for every n a function
a, € Wy'P(2 — E,), such that ||« — a, ||, , — 0 as n — + co0. Therefore,
there exists also for each # a function B8, € Cy*(£2), with 8, =0 on E,,
such that ||« — 8,1, , >0 as n—> +oco. Thus, if ¢, = a« — 8, for
each n, we have ¢, € C;*(Q2), ¢, = 1 on E," = E, N Q' for every n,
and

l ®nlli,o—0 as n—> 0.

Since p-cap E, < | ¢, |, , for every n, we find

pcapE, -0 a3 n— +4oo. 1

6. “Order o’ Convergence of Convex Sets

To study the dependence on the convex K of a solution of a variational
inequality for a non-coercive mapping 7', we need to control, as we
already noticed in the Introduction, the rapidity of convergence of the
approximate K, to K as n — + 0. To this end, we shall use the following

Definition 1.3. Let (S,) be a sequence of subsets of X and let
« 2= 0. We say that S, converges of order o in X to a subset S of X as
n — 4 o0, and write

n[S, — S]—0 in X,
if (j) and (jj) below are satisfied:
(j) For any v € S, we have
Oes-Limn*(S, —v) in X; .7
(ij) For any weakly convergent sequence (v;,) in X, with v, €S,
for every k and (S, ) a subsequence of (S,), we have *
0 e w-Lim m2(v, — S) in X. (1.8)
2 For any subset S of X, any vector v € X and any real ¢, we put

oS —v)={ze X2 =clw —v), we S}
v —8)=1{eX:2=clv—w),weS}h



534 UMBERTO MOSCO

According to our notation of Subsection I, (1.7) means that there
exists v, € S, (for all large #), such that

n*(v, —v)—0 in X as n— 400,
while (1.8) means that there exists a sequence (w,) in S, such that
(0, —w)— 0 inXas A Hoo,

with (v;,) a subsequence of (v,,).
Let (S,) be a sequence of convex closed subsets of X and S a non-
empty convex closed subset of X:

Lemma 1.9. We have S = Lim S, in X, according to Definition 1.1,
if and only if S, converges of order =0 to S in X asn — 4 co.

Proof. It suffices to remark that
0 es-Lim (S, — v) forevery ve S,
is equivalent to
S Cs-Lim S, ,
while
0 € w-Lim (v, — S) for any sequence such as  (vy),
is equivalent to
w-Lim S, C S. 1

It follows from Lemma 1.9 that if S, converges of order >« to S,
for some « == 0, then § = Lim §,, .

"Example. Let X be an inner product space, 4 a (linear) symmetric
compact operator in X. Let 8 > « > 0 and for any positive integer # let
P, be the orthogonal projection on the subspace of X, which is spanned
by all eigenfunctions e, of A corresponding to eigenvalues A, with
[ A | > n#. Let H be a bounded subset of X, K a subset of AH, and,
for each n, K, = P,K. Then, K, converges of order >a to K in X
as n — -+ 00. [In fact, this is a consequence of the inequality

nf|Av — P,Av|| < n @) ¢]. forall veX andall =,
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which implies that #n*(4 — P,A) converges to 0 as # — 400 in the
uniform topology of operators.] The hypothesis that H is bounded can
be dropped if P, K C K for every .

7. A Convergence for Convex Functions

We shall define below a convergence for (convex lower-semicon-
tinuous) functions on X in terms of convergence of their epigraphs in
XPR.

Notation and terminology in this and the following section are those
of Subsections 6 and 9 of Section 0.

Definition 1.4. A sequence (f,,) of functions on X converges in X, if
the sequence (epif,) of their epigraphs converges in X @ R according
to Definition 1.1. We say that f,, converges to f in X as n — -- 00, and
write

1 or f=Limf,,
if (f,) converges in X and f is a function on X, such that
epif = Limepif, in XO@R,

according to Definition 1.1.

Remark 1.4. A sequence (S,) of subsets of X converges to a subset S
in X according to Definition 1.1, if and only if the sequence (55 ) of the
indicator functions of the S,’s converges to 85 according to the definition
above.

It is easy to show that if (epif,) converges in X @R and S =
Lim epi f, , then there exists a function f on X, such that S = epi f
It follows from Subsection 3 that (f,) > Lim f,, is a convergence for the
family of all convex lower-semicontinuous functions on X.

Some properties and examples of this convergence can be obtained
along the lines of Subsection 5. A characterization of it is given by the
following lemma.

Lemma 1.10. Let (f,) be a sequence of functions on X. Then we have
f=Limf, in X,
tf and only if (1) and (1) below are satisfied:
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() Any v e X s the limit in the strong topology of X of a sequence (v,,)
in X, such that

lim sup £,(z,) < f(v) as n— +oo; (1.9)

(I1) Any subsequence (f;') of (f,) is such that for any v € X, which
1s the limit in the weak topology of X of a sequence (v;) in X, we have

liminf £;/(z,) = f(v) as k— +oo. (1.10)
Proof. First we prove that (1) is equivalent to
epi fCs-Limepif, in X @R (1.11)

Suppose epif # @ and take {v, B} €epif, that is, ve X, B R with
B = f(v). By (1), there exists a sequence (7,) in X such that v, — v as
n — -+ o0 and (1.9) holds. If

B, = max{ f,(v,), B) for each =,

then we have B = lim 8, as n — + co. Therefore, {v, , 8,} € epif, for
all » and {v,,B,} = {v,8} in X PR as n — +oo. Thus (I) implies
(1.11).

Conversely, let us suppose that (1.11) is satisfied. Let v € X. Since (1.9)
is trivial in case f(v) = + 0, suppose f(v) < +co. Then, {v, f(v)} e epif.
Therefore, by (1.11), there exists {v, , 8,} € epi f, for each n, such that
v, — v in X as n — - oo and, moreover, B, — f(v), hence

lim sup f,(9,) < f(v),

as n — + 0. Thus, (1) holds.
Now we prove that (1) is equivalent to

w-Limepif,Cepif in XPR. (1.12)

Let us suppose that (lI) holds. Let (f,) be a subsequence of (f,) and
{v, B} € X ® R be the weak limit of a sequence ({v;,8;}) in X DR,
with {o, , B} € epi f;,” for every k. By (1l), since v, — vin X as k — 4 o0,
(1.10) holds. Since

8 =lim B, = liminff,/(v;) as k— o0,

we find 8 = f(v). Thus (II) implies (1.12). Assume now that (1.12) holds.
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Let v, — vin X as k — - o0 and (f;") be any subsequence of (f,,). If we
have

lim inf /(%) = —o0 as k— 4 o0,

then for any given 8 < 0, there exists a convergent sequence (8,), with
Br = f1(v)') for every h, ( f1(v,’)) being a subsequence of (f;'(v;)), such
that

B =1limB, <8 as h— +oco.

By (1.12), we have f(v) << 8 < 8. This implies f(v) = — oo, hence (ll)
holds. On the other hand, suppose

B = liminf f,'(v;) > —o0.

Clearly, we can also suppose 8 << + c0. Hence, there exists a subsequence
(fr(vy)) of (fi'(vy)), such that B, > fr(v,’) for every &, with B, — B as
h — +oco0. Thus, {v;', B} € epif, for every A, and {v,’, B;} converges
weakly to {7, 8} in X @ R as 2 — + 0. Therefore, by (1.12), we have
B = f(v), that is (1.10) holds. |}

Remark 1.5. It follows from Lemma 1.10, that, if f = Lim f, in X,
then any v € X is the limit in the strong topology of X of a sequence (v,,)
in X, such that f(v) = lim f,(v,) as # — + 0.

Remark 1.6. Each f, of a converging sequence ( f,) may be a proper
function, without f = Lim f, be such. On the other hand, if f = Lim f,
is proper and f % + o0, then any f, , for all n large enough, is proper.
[If not, there would exist a subsequence (f;") of (f,) and a sequence (v,,)
of vectors of X, such that f,/(v,) = —co for all k. Let v, X with
f(vp) < +o0. By (1), there exists a sequence (z;) in X, such that z;, — v,
in X as & — 40 and f;/(%;) << + o forall k2 > k;, &, > 0. Therefore,
if

v, = U + (1 — Ek) B s with € = k_l(l + | v H)_l’

we have f,'(v,') = —oo for all k > ky and v;" — vy in X as k — 4-c0.
Thus, by (1), we have lim inf f,'(v;') = f(v,) as k& — -+ oo, hence
f(zy) = — oo, which is a contradiction.] The statement above is false if
f = +oo, as the following example shows: X = R and for each
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n=1,2,.., take f, so defined: f,(r) = +oo forallr # n, f,(r) = — 0
if r = n.
8. “Order o Convergence for Convex Functions

Let (f,) be a sequence of lower-semicontinuous convex functions on X
and f a lower-semicontinuous function on X, f = + 0.

Definition 1.5. If o« > 0, we say that f, converges of order Z>a to
fin X as n — 4 o0, and write

nrx[fn _f] —0 in ‘X’,

if ep1 f,, converges of order =« to epi fin X @ R as n — 4- 00, according
to Definition 1.3.

Remark 1.7. It follows from Lemma 1.9 and Definition 1.4, that
[, converges of order >0 to fin X if and only if f = Lim f,, . Thus, if f,
converges of order >« to fin X, « = 0, then, in particular, f = Lim f, .

A characterization of the “order «” convergence is given by the
following
Lemma 1.11. If fis proper, and o 2= 0, then we have
nlf, —f1—0 m X,
if and only if (m) and (mm) below are satisfied:
(m) For any v € dom f, there exists a sequence (v,) in X such that
n(o, —v)—>0 in X (1.13)
lim sup n°{ f(v,) — f(v)] < 0 (1.14)
as n— -+ co;

(mm) For any subsequence (f, ) of (f,) and any weakly convergent
sequence (v;) in X, with limsup f, (v;) < +o0 as k— +o0, there

exists a subsequence (f;/(v1")) of (f,, (i), fu'(00') = furlwn,), m’ = my, for
every h, and a sequence (w;,) in X, such that

nio, —w)—0 in X, (1.15)
lim inf #°[ £,'(v,") — f(,)] >0 (1.16)

as h — 4+ oo.



VARTATIONAL INEQUALITIES 539

Proof. Let us prove that (m) is equivalent to:
Oes-Limn(epif, —{v,8}) in X DR, for each {v,Bleepif (1.17)
Let v e X, B e R, with 8 > f(v). By (m), there exists a sequence (v,) in
X, such that (1.13) and (1.14) hold. If
B, — max{fy(o,), B} for every n,

then we have n(8, — 8) — 0 as # — + 0.2 Thus (1.17) is satisfied.
Conversely, suppose that (1.17) holds and let v € dom f. Since f is
proper, {v, f(v)} € epi f, hence, by (1.17), there exists {v,,B,} € epif,
for every n, such that

w({,, B} — (0. f@) >0 in XDR as n— +oo,

Therefore, (1.13) holds and, moreover,

m{B, — f@)] >0 as n—> oo,

which clearly implies (1.14), for B8, > f,.(v,) for every an. Thus (m)
holds.
Now let us prove that (mm) is equivalent to:

For any subsequence (f, ) of (f,) and any weakly convergent sequence
({r» Bi}) in X @R, with {v,, B} € epif, for every k, we have

0 e w-Lim n,2({v, , B} — epif) in X ®R. (1.18)

Let us suppose that (mm) holds and let {v;, , B;} be as stated above.
Since limsup f, (v;) < +0c0, there exists by (mm) a subsequence
(fa'(v")) of (£, (vx)) and a sequence (w;) in X such that (1.15) and (1.16)
hold. Put g8," = By, for every h. We have by (1.16)

lim inf n2[B," — f(w,)] =0 as h— +oo,

hence
el —fw) = —¢7, (=12,.,

31In fact, n*(B, — B) > O for all n, hence lim inf n*(8, — B) = 0. On the other hand,
1 fa(vn) — Bl < n°[ fulz,) — f(v)] for all n, hence, by (1.14), lim sup 7*[ fulva) — Bl < 0,
which implies lim sup n*(8, — B) < 0.
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where n; = m,,, p; = By, , w/ = w,, for every /, (B1,) being a sub-
sequence of (B,’). Let us set for each /

& = By + (e,

We have ¢, = f(w,/) for every /, and n/*(8; — &) — 0 as £/ — + c0.
Thus (1.18) is satisfied.

Conversely, suppose (1.18) holds. Let (f, ) and (v;) be as in (mm).
First we note that, since f is proper, we cannot have lim inf f,, (7;,) = — o0
as & — -+ oo. This is a consequence of (II) of Lemma 1.10, that can be
applied here, because our hypothesis implies f = Lim f,, (see Remark
1.7). [A direct proof can be given as follows: Suppose

lim inf £, (v,) = —oo

and let v, = w-lim v, as k — +co. Let 8 < 0 and (8,) be a convergent
sequence of reals, with 8 = lim 8, << & and B8, = f;,/(v,") for every &,
(fi'(v))) being a subsequence of ((f, (v;)). Then, by (1.18), there exists
a sequence ({w,, £,}) C epif, such that

” . ke . 7.
(v; —w,)—0 in X, hence w,— 7, in X;

B — &)—0, hence ¢&,— B,

as {/ — +o0, with (v/) a subsequence of (v,’), v; = v;, and B,/ = B,
for every ¢. Thus, by the lower-semincontinuity of f, we find as / — + 0

f(wp) < liminf f(w,) <lim ¢ = <9,

hence, since § is arbitrary, f(v,) = — 00, which is a contradiction, for f
is proper]. Therefore, we have

lim inf f, (v;) > —o0 as k— -fco.
Hence, there exists a convergent subsequence (f,'(v,")) of (f, (1)),
L' @) = fu(on,), ;' = ny, for every h. Applying (1.18) to the sequence
{o)s f'(v,)}, we find a sequence ({w,, {,}) C epif, such that

o ” - -
nX v, —w,)—0 in X,

n2 (@) — €10,

as £/ — +oo, for a subsequence ( f(v})) of (f'(vy)), f1(%}) :f;;l(v;;l)
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and n;, = n, , for every /. Since ¢, > f(w,) for all ¢, the second limit
above implies

lim inf n)2[ £,"(2])) — f(,)] > 0.
Thus (mm) holds. |

2. Coercive Mappings, Unique Solution

In the previous section we have introduced a convergence in the family
of closed convex subsets of a normed space. In the remainder of this
paper we shall use that notion to deal with the problem of the continuous
dependence on the map T and the convex K of solutions of variational
inequalities such as (1) and (2) of Introduction.

Let us rewrite below the variational inequality (1) associated with
a given monotone map 7 from a Banach space X to its adjoint X* and
with a closed convex subset K of the domain D(T) of T

ueK: (Tu,v —uy) =0 forall »eK. 1)

Thereafter X will be a reflexive real Banach space.

To begin with, let us consider the special case in which only the
convex K is perturbed, while the map T is kept fixed. For sake of simpli-
city, we shall suppose that the perturbation of K can be described by a
sequence of convex subsets of D(T).*

Thus, let us assume that K, is for each n = 1, 2,... a closed convex
subset of D(T) which converges to the given K in X as # — + o0 in the
sense of Definition 1.1 of Section 1, and for any such K, let us consider
the variational inequality

u, e K,: <Tu, , v —u,y >0 forall ve K, . (1)

Then, under suitable assumptions on 7', which guarantee the existence
and uniqueness of the solutions of (1) and (1,"), we shall prove as a
corollary of Theorem A below that the solution u, of (1,") converges
strongly in X to the solution u of (1) as n — + c0. We have indeed the
following

* However, as we have already noticed in the Introduction, the results below could be
extended, with only sligth changes, to real parametrized perturbations K, of K or, more
generally, to arbitrary indexed families of perturbed inequalities.
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Corollary of Theorem A. Let us suppose that

(1) T is a bounded® hemicontinuous map of D(T) in X to X*, with
0 € D(T), such that

lo —ully(lv —ul) <<Tv —Tu,v —uy  forall u,veDT),

where y is a continuous strictly increasing function from [0, 4 c0) to
[0, + o], with y(0) = 0 and y(r) - + 0 as r - + 0,

(i) K and K,,, n = 1, 2,..., are nonempty closed convex subsets of
D(T), such that

K=LmK, in X
according to Definition 1.1.

Then, there exists for each n one and only one solution u, of inequality
(1,))) and u, converges strongly in X as n — + oo to the unique solution u of
tnequality (1).

In the following Section 3 we shall give some applications of this
result by making use of the examples of converging sequences of convex
sets considered in Section 1.

Below, we summarize the general results which hold in case of unique-
ness of the solution and for a coercive T, for inequalities of type (1) or (2)
of Introduction. The proofs are postponed to Section 4. Notation and
definitions are those of Section 1.

More special results for non-coercive mappings and non-unique
solutions will be given in Section 5.

1. Inequalities (1)
We shall denote the graph of a map A from X to X*, by G(A4), that is,
G(A) = {{v, v} e X x X* v = Av, ve D(A))

where D(A) is the domain of 4.

Moreover, if (4,) is a sequence of mappings from X to X*, we say
that they are uniformly bounded in X, if for any bounded subset B of X
there exists a bounded subset B’ of X*, such that

A,B,CB for all =#,
where B, = B n D(A4,) for each n.

> A map T from X to X is bounded if it carries bounded subsets of D{T) into bounded
subsets of X.
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Let us make the following assumptions:

T is a monotone hemicontinuous map of D(T) in X to X*; (T,,) is a sequence
of monotone hemicontinuous mappings from X to X*, whzch are umformly
bounded in X and satisfy

G(T)Cs-Lim G(T,) in X x X*. @1

According to our notation of Subsection 1 of Section 1, (2.1) above
means that for every v € D(T), there exists for each n a vector v, € D(T,),
such that v, converges strongly to v in X and 7T,v, converges strongly
to T in X* as n — + 0.

K is a non-empty closed convex subset of D(T); (K,,) is a sequence of closed

convex- subsets of X, with K,, C D(T,) for every n, such that
K=LmK, in X,

in the sense of Definition 1.1.

II

Under the assumptions I and II above, we shall prove what follows:

If there exists a bounded sequence (u,) of solutions of the inequalities
(1,), i.e,, u, € S(T, , K,) for each n, then the inequality (1) has a solution,
that is, S(T, K) = &.

Furthermore, if the solution u of (1) is unique, i.e. S(7, K) = {u},
then S(T,, K,) converges weakly to {#} in X in the sense of
Definition 1.2.

If, in addition to the existence of (u,), we suppose also that condition III
below is satisfied, then '

S(T,,K,)—{u} in X, as m— oo,
in the sense of Definition 1.1. The condition is

For any ue K, there exists a continuous strictly increasing function

B : R+ — [0, +00],% with B0) = O, such that
Bllv —ul) <liminf|{T, v — Tu, v —uy| as n— +oo, veD(T,)

uniformly as v varies in a bounded subset of X. (2.2

111

Finally, we prove that there exists a bounded sequence (u,) of

s We put R+ = (0, + ), R+ = [0, 4+ o0].

607/3/4-9
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solutions u, € S(7T, , K,)), provided the T, are uniformly coercive on
K, in X, in the following sense

There exists a function « : Rt — [0, + 00], with ofr) — +o0 as v — + 0,
such that
v lolla(ivl) < (Tho,0>  for cvery n 23)

and allve K, .

We have, indeed, the following theorem

Theorem A. Under the assumptions 1| and 11, the following results
hold:

(a) If u, € S(T,, , K,,) for every h, with (S(T,, , K,,)) a subsequence of
(S(T,, K,)), and u, converges weakly to a vector u of X as h— + oo, then
ue S(T, K) and

(T, u, — Tu,u,, —u>—>0 as h— +oco. (2.4)

np

Besides, if I1I holds, then u,, converges strongly to u in X.
(b) If there exists a bounded subset B of X and ny, > 0 such that

S(T,,K)YNB+# @ for all n > ny, (2.5)
then there exists at least one solution, u, of inequality (1). Actually, we have
o + w-Lim S(T, , K,) C S(T, K). (2.6)

Moreover, if the solution u of (1) is unique, then u is the limit in the weak
topology of X of any sequence (w,), with w, € S(T,, , K, ) for every h and
(S(T,, , K,,)) a subsequence of (S(T, , K,,)), provided (w,) is bounded in X.

(c) If the T, are uniformly coercive on K, in X, i.e., IV holds, and
0e (), K, , then there exists a bounded subset B of X and ny, >0, such that

o # S(T,,K)CB  forall n>n,. 2.7)

Remark 2.1. In part (¢) of the theorem, the hypothesis that 0 € K,
for all n can be replaced by the hypothesis that for any sequence (v,),
with v, € K,, for each n, there exists a bounded sequence (z,), 2, € K,
for each n, such that (4.8) holds. See indeed Proposition 4.1.
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2. Inequalities (2)

By reducing the inequality (2) to an inequality of type (1) in the space
X @ R and then applying Theorem A, we obtain the results which are
summarized below.

We still assume the hypothesis I of Subsection 1. Besides:

[ is a proper lower-semicontinuous convex function on X, with dom f +# & ;
(f,) is a sequence of lower-semicontinuous convex functions on X, such

I that
f=Limf, in X,

in the sense of Definition 1.4,

Under the assumptions I and I, if there exists a bounded sequence
(u,) of solutions u, € S(T, , f,), then the inequality (2) has a solution.
Moreover, if the solution of (2) is unique, which is the case if T is strictly
monotone of f is strictly convex, then S(T, ,f,) converges weakly to
{u} in X as n — 40, in the sense of Definition 1.2, and u, — u,
u, € S(T, , f,) for every n, implies f,(u,) — f(u), as n — + c0.

Furthermore, we have S(T, , f,) — {u#} in X if the sense of Definition
1.1, provided the following condition is satisfied

For any u e dom f, there exists a continuous strictly increasing function
B : R+ — [0, +o0], with B(0) = O, such that

Bll o — ) <lim inf{[{T,0 — Tu, v — wy| + | fu(v) — f(W)I}
as n— +o0, ve D(T,), uniformly as v varies in a bounded subset of X.

ur

Finally, if an uniform coerciveness hypothesis is satisfied by 7', and f,, ,
then there exists for each 7 a solution %, in X of the inequality

Tty , v — ) = fr(w,) — fu(v) forall veX
and the sequence (#,) is bounded in X. The hypothesis is the following

There exists a function o : R* — [0, + 0], with ofr) — 400 asr — -0,
such that
v lolla(iol) < (T, o) +fult) forevary n  (28)

and all ve X.

The theorem that is obtained from Theorem A, is the following
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Theorem B. Let us suppose that 1 and 11" hold, with dom fC D(T)
and dom f,, C D(T,) for all n. Then

() If uy € S(T,, , fa,) for every h, with (S(T,, , f,,)) a subsequence of
(S(T, , 1)) and w,, converges weakly to a vector u of X as h — + o, then
we S(T,f) and

Sun) > f(w) as h— oo, 2.9)

{Tyup — Tu,u, —uy—>0 as h— +oo. (2.10)

Besides, w, converges strongly to u in X, provided the hypothesis 111" above
is satisfied.

(b) If there exists a bounded subset B of X and ny > 0, such that
S(T,,f)NnB+# o Jorall n>my,
then there exists at least one so‘lutz'on, u, of inequality (2) and we have
o # w-Lim S(T, , f,) C S(T, f).

Furthermore, if the solution u of (2) is unique, then for any bounded sequence
(wy) in X, with wy, € S(T,, , f,,) for every h, (S(T,, , f,,)) a subsequence of
(S(Ty , fn)), we have w), — u in X and f,, (w,) — f(u) as h — + co.

(c) If the uniform coerciveness hypothesis IN' is satisfied and f,(0) = 0
for all n, then there exists a bounded subset B of X such that

@ # ST, . f,)CB  forall large n.

Remark 2.2. The hypothesis that £,(0) = 0 for all # in part (c) of
the theorem above can be dropped, provided the coerciveness condition
IV’ is improved. See Proposition 4.2.

Corollary of Theorem B. [In addition to II', suppose that f is
strictly convex and that there exist two functions « and B as in IV’ and 11T’
above, such that

o] o) < fulv) foreverymandall veX (2.11)
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and, for each u € dom f
Bllv —u|) <liminf | f,(v) — fw)] as n— +oo, (2.12)

untformly as v varies in a bounded subset of X.

Then, there exists for each n a vector u, € X minimizing f, on X and u,
converges strongly in X as n — + o0 to the (unique) vector u € X which
minimizes f on X. Moreover, f(u) = lim f,(u,) as n — 0.

3. Applications

Our main purpose in this section is to show what type of results can be
obtained from the general theorems of Section 2. We shall not care in
each special case for the maximum of generality. Therefore, the results
given below can be somewhat improved or extended, and this will be
done elsewhere.

1. Finite-Dimensional Approximation

We can use theorems A and B of Section 2 for solving a variational
inequality by “‘discretization methods” of Ritz—Galerkin type, that is, by
solving first an approximate problem in a finite-dimensional space and
then letting the dimension — + o0.

(a) Let us suppose, first, that T is a bounded hemicontinuous
map of a reflexive real Banach space X to its dual X*, such that

No —uly(lo —ul) < Ty — Tu,v — w) forall #,veX, (3.1)

where v : R* — Rt is a continuous strictly increasing function, with
y(0) = 0 and y(r) — -+ o0 as r — + c0. Moreover, let us suppose that K
is a nonempty closed convex subset of X.

Now let (X, *) be a sequence of closed linear subspaces of X* and for
each n let us denote by Y, * the quotient Banach space

Y, = X*X.*
and by 7,* the canonical homomorphism of X* in Y, *,

¥ T X+ > Y, %
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Let us denote by =, the adjoint map of 7, *. By the reflexivity of X
we have

1yt ¥, —> X,
where

Yn — (y’n*)*

is the dual Banach space of Y, *. Clearly, Y * is the dual space of ¥,
and 7, * is the adjoint map of =, , thus our notation is consistent. More-
over, it is easy to show that =, 1s an isomorphism of Y, on the subspace

X, = 7T7Lyrn
of X and
lmy b =11yl forall ye¥,, 3.2)
where || - || denotes, as usual, the norm in X, while || - ||, is the norm in

Y,— namely, the dual norm in (Y,*)* of the quotient norm in Y *.

[In fact, since || 7, * || < 1, then

[myll <lyll.  foral ye¥,.

Besides, for any ¢ > 0 and any y' € V,,*, with ||y [ly» < 1,
there exists a vector v,’ € X*, such that =, *v,” = »" and
L =y ly: Z 2" Il — o Therefore, we have

31l = sup{[<y', ¥2u | 1y vy < 1}
< sup{|l(@, myp| [ [ < 1 4o} < (I + o) my ||
which implies, since ¢ > 0 is arbitrary, that ||y ||, <[ 7,5 ]

Let 7', be for each n the map

— K
T, = m,*Tm,

of Y, to Y,* and H, a closed convex subset of Y, . Let us consider the
variational inequality

X, Hy: {Tyxy, v — X0y =0 forall yeH,, (3.3)

where {--->, denotes the pairing between Y, and Y, *.
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Proposition 3.1. Let T and K be as stated above, K, = =, H, for
every n and suppose that

K=LmK, in X (3.9)

in the sense of Definition 1.1. Then, there exists for each n one and only

one solution x, of (3.3} and m,x, converges strongly in X to the (unique)
solution u of inequality (1), i.e., u € S(T, K).

Proof. By the definition of T, , we have that x, € Y, is a solution of
(3.3) if and only if u, = m,x, and u, € X is a solution of

u, €K, :(Tu, , v —u,» >0 forall vek,

which is to say, u, € S(T, K,). Besides, K,, is by (3.2) a closed convex
subset of X. Therefore Proposition 3.1 follows from Corollary of
Theorem A. ||

Proposition 3.1 can be used for a finite-dimensional approximation
of the solution of inequality (1), whenever one can find a sequence of
closed subspaces X, * of X*, each one of finite codimension, such that
(3.4) is satisfied.

Corollary 1. Suppose that the sequence (X,*) is decreasing with n,
with (Y, X,* = {0}. Suppose, furthermore, that the interior of K is
non-empty and that

K,=KnNnX, forevery n,

where X, = w,Y, , K, = =n,H, . Then, the conclusion of Proposition 3.1
holds.

Proof. 'The sequence (X,,) is increasing with n and (J, X, is dense in
X, as it can be seen by applying the Hahn—Banach theorem. By Lemma
1.2 and Lemma 1.4, we have

K—=LmKnX, in X,
thus the corollary follows from Proposition 3.1. ||
Corollary 2. Suppose that

mH,CK  for every mn,
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and that there exists for each n a map p, of X to Y, , such that p, K C H,
for every n and moreover

TP —> U in X as n— 4o

for any v e K. Then, the conclusion of Proposition 3.1 holds.

Proof. Again, it suffices to apply Proposition 3.1, for, by the hypo-
theses above, we have K Cs-Lim 7, H, , hence, since 7, H, C K for
every n, K = Lim K, , where K, = =, H,, . |}

Approximation methods of type of that furnished by Corollary 2
above, as well as methods for solving the discretized problems, have
been given by C. Cea, (18), for equations involving an accretive linear
operator T in a Hilbert space and J. P. Aubin, (1), for variatiopal
inequalities concerning such a 7. Further extensions of these methods to
equations involving monotone operators from a Banach space to its dual,
have been considered by H. Brezis—M. Sibony (4).

(b) Let us suppose that X is a (real) Hilbert space and that
there exists an increasing sequence of finite-dimensional subspaces of X,
with (J,, X,, dense in X. The scalar product of X will be denoted by
(, *)- Let A be a bounded map of X into itself, which is continuous from
the line segments of X to the weak topology of X and” satisfies the
condition

fTo—ullv(lo —ul) <(Av — Au,v —u) forall uw,veX
with y a function as above, and let K be a nonempty closed convex

subset of X.
Let P, be for each # the orthogonal projection of X on X, and put

A, = P, AP,
K, = PK.
Proposition 3.2. [In addition to the hypotheses above, suppose either

that K is bounded or that K,, C K for every n. Then, there exists for each n
one and only one solution u,, of the inequality

u, e K (Aptty v —u,) 20 forall vek, (3.5)

7 Actually, any such T, being also monotone, is demicontinuous on X, see T. Kato [21].
However, this is no more true in general under the hypothesis D(T) = K, that is what
we really need in Proposition 3.2 below.
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and such u, converges strongly in X as n — + o0 to the (umque) solution u
of the inequality

uek: (Adu,v —u) >0  forall vek. (3.6)

Proof. Let J be the canonical isomorphism of X on its dual X* and
let T = JA. T is a bounded hemicontinuous map of X to X* which
satisfies condition (i). of Corollary of Theorem A. It is easy to show
that u,, satisfies (3.5) if and only if u, € S(T, K,,) and that u satisfies (3.6)
if and only if u € S(T, K). Since P,v — v in X as n — + 0, then it
follows, trivially in case K, C K for all » and by applying Lemma 1.5 in
case K is bounded, that K, — K in X as n — + c0. Thus Proposition 3.2
follows from the Corollary quoted above. |}

Let us remark that projection methods for solving equations involving
non-linear operators in Banach spaces have been extensively investigated
by W. V. Petryshyn (37), where further references are given, and by
F. E. Browder, (16), (17). Proposition 3.2 generalizes (for a bounded 4)
the Hilbert space specialization of Theorem 8 of (16) and of Corollary 11
of (37).

(c) Finite-dimensional approximation of minimum problems. We
shall consider below two special cases of Corollary of Theorem B, in
which a given convex function f is approximated by functions f,, , whose
effective domain is contained in a finite-dimensional subspace of X.

Let f be a proper, strictly convex lower-semicontinuous functlon on X,

with f(0) = 0, such that

o[ 2) < f(v) forall veX
Bllo — ul)) < |f(v) — f(w) for every uedomf andall veX

with « and B continuous strictly increasing functions R+ — [0, + ],
with o(r) - + o0 as r — + o0 and B(0) = 0.

Let us suppose that there exists an increasing sequence of finite
dimensional subspaces of X, with (J X,, dense in X.

The proposition below is a formulation of the classical Ritz approxima-
tion method of the minimum of f.

Proposition 3.3. Suppose that the interior of dom f is non-empty and
for each n, let f, be the function on X defined by

fn(v) :f(v) ’f ‘Z)EXn:
flo) =+ if veX,.
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Then, there exists for each n one and only one vector u,, € X, which minimizes
fn» and u, converges strongly in X as n — + oo to the (unique) vector
u € X which minimizes f. Besides, f,(u,) — f(#) as n — + 0.

Proof. Let us consider the space X (® R and for each # the subspace
X, ©® Rof X @ R. Clearly, we have

epif, = epifN (X, ®R) for every n.

Thus, by Lemma 1.4, epif = Limepif, in X @ R. The proposition
is then a consequence of Corollary of Theorem B. |i

We recall that the closure of a convex function f on X is the (convex
lower-semicontinuous) function f on X, such that epi f is the closure of

epif in X D R.

Proposition 3.4. Let us suppose that X is a Hilbert space and that
dom f is bounded is X. Let (X,) be as above and, for each n, let P, be the
orthogonal projection on X, and f, the closure of the function f, on X
defined by

fu(®) = inf{f(w): we X, Paw = v} if veX,

falw) = +o0 i v¢X,.

Then, there exists for each n a vector u, € X, which minimizes f, and u,
converges strongly in X as n — + o0 to the (unique) vector u € X which
minimizes f. Moreover, f,(u,) — f(u) as n — -+ o0.

Proof. It is easy to show that epif, is, for each #, the closure in
X DR of (P, @I) epi f, where [ is the identity on R. It follows from
Lemma 1.5 that8

epif = Lim(P, @ I}epif in X DR,
hence also
epif = Limepif, in X®RS®

Now let o > 0. For any v € X, , there exists w,, , € X, with P,w, , = v,
such that

Ja®) = f(n,0) — o3
8 Note that f(v) = lim inf f(z) as w — v in X.

*If (S,) is a sequence of convex subsets of X and S = Lim S, in X, then also
S = Lim S, in X.
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hence,
fn('u) Zollw, ) —o=zo|ov|) —o for all n,

which implies
fi©) = of|v]) forall n.

Let uedomf, ve X. For any ¢ > 0, there exists w, , € X, with
P,w, , = v, such that

f(wn,a) —C <fn(‘v) <f(wn,a)

Therefore,

| fu®) — f@)] = | flon,o) — @) — o
>B(”wnu _u“) — >ﬂ(Hv ’_Pnu”) —-c
which implies

| ful@) —f(@)l = Bl v — Pul)),

hence
lim inf| f(v) — f(u)| = B(lv — u|) as n— 4o

uniformly with respect to v in a bounded set.
Therefore Proposition 3.4 follows from Corollary of Theorem B. |

Let us remark that these approximation results could be also gener-
alized to variational inequalities of type (2), by applying the general form
of Theorem B.

2. Perturbation of Boundary Value Problems

Theorem A can be applied to give a result on the continuous
dependence on the constraints of the solution of a variational problem for
a non-linear partial differential operator 4 in R¢ of type

Au = Y D*A[x, u,..., D™u). 3.7

asm
With notation taken from Section 1, we assume that for each multi-
index o, A4, is a real function of x€Q and ¢ e R’ (/ = number of
derivations of order <\m in R®), which satisfies the following conditions:

{ A is measurable in x € Q for fixed ¢ € R? and is continuous in ¢ € R for
| fixed x € 2;
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S’Aa is of polinomial growth in &, that is we have
I | A, &)l < (1 + 1617, xeQ, (el
( with | <p < 400 and c > 0.

Then, for each u € W™?(Q2) we have for every «
Ay, u,..., D) e LY(Q),  with g =p(p — 1)
Therefore, the Dirichlet form

au,v) = Y («1)""J‘Aa(x,u,...,D"‘u)D”vdx

fa|<<m

is well-defined for all # and v in W™P() and satisfies an inequality
such as

Fa(u, 0)| < g(I # {lm. o) © llm.» 3-8)

with g(r) a continuous function of r € R.

Let us notice that the hypothesis II could be considerably weakened
if the Sobolev embedding theorem is taken in account, see for instance
F. E. Browder (7). In this paper, and in the paper of Leray—Lions quoted
above, one can find an extensive discussion of the properties of the
operator 4, in connection with the monotone operators theory.

Now let X be a closed linear subspace of W™?(£2), K a {nonempty)
closed convex subset of X, (K,) a sequence of (nonempty) closed convex
subsets of X.

We can consider the following variational problems for the differential
operator A4:

®) gueK,

P la(u, v —u) =< f,v —u) forall vekK;
) u,e K, ,

(P alu, , v — ) =< f,v— u, forall veK,,

n = 1, 2,..., where f is a given element in the dual X* of X.

The inequalities (p) and (p,) can be written as variational inequalities
of type (1), with respect to the map T of X to X* defined, in virtue of
(3.8), by

a(u,v) — {fyv) = {(Tu,v> forall u,veX.

As a consequence of assumptions I and II above, 7 is a (bounded)
continuous map from the strong topology of X to the weak topology of
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X*. Indeed, u — A, (x, u,.. D’"u) is then a.continuous map of W™ I’(Q)
to LI(£2), see the papers quoted above.

As we know from Section 0, we have existence and uniqueness of the
solutions # of (p) and u, of (p,), » = 1, 2,..., provided T is strictly
monotone and coercive in X. This is clearly the case if the differential
operator A satisfies condition III below:

There exists a continuous strictly increasing function y: [0, +00)+> [0, 4c0]
with y(0) = 0 and y(r) > + 0 asr — + oo, such that

a(u’ u— ’Z)) - a(v’ u—v) = —v ”m,p ')’(” u—v Hm,m)
for all u, v e X.

Let us remark that, as far as existence and uniqueness of solutions is
involved, condition III could be weakened in such a way that only the
top order derivatives in A are affected by the monotonicity assumption.
This corresponds to require that T is a semi-monotone operator, see
again Refs. (7) and (25).

We are now in position to apply Theorem A of Section 2, taking
Remark 2.1 into account, and we obtain

Proposition 3.5. Under the assumptions 1, 11, and I11 above, problem
(pn) has for each n a unique solution u, , and if K, converges to K as
n — -+ oo according to Definition 1.1, then u, converges strongly in X as
n — - o0 to the (unique) solution u of problem (p).

A first application of Proposition 3.5 is to variational boundary value
problems for the operator 4, with null boundary conditions corre-
sponding to a closed linear subspace V of W™?(Q), such that

Wma(@) C ¥ C X C Wmr(Q),
That is, to the problem

, uel,
(¥) a(u,v) = (f,v) forall veV,

where fis a fixed element of X*.
Let us recall that if

V = Wrr8),
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then problem (p’) is the variational formulation of the Dirichlet problem
for the operator 4, i.e.,

{DPu =0 on 09,

@ v — f in Q.

[Here f is a distribution in £2, whose derivatives of order <(m belong to
L(2)]. We shall call the solution u of (p’), the variational solution of the
Dirichlet problem (d).

Now, let (£2,) be a sequence of bounded open subsets of R* and
suppose that for each n the space Wy ?(£,) is isomorphic to a closed
linear subspace of W§"?(£2). We identify W™»(£2,) with such subspace of
Wmp((2), with the norm induced by the norm of Wm-»(£).

[For example, we may have

Q=9 E, n=12,..,

where (£,) is a sequence of compact subsets of 2. Then,
WgtP(82,) can be obviously identified with the closure in
Wmp(Q) of all g € Cy*(L2) with ¢ = 0 on E, ]

Let V,, be for each n a closed linear subspace of W-»(£), with
WerQ)yCV, CXCWmrQ) for every =,

and let us consider the variational boundary value problem for the

operator A, with null boundary conditions corresponding to V,,, i.e.,

the problem
; ju, €V,

(Px) ?a(un ,0) =< f, v forall 2veV,.

In case V, = W§"?(2,), we have, as above, that u, is the variational
solution of the Dirichlet problem

@) (DPu, =0 on 02,, [Bl<m— 1,
" tAu, = f in £,.

Thus, applying the result stated above, we find

Corollary 1. Under the assumptions 1, 11, and 111 above there exists
for each n a unique solution u,, of problem (p,), and if V. = Lim V, in X,
then u, converges strongly in Wm?(£2) as n — -+ oo to the (unique) solution

u of (p').
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In the special case in which 4 is of second order, i.e., m = 1,
V = WyP(£) and, for each n, V,, = Wy?(Q — E,), with E, a compact
subset of £, then, taking Lemma 1.8 into account, we obtain

Corollary 2. Under the assumptions 1, 11, and 111 above for the
operator A, suppose that for any compact subset ' of Q2 we have

p-cap(E, N 2)—>0 as n— +4oo.

Then, there exists for each n a unique variational solution of the Dirichlet
problem (d,), where 2, = Q — E,, , and u, converges strongly in WyP(Q)
to the unique variational solution u of the Dirichlet problem (d).

Another simple application of Proposition 3.5 arises in connection
with a variational problem which has been studied by J. L. Lions—
G. Stampacchia (28).

Suppose again that 4 is of second order and let v, be a fixed function of
W3P(), E a closed subset of .

Let us consider the (closed convex) subset
K={weWl?Q):v>v onE}
of Wy'?(£2) and the problem
jue K,
() la(u, v —u) = {f, v — u) forall ve K,

where f is a given distribution in the dual of Wy?(R).
Now let (,) be a sequence of functions of Wy'#(£2) and for each = let us
consider the problem

() (un € K,,
" la(u, , v —u) = {f,v —u forall zekK,,
where

K, ={ve Wy?2): v > v, on E}.

By applying Proposition 3.5 and taking Lemma 1.7 into account, we
find

Corollary 3. Under the assumptions 1, 11, and 111, if v, converges
strongly to v, in WyP(Q) as n — + o0, then the (unique) solution u, of
problem (e,) converges strongly in WyP(Q) to the (unique) solution u of
problem (e) as n — + 0.
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4. Proof of Theorems A and B

In this section we shall prove Theorem A and Theorem B of Section 2
and their corollaries.

1. Proof of Theorem A

Lemma 4.1 below is well known; however, we shall give its proof for
sake of completeness.

Lemma 4.1, Let T be a map of D(T') in X to X*; K a subset of D(T).
If T is monotone, then any solution u of inequality (1) is also a solution of the
tnequality

Tv,v—u>=0  forall vekK. 4.1)

Conversely, if T is hemicontinuous and K is convex, then any solution u in
K of inequality (4.1) is also a solution of inequality (1).

Proof. The first part of the lemma is a trivial consequence of the
monotonicity of 7. Conversely, let « € K be a solution of (4.1) and v be
an arbitrary vector of K. The vector

v, = tv + (1 — ), 0<t<l,

belongs to K for all ¢, for K is convex. Hence, by (4.1)

<T‘Ul‘ y Up — u/\ > 0;
which is to say,
Tve,v—u> =0,
Therefore, letting ¢ — 0, we find by the hemicontinuity of T,
Tu, v —uy =0,
Thus u satisfies (1). |
Lemma 4.2. Under the assumptions 1 and 11 (of Section 2), we have
w-Lim S(7,, , K,)) C S(T, K).

Proof. Let ve K. Since K = Lim K,,, there exists for each » a
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vector v, € K, , such that v, > v in X as n = +co. Moreover, since
(2.1) holds, there exists for each n a vector z, € D(T,), such that 3, — v
in X and T,z,—~ Tv in X* as n— +o. For each n and all
w, € S(T, , K,), we have

Tty , vy — W) 2 0. (4.2)
By the monotonicity of T, we also have
(Tpzn s Zn =~ Wy = Ty, 2y — V). (4.3)
[In fact, we have

<Tnzn y w'n> = <ann » Rp — wn>
= <ann y Up — w’n> + <ann y B — vn>
hence (4.3) follows from (4.2)].

The lemma is trivial if w-Lim S(T', , K,) = @ . In the opposite case, let
ue w-Lim S(T, , K,,), that is,

u = w-limwu, as h— 40,

with wu,e S(T,,, K,) for any h=1,2,.. Since # €K, and
K = Lim K, , we have u € K. Moreover, by (4 3) we have

<Tn,l Ny By — uh> 2 <T';Lhuh y Bnyp 'vnh>1

Since () and (z,,) are bounded and the mappings T, are umformly
bounded, we obtaln lettmg h— 40, -

{Tv,v —uy =0.

Therefore, u is a solution in K of (4.1), thus, by Lemma 4.1, u is a
solution of inequality (1), i.e., u e S(T, K). |

Lemma 4.3. Assume 1 and 11 (of Section 2). Let v, € S(T,, , K,)
for every h, with (S(T,, , K,)) a subsequence of (S(T, , K,)). Then,
ve X and v, — fvaash-—> + 00, implies v € D(T) and

{Tpon— To,v —v) >0 as h— fo0. (4.4)

607/3/4-10
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Proof. First we prove that
lim sup{T,, v, — Tv,v, — vy <0 as h— 4o0. 4.5)
Since K = Lim K, , we have v € K and, besides, there exists a vector

z, € K, , for every h, such that 2, — v in X as & — +c0. Moreover,
since v, € S(T,, , K,,), we have

7Lh b
<Tnh‘vh » R vh> > 0
for all A. Therefore,

Tyonson — v <<Tpvn, 20 — v

which implies, by the uniform boundedness of 7, (note that (v,) is
bounded in X), that

lim sup{7,,v; , v, —v) <0 as A— oo (4.6)
On the other hand, we have
im{Tv, v —v,> =0 as h— 400,
for v, — v as h — 4 00. Hence (4.5) holds.
To complete the proof, it suffices to apply the following Sublemma,

that we state formally below because we shall need it later.

Sublemma. Assume 1 (of Section 2). Let v, € D(T, ) for every h,
with (T,,) a subsequence of (T,). Then, v, — v in X as h — + oo, implies

lim inf7T, v, — To,v, —v> >0 as h— +o0. 4.7)
Proof. We have v e D(T),
(Ton — To,0, — vy = (Tyon, 9, — v + (To, v — o)

and

{Tv,v —v,>) >0 as h— +c0.

By (2.1) of I, there exists 2, € D(T,,) for every A, such that z, — v in X
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and T, 2, — Tv in X* as h — -+ 0. Moreover, by the monotonicity of
T,, , we have

<Tnh‘vh y U — V) = <Tnh7)h > Uy — Zp) + <Tn,,71h » 3 — )
= <Tnhzh , Up — &) + <Tn,,‘vh ) Bp V).

Therefore, since T, 2, — Tv, v,~— 2, — 0, 3, — v and the sequence
(T,vp) is bounded in X*, we find

lim inf(T,,2), , v, —vy =20 as h-—> foo.

Thus (4.7) holds. |

Proof of (a) of Theorem A. Let e X, u = w-limu, in X, with
u, € S(T,, , K, ) for every h. Since ue w-Lim S(T,, K,), then, by

ny ?
Lemma 4:.2, u € S(T, K). Moreover, (2.4) follows from Lemma 4.3.
Now let us suppose that III of Section 2 holds. Since # € K and (u;,) is
bounded, we have by III, for any o > 0

Bllu, —u|) < [<Tnhuh —Tu,u, —uwy| + o
forall 2 > A, , for some h, > 0. Therefore
lop —ull < B_l(KTnhuh — Tu, wp, — | + o)

for all 2 > A, , where 81 is the inverse function of 8. Letting £ — 00,
since then (T, u;, — Tu, ), — u) — 0 and B~ is continuous on R+, we
find

lim supl| u, — u|| < BYo).

This implies || #, — u|| > 0ash — 0. |

Proof of (b) of Theorem A. Since X is reflexive, then the hypothesis
(2.5) implies

w-Lim S(T, , K,) # &.
On the other hand, we have by (a) of Theorem A
w-Lim S(T,, K,) C S(T, K).

Hence (2.6) holds. Now let us suppose that S(T, K) = {u}, u a vector
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of X. Let (w,) be a bounded sequence in X, with w, € S(T, , K,,) for
all 4, (S(7,, , K,,)) a subsequence of (S(7,, K,)). Then, again by the
reflexivity of X, if follows from (2.6) that w, converges weakly to # in
Xash— +o0. |

Part (c) of Theorem A follows from the basic existence theorem for
inequality (1) stated in Subsection 3 of Section 0, and the following

Proposition 4.1. Let (T,) be a sequence of uniformly bounded
mappings from X to X* and K, , for each n, a subset of the domain D(T,,) of
T, . Let us suppose that S(T, , K,) # @ for every n and that there
exists a function y : R, — (— o0, + 0], with y(r) — + 00 as r — + o0,
such that for any sequence (v,) in X, with v, € K, for each n, there exists a
bounded sequence (z,) in X, with z, € K,, for each n, such that

Mo, — 2, | v(l v — 2 [) < {Tw, — T2y, vy — 20 for all n. (4.8)
Then, there exists a bounded subset B of X and ny, > 0, such that
S(T,,K,)CB  forall n>n,.

Proof. Clearly it suffices to prove that any sequence (v,), with
v, € S(T, , K,) for every n, is bounded in X. In fact, we know by the
hypothesis that; for any such (v,,), there exist a bounded sequence (z,,)
in X, 2, € K, for every =, such that (4.8) holds. On the other hand we
have for all n,

<Tn7)n » Up — zn) < 0;
hence
< Tn‘un - Tnz'n » Un — zn\ < <Tnzn » % — vn/

It follows by (4.8),
Yl on — 2 ll) I Tosy i forall o, # 2,5
hence (v,) is bounded. |
Proof of (c) of Theorem A. We are supposing that the 7, are

uniformly coercive on K, in X, that is, that IV of Section 2 holds.
Therefore, by (2.3) and assumptions I and I1, T, is, for each #, a coercive
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monotone hemicontinuous mapping of the non-empty closed convex
subset K, of I(T,) into X*. Hence, by the existence theorem for
inequalities (1) (see Subsection 3 of Section 0), we have

S(T,,K,) # o for all n.

Now let v, € K, for each n. Since 0 € K,, for each n, we can satisfy
(4.8) of Proposition 4.1 by choosing 2, = 0 for all #. In fact, by (2.3),
since || 7,0 is uniformly bounded, we have

[ on |l (Il 2 [} < (Tpw — T30, v for all =,
where
Ar) = o) —sup | 0], 7 >0,

and y(r) - 40 as r — +o0. Therefore (c) follows from Proposition
41. |

Proof of Corollary of Theorem A. It suffices to apply Theorem A with
T = T, for every n. Clearly, assumptions I and II are satisfied. More-
over, by our assumption on T, III is satisfied with 8 given by 8(r) = ry(r),
and besides, IV is satisfied, with « = y — || T0||. Furthermore T 1is
strictly monotone, hence S(7, K) consists of a single vector « of K and
each S(T, K,) of a single vector u, of K, . Therefore, by applying
successively (c), (b), and (a) of Theorem A, and taking Remark 2.1 into
account, we find that u, converges strongly to #in X as n — + 0. ||

2. Proof of Theorem B

To deduce Theorem B from Theorem A, we need the following
lemma.

Lemma 4.4. Let (T,) be a sequence of uniformly bounded mappings
from X to X*, with D(T,) the domain of T, .-Let (f,) be a sequence of
functions on X, with dom f, C D(T,) for every n, which converges in the
sense of Deﬁm’tion 1.4 to a proper function f on X, such that dom f + &.

If (v,) is a bounded sequence in X, with v, € S( T, , f.) for each n, then
the sequence (f,(v,)) is bounded in R.

Proof. Let v, € dom f. Since f = Lim f, in X, there ex1sts a sequence
(2,) in X, such that 2, — v, in X and

lim sup fy(z,) <f(v) as n—> oo
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(see Lemma 1.10). Since v, € S(T,, f,) for every n, we have for all
veX

<T'n‘vn » U — vn> >f’n(vn) _fn(v)
hence, for all n large enough,
fn(‘vn) < Tnvn 3 zn - 7}n> +fn(zn)

Therefore, since (v,) and (z,) are bounded in X and, by the uniform
boundedness of T, , (T,v,) is bounded in X*, we find

lim sup f(v,) < +00, as n— o0,
for f(vy) << + 0. On the other hand, we have
lim inf f,(o,) > —o© as z— +oo.

In fact, if lim inf f,(v,) = — o0, there exists a subsequence (f,(v,")) of
(fn(v,)) such that

fi'(vy)—> —o0 as k- Ho0.

Since (v},) is bounded in X and X is reflexive, there exists a subsequence
(on,) of (") which converges weakly in X to a vector w of X. Since
f, — fin X, we have, again by Lemma 1.10,

fl@) <liminff; (v, ) as k— 4 o0,
hence f(w) = — o0, which is a contradiction, for fis proper. |

Proof of Theorem B. Let us consider, with notation from Subsection 9
of Section 0:

The space X @ R; the mappings TP 1 and T, B, n=1,2,..,
from X @D R to X* D R; the subsets epi fand epi f,, n = 1, 2,..., of
XOPR.

By the assumptions I and II' of Theorem B, we know that T @ 1 is
monotone and hemicontinuous; (7, @ 1) is a sequence of uniformly
bounded monotone hemicontinuous mappings, such that

GT®1)Cs-LmGT,®1) in (XOR) x (X*DR)

Moreover, epi f and all epi f,, , # = 1, 2,..., are closed convex subsets of



VARIATIONAL INEQUALITIES 565

X @R, with epi fCD(T @ 1) and epi f,, C D(T,, @ 1) for every n, and
we have
epif = Limepif, in X®R,

in the sense of Definition 1.1.
Thus, we can apply Theorem A to the case at hand and we find what
follows:

@) If {u,, o} € S(T,,, D1, epif,) for every h, with

(S(Z,, @ 1, epi f,))

a subsequence of (S(T, @ 1, epif,)), and {u;, o5} — {#, o} in X PR
as k— 400, then {u, a} € S(T D 1, epif) and

(T, @ Hup, ) — T D Wu, o,y , 0y — {4, 03> >0 as h— +o0.

(b’) If there exists a bounded subset B, of X ® R and 7, > 0,
such that

S(T, ®1,epif) "B, # &  forall n>n,,

then there exists at least one solution {u, o} € S(T @ 1, epif), and we
have

@ # w-Lim S(T,, @ 1, epi f,) C S(T D 1, epif).

Moreover, if S(T @ 1, epif) consists of the single vector {u, a} then,
for any sequence ({wn > Br}), with {w,, Br} e S(T,, D1, epif,) for
every h, which is bounded in X @ R, we have {wh,ﬁh}—\ {u, tx} in
X PRasn— 4 o0.

At this point it is easy to show, taking the remarks of Subsection 9 of
Section 0 and Lemma 4.4 into account, that (a’) and (b’) above are
equivalent to (a) and (b) of Theorem B.

The proof of (c) of Theorem B follows, as in case of Theorem A, from
the basic existence theorem for inequalities of type (2) that we have
stated in Section O and the following proposition, which generalizes
Proposition 4.1.

Proposition 4.2. Let (T,) be a sequence of uniformly bounded
mappings from X to X* and, for each n, let f, be a function on X, with
dom f,, C D(T,) for every n. Let us suppose that S(T, , f,) # & for every n,
and that there exists a function y : Rt — (— o0, +00], with y(r) — +©
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as r — + oo such that for any sequence (v,) in X, with v, € dom f, for
every n, there exists a bounded sequence (2,) in X, z, € D(T,) for each n,
such that

”vn — 3 “ '}’(H Up — =n H) < <Tnvn - Tnzn y Op — ’zﬂ/\ +fn(vn) *fn(zn)
Jor alln.  (4.9)
Then, there exists a bounded subset B of X, such that

S(T,,f,)CB  for all n large enough.

Proof. Itsuffices to prove that any sequence (v,)), with v, € S(T, , f,,)
for every n, is bounded in X.
By the hypothesis, there exists a bounded sequence (z,) in X,
z, € D(T,), such that (4.9) holds. On the other hand, we have for each#,
since fn(vn) <+ and fn(zn) < 40,

‘-’\'T,”?),, »y Un — 2’,,> gfn(zn) *fn(‘vn)
hence

<Tn7)n — ToRy s Uy — By +fn(vn) 7f7l(z'n) S TRy 2y — Upy
g\ H Tnz'n. H “ Ry — Uy H‘

It follows, by (4.9), that

Y(H 7)71 * zn ”) < “ Tnz'n H WhCnCVef vn 7’L 2',, )

what implies that (v,,) is bounded. ]|

Proof of (c) of Theorem B. Since f is proper, f = 4+ 0, and f, — f,
then every f, is proper for all # large enough, (see Remark 1.6). Moreover,
condition 1V’ implies that every couple 7, , f, satisfies the coerciveness
condition of the existence theorem for inequalities (2) stated in Sub-
section 7 of Section Q. Therefore, we have S(T, , f,,) # @ for all large #.
Furthermore, for any (v,) as in Proposition 4.2, we can satisfy to (4.9)
with a suitable y, by choosing 2, = 0 for all # (recall that we are
supposing f,.(0) = O for all n), because the 7, are uniformly bounded
and IV holds. Therefore, we have by Proposition 4.2

S(Tw, ) C B

for some bounded subset B of X and all n large enough. |
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Thus the proof of Theorem B is now complete.

Proof of Corollary of Theorem B. The hypothesis (2.11) implies
by IT’, that there exists a bounded closed convex subset B of X, with
dom f N int B # @&, such that

S(0,f.)CB  for all n large enough. (4.10)

We recall that S(0, £,,) coincides for each n with the set of all vectors of X
which minimize f, on X, see Subsection 7 of Section 0.

Let us consider for each 7 the function £, that coincides with f, on B
and is =-} 00 outside B. f, is, for each z large enough, a proper convex
lower-semicontinuous function on X, for f,, is such. Moreover, dom f,, is
bounded and non-empty. Thus, by the existence Theorem quoted in
Subsection 7 of Section 0, S(0, f,) is non-empty and, by (4.10),

S0,7.)CB  for all n large enough.

Furthermore, by the assumption of the corollary, f, converges as
n — + o to the function f, which coincides with f on B and is =+ o0
outside B. The function f is proper, strictly convex and lower-semi-
continuous for fis such, and dom f # . Thus, fand f, satisfy condition
II" of Section 2 and to prove the corollary it suffices to apply successively
(b) and (a) of Theorem B, with T,, = T = 0 for every n, taking into
account that S(0,f) = S(0,f) consists of the single vector which
minimizes f on X and that condition IIl" of Section 2 specializes to the

hypothesis (2.12) of the corollary. ||

5. Non-Coercive Mappings, Non-Unique Solutions

In this section we extend the results of Section 2 to the case in which
T may be non-coercive in X and the solution of problem (1) non-unique.

Let us remark, before, that when the hypotheses III. and IV of
Theorem A are not satisfied and we do not know that the solution of (1)
is unique, then we can only conclude, on the basis of Theorem A,
that any bounded sequence in X of approximating solutions u, (i.e.,
u, € S(T, , K,)) has a subsequence which converges weakly in X to
a solutxon of (1).

We shall improve this result, by makmg use of the so called “elliptic
regularization”, .which is the standard device for dealing with the
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“degenerate” case at hand (see references mentioned in Subsections 4
and 8 of Section 0).

It consists in adding to each 7, a perturbation n~*M, with « > 0 and
M a coercive map of X to X*, then solving for each n the problem

w, € Kt (T, +nMw, ,v—w,y =0 forall vekK,,

and finally letting n — - co.

We shall see that the method is successful, provided 7', converges to T
and K, to K rapidly enough, as # — 4-co, in order that 7, + n—M
still acts coercively in X while 7, approaches T and K, approaches K.

Now we state our results with more details. Let us suppose that the
following strenghtened version I, and II; of I and II are satisfied:

Tand T,,n =1,2,.., are as stated in I of Section 2. In addition, T is
I bounded and there exists o > O such that for any v € D(T) we have
1
0 es-Lim inf n*{G(T,) — {v, To}} in X x X*. (5.1

According to our notation of Subsection [ of Section 1, (5.1) means
that there exists v, € D(T,), forallz > n,,n, > 0, such that

n*(v, —v)—0 (strongly)in X as n— 40, (5.1
n(Tyv, — Tv)— 0 (strongly) in X* as »n-—> +oco. (5.1")

K and K, , n=1,2,..., ave as stated in 11 of Section 2. In addition,
there exists o > QO such that K, converges to K of order = ain X as

I, n— 4o, Le.,
K, —K|]—0 as n— 400,

in the sense of Definition 1.3 of Section 1.

Clearly, we can assume that « in I, and II, is the same.
Now we suppose that

M is a bounded, monotone hemicontinuous map of X to X*, such that if
(m) Sy = S(T, K), then S(M, S,) consists at most of a single vector (for

example, let T or M be strictly monotone)

without requiring, for the moment, that M be coercive.
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Let us consider for each # the map
A, =T, +nM (5.2)
from X to X*, with domain D(4,) = D(T,), and the problem
w, € K,: {A,w,,v —w,) >0 forall vek,. (5.3),,

We shall prove, in particular, that any bounded sequence of solutions
w,, of (5.3), converges weakly to the (unique) solution w, of inequality (1),
such that

wo€ S(T, K): {Mwy,v —wyy >0  forall veS(T, K).

Moreover,
{Mw, — Mwy , w, — wey —0 as n— +o0,

hence w, converges strongly to =, in X as n — + oo, whenever M
satisfies the condition

If (v,) is a sequence in X which converges weakly to a vector v € X, and,
I11, besides, is such that (Mv, — Mv, v, — v> —0 as n— +c0, then v,
converges strongly to v in X as n — +o0.

If, in addition, M is coercive in X, then such is every 4, , hence,
by the existence theorem, there exists for each # a solution w,, of problem
(5.3),, - In part (c) of Theorem C below, we prove that if we know that
inequality (1) has a solution, that is, S(T, K) # @, and IV,, IV, 1V,
below are satisfied, then the sequence (w,) is bounded in X. The
conditions are as follows:

There exists a non-decreasing function ¢ : R — R*, with

lim r/gp(r) < 400 as r— 40, (5.4)
such that

{ Mo, v)lg(jv]) >+ as ||v] >+

Yo ViMoy<o(ol) forall vex
v Either (5.1") holds with v, = v for every n and K C K,, for every n, or
AT < (| v]) for every n and all v e D(T,)
For any sequence (w,), w, € K,, for each nand || w, || — +o0 asn— +oo
Iv, there exists a sequence (2,) in K, such that

lim sup 7| 2, — w, [|fg(} w, ) < +00 as n—> + oo
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Clearly 1V, is trivially satisfied if K, C K for every n (for then we can
choose 2, = w,).
All these results are given in the following

Theorem C. Let us suppose that 1, and 11, hold, M satisfies (m) and
A, is given for each n by (5.2). Then we have:
(a) If w,e S(4,,,K,,) for every h, with (S(4,,,K,,)) a sub-
sequence of (S(4, , K,)), and w, converges weakly to a vector w of X as
h — o0, then w coincides with the (unique) solution w, of

wo € S(T, K): {Mwy, v —wy> =0 forall veS(T, K) (5.5)

and, besides,
{Mw, — Mw,, w, —wy>—>0 as h— 4o0. (5.6)

Thus, w,, converges strongly to w, in X, whenever M has the property 111, .
(b) Suppose that there exists a bounded subset B of X and ny > 0,
such that
S(4,,K,)NB # ¢ Jorall n>n,.

Then, there exists w, satisfying the inequality (5.5) and, furthermore, any
bounded sequence (w;), with w; € S(T,, , K,,) for every jand (S(T, , K, ))
a subsequence of (S(T,, , K,)), converges weakly to w, .

(c) If S(T, K) = @ and conditions IV, IV, and 1V, are satisfied,
then there exists a bounded subset B of X and ny > 0, such that

g # 8(4,,K,)CB  forall n>mn,.

Remark 5.1. Part (a) of Theorem C holds even if X is not reflexive,
as it will be clear from the proof of the theorem that will be given in the
following section. Part (c) of Theorem C can be somewhat generalized,
see Proposition 6.1.%*

Let us recall that a duality mapping of a Banach space X into X*,
with gauge function a given real-valued continuous strictly increasing
function y of » > 0, such that x(0) = 0 and x(r) — +oo as r — o0,
is a map [ of X into X*, such that

Jvoo =i Jolllvl
I Joll = x2l)

* Finally, let us note that assumption I’ requires, in particular, that 0 € s-Lim n*
(K, — v) for all v € K. Actually, as it will be clear from the proof of Theorem C, it 1s
sufficient that the condition above only holds for every v € S(T, K). This can be useful
whenever regularity properties of the solutions are known.
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for all v € X. We refer to (10) and (1) for a discussion of the properties
of these mappings. We recall here that if X is uniformly convex and X*
is strictly convex, then there exists for each given gauge function y one
and only one duality mapping J of X into X*, and such [ is bounded,
coercive, strictly monotone and continuous from the strong topology of X
to the weak topology of X*. Besides, | has the following property: If
(v,) is a sequence in X which converges weakly to a vector v of X and
{Jv, — Jv,v, — v> — 0 as n — + o0, then (v,) converges strongly to
v in X.

By using this notion of duality mapping, we obtain from Theorem C
the following

Corollary of Theorem C. Let us suppose that 1, and 11, hold and
that X is uniformly convex and X* is strictly conveix. Furthermore, let us
suppose that S(T, K) # & and that there exists a real-valued continuous
strictly increasing function @ of r = 0, with ¢(0) = 0 and

lim r/p(r) < 400 as r— 40,

such that IV, and IV, holds. Let ] be the duality mapping of X into X* with
gauge function ¢. Then, there exists for each n > ny > 0 a unique solution

w, of
w,e Kyt (T, +n°yw,, v —w,> =20 forall vekK,. (57),

Such a w, converges strongly in X as n — -+ oo to the unique solution w, of
woe S(T, K): (Juwy, w —w> >0  forall weS(T,K). (58)
Moreover,

<an_]‘w0’wn_w0>—’0 as n—> 4. . (59)

Now we state the analogue of Theorem C for inequalities of type (2).
While I, is unchanged, II; must be replaced by

f and ( f,) are as stated in I1' of Section 2. In addition, there exists « > 0

) such that
1L wf, —f1>0 as n—> +oo

in the sense of Definition 1.5.

‘We shall assume that the « in I, and II,’ is the same.
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The inequality (5.3),, are now replaced by
w, € X : {Aw,, v — wy = fulw,) — f,(v) forall »ve X

i.e., w, € S(4, ,f,), where again 4, is given for each n by (5.2) and M
satisfies

) \M is a bounded monotone hemicontinuous map of X to X*, such that
( 1S(M, S,) consists at most of a single vector, where S, = S(T, f).

Clearly the last condition in (m’) is satisfied whenever M is strictly
monotone, or when either 7 is strictly monotone or f is strictly convex.
Condition 111, is replaced by

( If (v,) is a sequence in X which converges weakly to a vector v of X and,
111’ besides, f,(v) — f(v) and {Mv, — Mv, v, — v> —> 0 as n— + 00, then

(vn) converges strongly to v in X.

Finally, condition 1V, remains unchanged, again with ¢ a non-
decreasing function of R* in R* which satisfies (5.4), while conditions
1V, and IV, must be replaced by

y Lither (5.1") holds with v, = v for every n and epi f C epif, for all n,

WV, or | To| < (|| v])) for every n and all v e D(T,).
For any sequence (v,) in X with || v, ||— +00 as n— + o0, and any
ve D(T), there exists a sequence (2,) in X, such that

v,

lim sup #{{T%, 2, — v,) + f(z,) — fulv)}/g(l va [} < +0
as n— -00.

Clearly IV, is trivially satisfied, with z, = v, for every =, if
dom f,, C dom f for all »n.

Theorem D. Let us suppose that T and (T,) satisfy 1,, f and (f,)
satisfy 11,', M is as stated in (m') and that A, is given for each n by (5.2).
Then we have

(a) If wy € S(4,,, fr,) for every h, with (S(4,,, f,,)) a subsequence
of (S(4,,, f)), and w,, converges weakly to a vector w of X as h — - o0,
then w coincides with the (unique) solution wy of

wo€S(T,f): Mwy, w —wey =20 forall weS(T,f) (510)
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and, besides,

Jon(@on) = f(z00) (5.11)
{Mwy, — Mwy, w, — wey — 0 (5.12)

as h — 0. Thus, w, converges strongly to w, in X, provided property
I, holds.
(b) Suppose that there exists a bounded subset B of X and ny > 0,
such that
SA,,f)NB# &  foral n>n,. (5.13)

Then, there exists w, satisfying (5.10) and, furthermore, any bounded
sequence (w;), with w; € S(4, , f,) for every j and (S(4,,, f,)) a sub-
sequence of (S(A4,, , 1)), converges weakly to w, .

(c) If S(T,f) #+ @ and conditions IV, IVy" and IV, are satisfied,
then there exists a bounded subset B of X and ny > 0, such that

@ # SAn,f,)CB  foral n>mny.

Remark 5.2. The hypothesis of reflexivity of X is unnecessary in
part (a) of Theorem D. Moreover, (c) can be generalized to Proposition
6.1 of the following section, see Remark 5.1.

Remark 5.3. When 7, = T and f, = ffor all n, ¢(r) = r and M is
a map of improvability, see Ref. (14), then Theorem C specializes to
Theorem 1 of Ref. (14) (for a bounded T').

Corollary of Theorem D. Let us suppose that X is uniformly
convex, X* is strictly convex, f and (f,) satisfy I1," and IV, with ¢(r) = r
and T = 0. Moreover, let f have a minimum in X and let | be the duality
mapping of X into X* with gauge function o(r) = r. Then, there exists
for each n one and only one solution w, € X of

Falwy) < fulo) + n(Jw, , v —w,>  forall velX.

Such a w, converges strongly in X to the vector w, of X, uniquely deter-
mined, which minimizes f on X and satisfies

(Jwe, w —we) =0

for all vectors w of X minimizing f on X. Moreover, f,(w,) — f(w,) and
{Jw, — Jwy, w, — wey — 0 as n — 4o0.
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6. Proofs of Theorems C and D
We shall prove below Theorem C and Theorem D of Section 5 and

their corollaries.

Proof of (a) of Theorem C. 'The mappings 7T and (A4,) satisfy the
assumption I of Theorem A. Indeed, we have for each =,

A, =T, +n=M, DA, =DT,) (6.1)

where o > 0, 7" and (7,) are as stated in I of Section 2 and M is as
stated in (m) of Section 5. Therefore, (A,) is a sequence of monotone
hemicontinuous mappings from X to X*, which are uniformly bounded
in X and, by (5.1) satisty

G(T)C s-Lim G(4,) in X X X*.

Since, in virtue of 11, , the assumption II of Theorem A is also satisfied,
we can apply Theorem A to the mappings T and (4,,) and to the sets K
and (K,). It follows, by (a) of that theorem, that if % and (w,) are as
stated in (a) of Theorem C, then

we S(T, K).
We shall prove below that for any v € S(T, K),
lim sup{Mwy, , w, —v> <0 as h— +o0. (6.2)

Once (6.2) is achieved, the proof of (a) of Theorem C can be concluded
as follows.
By the monotonicity of M, (6.2) implies

lim sup{Mv, w, — vy, <0 as h— +o0,
hence, since w, — w as A — -+ 0,
Mv,v —w> =0

for all v e S(T, K). Since M is hemicontinuous and S(7, K) is convex
(see Subsection 3 of Section 0), it follows by Lemma 4.1,

Mw, v —w) >0,

thus, by the last property of M stated in (m), @ coincides with the unique
solution =, of (5.5).
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To prove the remaining part of (a), let us put v = w, in (6.2). Since
w;, — w, as h — —+ oo, we find

lim sup{Mw, — Mw,, w, — wy> <0 as h— +o©

hence, by the monotonicity of M, (5.6) holds, what implies in turn, that
w,, converges strongly to w, in X as A — 4o, provided M has the
property III, .

Therefore, it remains to prove that (6.2) holds for every v € S(T, K).
Let us show that we are led to a contradiction, by assuming that there
exists a vector vy € S(T, K) and a subsequence (w;’) of (wj), with

w;' = wj, for every j, such that

im{Mw;', w;i — v,y >0 as j— -foc0. (6.3)

Since K, converges of order >« to K as n — - o0, there exists for
every j a vector v; € K; , where j = m,,_, such that

J4v; —19)—0 in Xas j— +4oo. (6.4)

Moreover, we have
{Aswi',v; —w> =0 for all j,

for w;" € S(4;, K;). Therefore,
Aywy, v — /) + (Ajw;’, v; — v =0,
which is to say, by (6.1),

<Tj‘wj,) wjl - v0> —}—j“"(ij’, wjl - '1)0> < <A wi,v U — v0>7 (65)
for allj.
On the other hand, again since K, converges of order >« to K as
n — + 0, there exist a sequence (2,) of vectors of K and a subsequence
(wj,) of (w;"), such that

Iz — w]f[) —0 inXas £-> o0 (6.6)
Moreover, we have
{Tvy, 2 — vy =0 for every ¢,

for vy € S(T, K). Therefore,
(Tv,, v, — waf) < Ty, 2, — w]f{> for every 7. 6.7)

607/3/4-11
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Furthermore, by (5.1) of assumption I;, there exists for each £ a
vector x, € (T} ), such that

JMar — o) —0 inXas /- +oo, (6.8)
Ty — To)) >0 in X*as (— -+oo. (6.9)
Now, by (6.7) we have
+ Ty, v — x>
<<(Toy,2,—w)  (610)

’ 3
<T].le )%, — w}./> + Ty, — T]./x, ) X, — M

and by (6.5),
<T]'[ ir? i/ s+ <T' J/ » % T %> +};“<Mw}'{ ’ ‘w;/ — 9y

< <4, wj/ » O, V) (6.11)
for every /.

Adding (6.10) to (6.11) and taking the monotonicity of 7 into

account, we find

<Mw]’./ , ]’ v, <JH<(Tyy — / X, wf/ x> + Ty, — T]./w)f/ ) Xy — Ty
+ Ty, 3, — J// <A”w)/ » Y, — Uk (6.12)

Letting £ — -} 00, we find that the first term on the right-hand side of
the inequality above goes to zero, because of (6.9) and the boundedness
in X of (w) ) and (x,); the second term goes to zero, because of (6.8) and
the boundedness in X* of (T, w] }; the third term goes to zero, because of
(6.6); finally, the last term also’ goes to zero, because of (6.4) and the
boundedness of (4; /wJ/) in X*. Thus,

: ’ 14
lim sup<ij/ W, — v <0 as /— foo,

which contradicts (6.3). ||

Proof of (b) of Theorem C. By the hypothesis of (b) and the reflexivity
of X, there exists a sequence (w,) satisfying the hypothesis of (a) of
Theorem C. Hence, by (a), there exists a (unique) vector w, which is a
solution of (5.5). Moreover, it is easy to show that the last conclusion of
(b) is again a consequence of (a) and the reflexivity of X. |
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Proof of (c) of Theorem C. If M is coercive, such is for each n the
(monotone hemicontinuous) map A4, given by (6.1). Since K, is for
every n large enough a non-empty closed convex subset of
D(4,) = D(T,) and X is reflexive, it follows by the existence theorem
for inequality (1), that

S(4,,K,) # @ for all # large enough.

It remains to prove that, in consequence of the hypotheses S(7, K) = @,
IV,, IV, and 1V, , there exists a bounded subset B of X and n, > 0,
such that

S, ,K,)CB forall n >mn,.

Clearly, it suffices to show that we find a contradiction if we suppose

that there exists a sequence (w,), with w, € S(4,, , K, ) for every h,
(S(4,, , K,,)) a subsequence of (S(4,, , K,)) such that

Tw,|| > 4+ as h— +4o0. (6.13)

Let us choose a vector w, € S(T, K). By II, , there exists for each 4 a
vector v, € K, , with v, = w, if K CK,, for all n, such that

v, —wy||—0 as h—> 4o (6.14)
and, by IV, , there exists a sequence (z},) in K, such that
lim sup n,*| 25, — wy, [|/@(l| 2y |) < +00 as h— fo0.

Moreover, by I, , there exists for each % a vector x;, € D( T,,), such that

mllxp — wyl| >0 as h— + oo, (6.15)

| Ty — Teog||—0 as hA— +o0 (6.16)

[with, possibly, x;, = w, for every &, in case (5.1”) holds with v, = v for
every n].

By an argument quite similar to the one used to prove (6.12) in Proof
of (a) of Theorem C, one finds

<Mwh > Wy — w0> < nha{<Tw0 - Tnhxh > Wh — xh> + <Tw0 - Tnhwh » ¥p — w0>

+ (Tewy , 2 — wy> + <Anhwh » Up — Wek;
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hence

<My, wp ([ wn [l) << m?l| Ty — T |l [l 2on lisp(ll 2 1) =+ 11 20 /el 2. 11)]
+ Il Tewg /(11 2on 1) 41| Tonpom [1/pCll 2on [D]al] 25, — 200
+ || Towg | m| 2 — wa [lfepll 2 [1)
+ [ Topeon /(1] n D] 7l o0 — 2o ||
+ [l Mo [ljp(ll n ID] 1 2 - (6.17)

Letting & — 4 00, one finds that the first term on the right-hand side
of the inequality above, goes to zero in virtue of (6.16), the boundedness
of (|| x,,|)) and the property (5.4) of ¢; the second term also goes to zero,
because of (6.15), (5.4) and IV, ; the third term is bounded (as # — -+ o0),
in virtue of IV, ; the fourth term goes to zero, because of (6.14) and IV, ;
finally, the last term also goes to zero, because of (6.14) and IV, . It
follows

lim sup(Mw,, , w,)[¢(| w,|)) < +o0 as h— +o0,

and this, by (6.13), contradicts IV, . |

Proof of Corollary of Theorem C. By the properties of [ that we have
summarized before the Corollary of Theorem C in Section 5, we can
apply Theorem C, with M = ] satisfying (m), III, and IV, . Therefore,
since 4, = T, + n=] is strictly monotone for every =, it follows from
(c) of that theorem that there exists for each n one and only one solution
w,, of (5.7), and the sequence (w,) is bounded in X. Thus, by (b), w,
converges weakly in X as # — -+ oo to the (unique) solution «, of (5.8),
hence, by (a), w, converges strongly in X to @, as # — + o0 and (5.9)

holds. |

Proof of Theorem D.  We shall deduce (a) and (b) of Theorem D from
(a) and (b) of Theorem C by the same argument that we have used in
Section 4 to deduce Theorem B from Theorem A.

Under the assumption I, and I1,’, it is easy to show that the mappings

THIL, MPO0and
4,01 =T,01 + M@0, n—1,2,.,

satisfy the hypothesis I; of Theorem C, with X replaced by X P R
(notation of Section 0). Let us only notice that, by (m’), M @O0 is a
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bounded monotone hemicontinuous map of X ® R to X* ® R, such
that

S(M DO, S,),

where Sy = S(T @ 1, epif), consists at most of a single vector. [In
fact,

{w,a}e S(T @ 1,epif) and <M P O0{w, o}, {v,B8} —{w,a}> =0
for all {v, B} € S(T @ 1, epif), is equivalent to
weS(T,f) o = flw) and Mw, v —w) =0

for all v € S(T, f), hence, by (m"), such a vector {w, o} is uniquely deter-
mined].

Moreover, epi f and epi f, satisfy, by II,’, the hypothesis II, for the
case at hand.

Therefore, we can apply Theorem C, with X replaced by X @ R.
ToyT®1,A4,by A, ®1, Kby epi fand K, by epif, . Thus (a) and
(b) of Theorem D can be obtained, by taking Lemma 4.4 into account,
from (a) and (b) of Theorem C, respectively, as we shall show below with
more details.

Proof of (a) of Theorem D. Let (w;) be a sequence in X satisfying the
hypothesis of (a). Since (w,) is bounded, then, by Lemma 4.4, (f, (w}))
is also bounded; hence there exists a subsequence (wj, ) of (w,) such that
wy, — w and '

fnhj(whj) &,
a€R,asj — + 0. Since
{wh]‘ »fm,j(wh;)} € S(Anh} @ 1> epifnh).)

for every j, by applying (a) of Theorem C one finds that {, o} coincides
with the unique solution {wg , .} € S(T' @ 1, epif) of the inequality

<M @ 0 {wo ’ 0‘0}» {‘U, 18} - {w(l y a0}> 2 0 fOl’ all {‘Z), B} € S(T @ 1! epif)
which is to say, w = ws € S(T, f), « = oy = f(w,) and
{Mwy, v —we> =0 for all e S(T, f).

Thus, w coincides with the solution w, of (5.10). Besides, by the unique-
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ness of w, , we have f, (w) — f(w,) as & — - 0. Finally, (5.12) follows
trivially from (5.6) of Theorem C in the case at hand, and the last

assertion of (a) is obvious. |}

Proof of (b) of Theorem D. By the hypothesis (5.13) of (b) and
Lemma 4.4, there exists a bounded subset B, of X ® R and n, > 0,
such that

S, ® L, epif)NB, # o  forall n>n,.

Hence (b) of Theorem D follows from (b) of Theorem C. J
Part (c) of Theorem D is a special case of the following

Proposition 6.1. Let T be a map from a normed space X to X*,
f a proper function on X with dom f # &, and suppose

S(T,f) # 2.

Let (T,) be a sequence of monotone mappings from X to X*, M a map of
X into X* and for a given o« > 0 let for each n,

A, =T, + n M,

with D(A,) = D(T,). Moreover, let f, be for every n a proper function on
X with dom f,, # &, and suppose that

Sy, fp) # o forall n
Let us suppose that there exists a non-negative function ¢ of r > 0, with
lim r/p(r) << 40 as r— o0, (6.18)
such that for each w e S(T, f) and any sequence (w,,), with

w, € D(T,) N dom f,

for every n and ||w, || — 400 as n— + o0, the following conditions
IVy,..., IV, hold:

{ Mw, , w, — v/e(| w, ) > +00 as n— +oo for any bounded
l sequence (v,) in X.

v,
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Either w € D(T,) for all n and
limsup || T,w — Tw|| < 4+ as n— +o0,
or there exists x, € D(T,) for every n, such that
lim sup n%| x, — w| < 40

lim sup | T,,x, — Tw| < +o0
and, besides,

asn— —+oo.

There exists a bounded sequence (v,) in X, such that
lim sup n*{(Toty » Op — @) + ful(2n) — f@)er(ll 22 [}) < F-00

as n— —+00.

There exists a sequence (2,) in X, such that
lim sup n*{(Tw, 2, — @) + f(2a) — fulwn)}ep(ll 0, [)) < +o0

as n—> -}-00.

Then, there exists a bounded subset B of X and n, > 0, such that

S(A4,,fJCB  foral n>n,.

Remark 6.1. 'The hypothesis ﬁ;’l’ is trivially satisfied if

epi fCepif, for all =,

581

for then we can take v,, = w for every n. On the other hand, the hypo-

thesis IV, is satisfied whenever

epif,Cepif forall =,

by taking z, = w, for every n.

Proof.

Let us suppose that there exists a sequence (w;) in X, with

wy, € S(4,, ,f,,) for every h and (S(4,,,f,)) 2 subsequence of
(S(4,, , f.)), such that || w, || = + o as & — 400, and let us show that
this leads to a contradiction.
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Let us choose w € S(T, f) and let (v,,) be a (bounded) sequence in X,
such that IV] holds. We have for every #,

<Anhwh > ‘Z),,h - wh> >fnh(wh) *fnh(vnh%
hence also,
<Tnhwh y W — 'wh> + <Tnhwh ’ vfnh - 20> + n;a<Mwh ’ vnh - wh>
>fnh(wh) —fnh('vnh)‘ (619)

Moreover, let (z,) satisfy R/'z . We have for every &,
<TZU, znh - w> >f(‘w) *f(z'nh);
hence also,
Tw, wy, — w) + {Tw, z,, — wy = f(w) — f(zn,)- (6.20)
By ﬁ/l', there exists x, € D(T,) such that
hm Sup na”x’n - w” < +OO) (62])
lim sup »?| Tpx, — Tw || < 40 (6.22)

as n — - 00. We assume x, = w for all n, if w € D(T,) for all n. From
(6.19) we obtain, since both £, (w;) and f,, (v,,) are finite,

Topwn s @y, — %> + Ty 5 %y, — w) + Ty, w0 — >
+ m My, wy, — 0y, > < frg(Vng) — Frp(200) (6.23)
and from (6.20), since f(w) < -+ o0 and f(z, ) < + o0,
{Topng, > %y, — > + (Tw — Ty, %, — wp> + {Tw, w — x,,>
+ {Tw, wy, — 3, < f(2,) — f(w)- (6.24)
Adding (6.23) to (6.24) we find by the monotonicity of T, ,
My, wy, — vy < m{{Tw — Ty, s wy — %> + (T — Ty o0y, 2, — @)
+ {Topwn s vy, — @) + fr,(Vn,) — f(w)
+ (Tw, 2, — wp> + f(2,) — fup(wn)}s
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hence,

(Muwy , wy, — Vup (| Wi l) < 1% Too — T8y 1 2001 + 1| %y, 1)/l 20 1)
+ ) %y, — w (| T || + || Top2on 11)/ep(l wa ll)
+ K To@n » Oy, — @) 1 fup(Ony) — F(@)]1/o(|] a [))
+ m[KTw, 2, — wn> + f(20,) — Fur(wn)lfe(ll wa ]]).

Now we let 2 — + o0 in the inequality above. Then, both the first
and second term of the right member are bounded by (6.22), (6.21) and

(6.18); the third term is also bounded by 1V]; finally, the last term is
bounded by IV, . Thus, we find

lim sup{Muw, , w;, — v, > /(| @, [) < 400

as b — - o0, which contradicts ﬁfo . |

Proof of (c) of Theorem D.  The map M of Theorem D satisfies, by
1V, , the hypothesis IV, of Proposition 6.1, and the mapping T and T,

satisfy, by I, and IV,’, the hypothesis IV," of that proposition.’ Since
by II," we have n<[f, —f] — 0 as n — + o0, then there exists, by
Lemma 1.11, a sequence (7,) in X, such that

v, —w||—0
lim sup 2°[ fu(,) — f(w)] <0
as n — + o0; besides, we have, by IV,’,
lim sup(| Tnewy [|/(|l @, () < +-o0

as n— + 0. Thus the hypothesis ﬁfl” of Proposition 6.1 is also satisfied.

Finally, IV, clearly implies IV, . Therefore (c) of Theorem D follows
from Proposition 6.1 and the existence theorem stated in Subsection 7
of the Introduction. ]

Proof of Corollary of Theorem D. Itsufficesto apply Theorem D with
T,=T=0 for every n and M = ]. |

10 The hypothesis IV} is trivially satisfied in case epi f C epi f, for all n (see Remark 6.1).
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