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1. Background information and notation

Let G denote a connected reductive algebraic group defined over a finite field F; where q is a
power of a prime and let « : G — G be a Frobenius endomorphism. An «-stable maximal torus of G
will be denoted by T and the unipotent radical of an a-stable Borel in G will be denoted by U. For
any subgroup A of G, the group A% of fixed points will be denoted by A. In particular let G = G*. That
is, G is a finite group of Lie type. A maximal torus of G is a subgroup of G of the form T = T%. The
Gelfand-Graev characters of G are the induced characters I = Indg (¥) where v is a nondegenerate
linear character of U = U¥. For the groups considered in this paper the center of G is connected. Thus
given a Frobenius endomorphism, there will be only one Gelfand-Graev character I" (see [3, p. 519]).
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Given a nondegenerate linear character of U, v, let e denote the central primitive idempotent in
CU corresponding to :

e=|UI"" Y y(u

uel

Then H = eCGe is called the Hecke algebra of the Gelfand-Graev representation of G [4, Section 11].
The Hecke algebra constructed using the Gelfand-Graev representation is anti-isomorphic to the CG-
endomorphism algebra of the induced CG-module affording the Gelfand-Graev character of G. Thus,
since the Gelfand-Graev character is multiplicity free, the Hecke algebra H is commutative.

The standard basis of H is constructed in the following way. Let {x; | i € I} be a collection of
double coset representatives of U in G and let J={j|je I, *y =+ on U N *U}. (Here *ivy
denotes the character of the conjugate group * U and is defined by *iv(*iu) = yr(u) for u € U.)
Then {[U: *%U N Ulexje | j € J} is the standard basis of H [4, Proposition 11.30]. In this section
[U: XU N Ulexe will be denoted by cy and for the remainder of the article [U: *U N U] will be
denoted by ind(x).

There is a bijection from the set of irreducible characters y of G such that (x, I') # 0 to the set
of all irreducible characters of H. Also the primitive central idempotents of H are {e€} where € is a
primitive central idempotent of CG associated with a x such that (x, I") # 0. Since H is commutative,
these idempotents are actually primitive idempotents. Thus they give us the simple module CGee
which affords x [4, Corollary 11.27].

Let T, denote a maximally split a-stable maximal torus of G. The G-conjugacy classes of c-stable
maximal tori of G are parametrized by the a-conjugacy classes of Né(f'o) /T, where the o-conjugate
of x by g is defined to be gxa(g)~! [3]. In fact, given any a-conjugacy class [x] of the Weyl group
N(‘; (To)/To.

Ty={AeT,|xAx ' =a(A)}

is conjugate (in G) to a maximal torus of G. And conversely, every maximal torus of G is conjugate to
some Ty [3]. Given an «-stable maximal torus T of G, let R?_e denote the Deligne-Lusztig generalized
character, where 6 is an irreducible character of the torus T = T¢ (see, for example [1, Chapter 7]). Let
Q% denote the Green function, which is defined for all unipotent elements u € G by Q?(u) = R%e(u)
(see, for example [1, p. 212]). Given a pair (T,0) there exists a unique irreducible character XT.0
of G such that (x74,I") #0 and (xt.0, R%g) # 0. Also any irreducible character x of G such that
(x,I'") # 0 coincides with a xt ¢ for some pair (T, 6) [3, Theorem 2.1]. Thus the irreducible characters
of H can be indexed by the pairs (T, 6). Also two irreducible characters fr,e and f1/ g, of H are equal
if and only if (T,6) and (T',6’) are geometrically conjugate [3, Theorem 3.1].
The following theorem is from [3, Theorem 4.2].

Theorem 1.1. Given a Frobenius endomorphism « defined on G, let T be an c-stable maximal torus of G and
let T = TY. Let 6 be an irreducible character of T extended to CT. Let G = G and let I" = Indg(w) denote
the Gelfand-Graev representation where U is the unipotent radical of an c-stable Borel in G, U = U and
is a nondegenerate linear character of U. Let H denote the Hecke algebra corresponding to G.

(i) There exists a unique homomorphism fr : H — CT, independent of 6, which has the property that each
character fr ¢ : H— Ccan be factored as fr g =0 - fr.

(il) fr(cx) =Y rer fr(cx) ()t where cy is an element in the standard basis of H and the coefficients fr(cx)(t)
are given by

[U: *UNU]

DO = —
IO =108 muliceo]

Yoo v e (suxe™),).

geG,uel
(guxg™h)s=t
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Note that if « is a Frobenius endomorphism then o™ is also a Frobenius endomorphism for any
nonnegative integer m. Denote by f]" the homomorphism fr described in the previous theorem when

G = G*". Similarly denote by H™ the Hecke algebra corresponding to G*". The following theorem is
from [6, Theorem 1].

Theorem 1.2. Using the notation in the previous theorem and the paragraph following that theorem, let N

denote the extension of the usual norm map from T*" to T% to a homomorphism of the group algebras. There
exists a unique homomorphism of algebras A™ : H™ — H that has the property fr - A™ = NT' - fi* for all

a-stable maximal tori T of G.

The map A™ will be called the norm map of the Hecke algebras H™ and H._ ~
We will consider the following specific set up. Let G = GL(2,Fy). Let F : G — G be the Frobe-

nius endomorphism given by F(a;j) = (a?j). Let F*: G — G be the Frobenius endomorphism given
by F*(aj) = (a‘}i)*l. Note that G" = GL(2,¢™) and GF" = U(2, ). It will be convenient to take an

isomorphic copy of this unitary group given by woéF*wgl where

W — 0 -1
°={1 o )
In the remainder of this paper U(2, q) will mean the group woﬁF*wgl.
Let B denote the upper triangular matrices of GL(2,l_=q) and let U denote its maximal unipotent

Subgroup. Let
= = qm

and

U*:(onw(j])F*: :((1) ‘;) ’aqu}.

Note that U* = UM, Each nontrivial linear character, ¥, of U™ corresponds to a nontrivial linear
character, xm, of the additive group of Fgn by l/fm(:) 1) = xm(@). Fix a nontrivial linear character x1 of
U® then choose (and fix) the nontrivial linear character of U™, v, to be such that xm = x1-Trgm 4.
When m =1, xp, will be denoted by just .

In the following a diagonal matrix (g E) will be denoted by (a, b) and the unipotent element ((l) j’)
will be denoted by [a].

The maximal tori of GL(2, ¢g™) are

TS =T = {(t,u)

tueFum},

(m) F™ m
Ty =T{ ., ={(t.t )]teFZZm}.
The maximal tori of the unitary group U (2, q) are

T =T = {6 e,

Ty =Tl ={tw|tuck, " =u!=1}.
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Note that in both GL(2,¢™) and U(2, q) the Weyl group is

(350 )l

When o = F™, we will denote H™, fI", NT' and A™ (defined in Theorem 1.1 and Theorem 1.2) by

HM™, f;m), N(Tm) and A™ respectively. When « = F*, we will denote H and fr by H* and f}. When
a=F* and m =2 we will denote N and A™ by N} and A* respectively.

2. Main results

This article provides some explicit descriptions of the maps f}m), T A™ and A* (defined in the
previous section). In the last section of this article these descriptions lead to a direct comparison
of the images of A® and A* of all the basis elements of H®. In particular, in Theorem 10.4 it is
shown the images of A® and A* are equal on the basis elements of H® with a slight adjustment.
In addition, it is then shown in Theorem 10.7 that the images of A* of certain basis elements of H®
can be written in terms of Dickson polynomials.

The main results in Sections 9 and 10 describe the image under A® and A* of basis elements
of the Hecke algebra H® as well as describe a certain subset of this basis in which these two maps
are the same. In this way, the results in Sections 9 and 10 exhibit connections between the complex
representation theory of GL(2, q), U(2,q) and GL(2, g?). Exhibiting connections between the represen-
tation theories of these groups has been investigated by many people. In particular, the connection
between the representation theory of GL(n,q) and U(n,q) know as Ennola duality was shown to be
true in all cases by Kawanaka [8] and connections between the representation theory of GL(n, q) and
GL(n,q™) were revealed by Shintani [9].

It would be an interesting problem to generalize the connections investigated in this article. That
is, let o and «* be any two Frobenius maps on a connected reduction algebraic group G (as discussed
in Section 1) such that o™ = («*)™. Using the norm maps from [6] (described in Section 1 above), it

would be interesting to describe the connections between the representation theory of G, G*" and
GO = G,

3. The Hecke algebra for GL(2, g™)

Let

m_ 1 -1
e o Z Ym(u™u.

ueym
Then

H™ = (ind(n)e™ne™ |neS, "Ym = ym on U™ N "UM),

where S is a set of double coset representatives of U™ in GL(2,q™). Note that

(u,v)w0:<8 —Ou)

Using the Bruhat decomposition, we see a set of double coset representatives of U™ in GL(2,q™) is

{312 ) urere]
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In order to determine the standard basis of H™ we first need to determine the set {n|neS, "y, =
Ym on UM N ymy,

Let y e U™ so y = [b] for some b € Fgn. Let x € Tém)wo. Then x = (8 _0“) for some u, v € Fj.
Then
xyx 1= 1 0
Y= vt 1)
So xyx~! € U™ if and only if —vu~'b = 0. But this is true if and only if b =0 (since u and v are

nonzero). Thus *U™ N U™ = | when x € T"™ wy. For such an x, ind(x) = [U™ | = g™. Note that the
condition ¥ (y) = ¥m(xyx~1) trivially holds for all y € U™ N U™ =1,
Now suppose x € T((Jm). Then x = (g 8) for some u, v € F. Note that xUMx=1 =y 5o ind(x) =

1. Also
1 1 uv™ b
xyx = 1 .

The condition ym(y) = ¥m(xyx~1) for all y € U™ N XU™ implies yum(b) = xm(uv~'b) for all b € Fgn.
Thus uv~! = 1. Thus u = v. Thus the standard basis for the Hecke algebra corresponding to GL(2, q™)

is
mymy (0 —u\ am (u O (m)’ *
{qe (v 0>e ,(0 u e u,veFn¢.

Denote (3 ’O”) by Xy and denote the basis element g"e™x, ,e(™ by c{"). Denote (v

Ou) by x, and

denote the basis element e™x,e™ by ™.
4. The structure constants of H™

In order to demonstrate all the structure constants for this Hecke algebra we will first need the
following lemma.

(m)

w,w-luv’

(m) (m) _ (m) 1
u,1 =q"c

Lemmad4.l.c ¢, 7 =q"c,/ duyv +ZW€F;m Km(—wv~ T —uvw T —u=Tw)c

Proof. Let I be an index set for the standard basis. Denote the basis elements by a;, i € I. Order
these basis elements so that a; = x,,e(™ for some u; € Fin for i <q™—1and a; = qmeMx,, e
for i > q™. We have cf,ml)cf,ml) = s Mkax Where py = g™ Zyeumka;] cflr.f‘])(y)cf,ﬁl)(yflxk). (See [4,

Proposition 11.30]). In this sum Dy = U™x, ;U™ and D' = U(m)x;]]U<m). Note that

D1={[r]<(1) _0u>[s] r,squm}={<; _u:_rs)‘r,sel:qm}

- 0 1 —av™! 1—abv!
Dzlz{[a](_vq O)[b]\a,bqum}z{(va,1 o )]a,bqum}.

First consider the case when k < g™ — 1. Then x, = (18“ f/) for some w ¢ Fj;m. Then

-1 -1
1 —awv w —abv™'w
xD, = {( -l bv-lw ) ‘a,b qum}.

and
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In order to determine the set D1 N kaz_l we need to find for which a, b € Fgm we have
ro—u+rs\ _(—awv'! w—abv lw
1 s “\ —wy! —bv'w J°
A comparison of the 2, 1 entries shows that this intersection is empty unless w = —v. So assume

w = —v. Then we have
r —u+rs\_ (a w+ab
1 s —\1 b ’

Thus a=r and b = s and the intersection D1 ﬂka‘l is D1 when w = —u = —v. Otherwise the inter-
section is empty. Thus assume x; = (—u, —u) and u =v. Let y € D1. Then y = ( “+r$) and y~!

w1 E)( o“ _Ou) = ( N 7”“5) Thus c(m) (y) = qm Xm(r + ) and c(m) “xe) = q—me(—T —s). Thus
1

(m)(y)c(m)(y Ix) = Zm Thus ftx =q™ > yep, = q™ when x; = (—u, —u) and u = v. Otherwise
Mk =0.
Now consider the case when k > q™. Then x; = ( 02 gv‘) for some nonzero wq, wy € Fgm. Then

-1 -1

_ wiv bwiv

xDy ' = A A ‘a,bqum .
—awyv wy —abwyv

X =

In order to determine the set D1 N kaZ_l we need to find for which a, b € Fgm we have
ro—u+rs\ _ [ wyv! bwqv1
1 s “\ —awyv ! wy —abwyv! )

A comparison of the 1, 1 and 2, 1 entries shows that this intersection is empty unless r = w;v~! and
a= —wz’lv. So assume these two conditions. Then we have

wivh —u+wivTls\  (wivT bwyvT]
1 s - 1 wy+b J°

Setting the 1, 2 entries of both matrices equal to each other and the 2, 2 entries of both matrices
equal to each other we have s=w; +b and s=b+ wy luv. Thus wo +b=b+ w]’]uv. Thus b can
be chosen to be any element in Fgm. Then s is determined by b and the intersection is empty unless

wiwy = uv. Thus, for the case x, = (VS 0 ) we have the set D1 N x,D T has q™ elements when
wiwy = uv otherwise this intersection is empty. Assume wi{w; = uv. Let y be an element in this

intersection. Then
o wivTt oswivTl—u
y= 1 S ’

Thus
1y -1 —swivl+u 0 -wi\_ [-s+wy —sulwy
Yo Xe= -1 wyv! wy, 0 ) 1 u'wy )

-1

Thus in this case c(m)(y) = qm Xm(—=wiv~! —s) and c(m(y*]xk) = qimxm(s —wy —ulwy) =

q—me(S —uvw; ! — u~"wy). Thus C(m)(y)c(m)(y Ix) = qz_me(_WlV71 —uvw;! —u~'wy). Thus
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1 1

_ _ _ 1
—uvwi ! —u"lwy) = xm(—wyv!

— qm 1 — — -1
Me=0q"3cp,n %D;" g Xm(=w1v —uvw]' —u~'wy) when

X = (‘32 7(‘;”) is such that wyw, = uv. Otherwise w, =0 when k > q™.

Combining these two cases we have that

-1 R
cir?l)cf,fl)zqmcﬂ)au'v—l— Z Xm(—wivT —uvw —u w1)c$71)!wl_1uv. O

The following proposition provides all the structure constants for H™,
Proposition 4.2. Let t,u, v,x,y € F;‘m. Then

(i) cey” =y

) tm) _ )’

. m m m

(ii) cy "¢y =Cyeyy and

Gy em (m) (m) -1 “1yy—1—1 _ -1 (m)

(iii) ¢,y cx,y :qmcftyaty,ux—f—zwggm Xm(=X"Tyw — U= IXyTI WS — W),

Proof. As x; is central, parts (i) and (ii) of the proposition are clear. Note that (g _Oa) = (g 3)(? ‘agq).
Thus

m . m _(u 0 y 0\ m _m
Ct,ucx,y—(o u)(O y ) G111

Therefore, using Lemma 4.1, we have

(m) .(m) uy 0 (m)
Coulry = ( 0 uy) [qmcftuflstu—LXy_]

Y mwy ) -y = () w)e™ ]

w,wltu~lxy-1
wel-‘j;m

1 (m)
uyw,txw—1"

=q’"c(,"gj),6ty,ux+ Z Xm(—x"Tyw —tu”Txy ' w™

weF;‘m

—t'uw)c ]

5. The Hecke algebra for U (2, q)

Recall H* denotes the Hecke algebra corresponding to U(2, q). Let

=2 3 vl

ueU*

Note that e* = e, Then
H* = (ind(m)eMne [ne s*, "y =y on UV N "UD),

where S* is a set of double coset representatives of UV in U(2, q). Note that

« _J(t o 0 —t .
R
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In order to determine the standard basis of H* we first need to determine the set {n € S* | "y =y
on UD N gy,
Let y e UV so y =[b] for some b € Fy. Let x € Tiwo. Then x = (ugq _0”) for some u € FZZ' Then

1_( 0 —u 1 b 0 ul) 1 0
xo=\wu o J\o 1)\t o)\ —ut-p 1)

So xyx~1 e U if and only if —u~179b = 0. But this is true if and only if b =0 (since u is nonzero).
Thus UMD N UM =1 when x € Tiwo. For such an x, ind(x) = |U"| = q. Note that the condition
Y1 (y) = 1 (xyx~1) trivially holds for all y e UMD nxu® =1.

Now suppose x € Tg. Then x = (§ ugq) for some u € F},. Note that xUDx=1=UD so ind(x) = 1.
Also

oot 0 1 b\ u™ 0Y)_ (1 uitlp
Y ={o w9)lo 1)L o w)Z\lo 1 )

The condition ¥1(y) = ¥1(xyx~1) for all y e UDN *UD implies x1(b) = x1(uit!b) for all b € Fy.
Thus ut! = 1. Thus the standard basis for the Hecke algebra corresponding to U(2, q) is

«(f 0 —v\ . [fu 0\ ,
{qe (v—q 0o )¢ \o u)®
0 —v uo

Denote (V,q 0 ) by xyy—a and denote the basis element ge*x, ,-qe* by ¢} - Denote (0 u) by xy
and denote the basis element x,e* by cj.

u,veFZz,uq“ :1}.

6. The structure constants of H*

The following proposition provides all the structure constants for the Hecke algebra H*.
Proposition 6.1. Let u, v, X, z € FZZ be such that ud*t! = vi+t1 = 1. Then

(i) ciey =cihy,

s X K %k
(i) ey g = Cppy ux— ANd

R * — ar* _ —q—1 _ y,—1,q+1g+1 _ —q—1y*

(iii) Cryx-C7 24 —qC_ZX,q(qu-HA’Zq-H +Zwerg x1(—wz wxiTZ wx )cquzqu’xzwfl.

Proof. As in Proposition 4.2 parts (i) and (ii) are clear. Let I be an index set for the standard basis.
Denote the basis elements by a;. Order these basis elements so that a; = x,;e* for some u; € FZZ with

u?“ =1fori<q+1 and q; = qe*xviivifqe* for some v; € F;‘z for i > q+ 2. We have c;,x,chyz,q =
> kel Mkax where wy = quEDlﬂ 3Dy’ C:.X,q(y)czz—q(yilxk). In this sum D1 = UMx, UMD and

—1_ [y, -1
Dy =U®x;] UM, Note that

1 r 0 —x 1 s
2={(0 )G 9)( )
-1 _ 1 a 0 24 1 b B —arl A —abz
P2 _{(0 1)(—24 0)(0 1)’“’1761:‘?}—{(_2—1 —pz1 ‘a,bqu .

rx 9 —x+rsx1
r,seFgp = x—a x4 r,sekFy

and
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First consider the case when k < q + 1. Then x; = (w, w) for some w € Fp with wi*t! =1. Then

— -1 9 _ gbwz!
-1 awz wzl —abwz
XD, = {( wz-l bwz-] ) ‘a, be Fq}.

In order to determine the set D1 N XkDE] we need to find for which a, b € F; we have

x4 —x+rsx 9\ (—awz! wz!—abwz!
x4 sx74 “\ —wz! —bwz~!

A comparison of the 2, 1 entries shows that this intersection is empty unless w = —yx~9. So assume
w = —zx~ 9. Then we have

x4 —x+rsx 1\ _ (ax 9 —z91x"9 4 abx4
x~1 sx1 A\ x4 bx~4 ’

Thus a=r and b =s and the intersection is empty unless w = —zx~9 and x9t! = z4*1. (Note that
given these two conditions (—zx~9)4+1 = z8+1x=4°~0 — _x4+1x=1-4 — 1 Thus w9+! =1 as required.)
Thus assume x = (—zx ™9, —zx~9) and x9*! = z9+1. Let y € D1 NxD,'. Then y = (r"fq ”‘*rs"fq) and

x 1 sx4
1 _1f sx 1 x—rsx74 —zx71 0
y xe=x1
—x1 rx—1 0 —zx 1
o sxV K —rsx ! —zx74 0
N L Vel 0 —zx

—szx 97V —z4rsx 971\ sz T —z4rsyT97]
zx 11 —rzx~4-1 774 —rz 4 :

Thus ¢, (¥) = (X +5) and ¢ (¥ "% =q(5 X (~ = ). Thus pe=qycp, px T +5—

r—s)=q when x, = (—zx™9, —zx~9) and x9t! = z9+1, Otherwise p; =0 for k <q+1.

Now consider the case when k > q + 2. Then x; = (Wo_q _OW) for some nonzero w € Fy2. Then

-1 -1
1 wz bwz
%Dy "= {( —aw™9z71 2w~ —gbw—9z"! ) ‘ a.be Fq} :

In order to determine the set D1 N kaz’l we need to find for which a, b € F; we have

rx 9 —x+rsx1\ wz™! bwz~!
x4 sx74 "\ —awiz7! ZAwl—abw iz )”

A comparison of the 1, 1 and 2, 1 entries shows that this intersection is empty unless r = wx9z~
a=—w9x"9z. So assume these two conditions. Then we have

wz! —x+wz s\ _ [(wz! bwz~1
x4 sx— 4 T\ x99 Awl4bx1 )

Setting the 1, 2 entries of both matrices equal to each other and the 2, 2 entries of both matrices
equal to each other we have s =x9z9w~9+b and s =b + w'xz. Thus x9z29w~9 4+ b =b + wlxz
Thus b can be chosen to be any element in Fq. Then s is determined by b and the intersection is

empty unless w!=9 = (xz)!179. Thus, for the case x, = (Wo,q 70W), we have the set D1 NxD," has g

T and
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elements when w!=9 = (xz)!1~9 otherwise this intersection is empty. Assume w!=9 = (xz)19. Let y
be any element in this intersection. Since

_(rx T —x+4rsx71
Y=\ x sx—4

we have ¢t (y) = éx(—r —5) = %)((—wxq’z‘1 —5). On the other hand,

1y a1 sx 9 —rsx 9+ x 0 —w
Yo Xe= —xq rx—4 w0
a1 [(TrIw Tl xw Tl —swx 0 —rsx lw I+ w ik —sx~lw
- rw—x—q wx 4 )T rwdx1 xw -

To determine c;y,q (y~1x,) we need to determine c,d € F; such that

[c] (z(_’q ‘OZ) =y ¥

Thus cz79 = —sz79 + w~9x7 and dz~9 =x"'w. That is, c= —s + wIx929 = —s + w—!xz and d =
29% 1w, Thus ¢} (yx) = %X(s —wlxz — wx~129). Thus px =q Yser, qiz)((—wxqz‘1 —S54s5—

1

wlxz — wx129) = x (—wx9z71 — w™lxz — wx~129) when w91 = (xz)9~!. Otherwise u; =0 for

k>q+2.
Combining these two cases we have that

* * * —1 -1 —1 *
ChxaCh 70 =0C* 1 qByar1 ar1 + Z x (—wxiz7! —wlxz — wx 2%},

weF*, ,wi~1=(xz)9-1
q

wodr

Make the change of variable t = wx9z9, Note the condition wi~! = (xz)?~! implies t9~! =
wi—Ix~0+1z70+1 =1, So t € F}. Thus

* * — _ac* =1 _ 4=1,9+1 g+1 _ £, —q—1)*
Cox1Cz,270 = ~ACox— SX"*’],Z‘”] + Z X1( tz rxitz tx )Ctx—qz—q,t—lxz‘ o
teFy

7. The maps fT? :H* —» CT}
In this section we will provide the image of f;:- on each standard basis element of H*.
Proposition 7.1.
(i) f;‘[,(c:) = (u,u) forbothi=0andi=1.

(if) foChud =" X x(-u(a+a))(aa).

ael-‘;‘2 a— 9+t =y —q+1
(iii) 1, (Czyu,q) = Z x(—ul@+Db))a,b)

a,beF*, .u=9+1=ah,a9+1=ba+1=1
q

= Y x(-(a'+a'u))(@a w0

aerz ,altl=1
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Proof. First we need to prove the following lemma.

Lemma 7.2. Let (t,t™%) € T} and let (t1,t3) € T}. Let [r] = ((1) I) e UM and let n = (u, u=9)wy. Then [r]n

and (t, t~9) have the same characteristic equation if and only ifru=9 =t 4+t~ and u=9+1 =¢=9%1, Also [r]n
and (t1, t2) have the same characteristic equation if and only ifru=9 = t; + t; and u=91 = t;t,.

Proof. This lemma is clear since

det(xl—[r]n)=det[(g 2)‘((1) q><u9q _0u>]

x—ru 9 u _ _
=det g =x* —ru9x 4 u~9t!
—u X

and det(x] — (t,t™9)) =x% — (t +t Dx+ ¢! and det(x] — (t1,t2)) =x% — (t1 + t2) + t1tr. O

We will now prove part (i) of the proposition. In this proof U(2,q) will be denoted by G and T
will denote either maximal torus T of T}. We have

[U®: %y® Ay Z

_ Cold) _
Q€. MY UD|ICe(0)] () e (etrxve ™),

fi(e5)® =

geG, [rleu®
(glrxy g~ s=t

1
~sgcco 2 T (s,
e geG, [rleu®

(glrlxy g Hs=t
If t = (a,b) with a b then (g[rlx,g~")s = (gxyg~ s = (v, v) #¢t. So if t = (a,b) with asb then

frc)®=0.
If t = (a, a) then (g[rlxyg~)s = (v, v) which equals t if and only if a = v. So assume a = v. Then

fE)O=— 3 yi()ag ()

+q|C] geG, [rleu™
1
=2 2 ni(her(r)
[rleu®

=4q71q+1-1)==+1.

(In the second to last equality we used the fact that Q?(l) =q+1 and QTG([r]) =1 for [r] #1, [7,
Theorem 9.16].) This proves part (i) of the proposition.

We will now prove parts (ii) and (iii) of the proposition. As in the proof of part (i), U(2, q) will be
denoted by G and T denotes either T or T7.

First suppose ¢ = (t1, t7) (with t;7 =t7). Then

FE(S) yoa) (1, t) = % Yo () eF((slrx,v-ag),)-
geG, [rleu®
(glrlx, ,—q g D=t
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But, by Lemma 7.2 the only [r] such that [r]x, ,~¢ and t have the same characteristic equation is

q
m:(évaTHﬂ)

Thus

1
FE(e} o)1, t) = el Z X(—2t1vq)QTG((g[Ztlvq]xvyqug‘l)u).

geG
(gl261v91x, ,—q g~ ")s=t

The number of g € G such that (g[2t1vq]xv",fqg*1)s =t is equal to |Cs(t)| (=|G]|). Also note that the
unipotent part of [2t;v9]x, ,— # I. Thus QTG((g[Zﬁ vq]xvﬁ‘,fqgfl)u) =1. Thus

Fi(ch o) (tr, 1) = £x (=21v7).

Now suppose t = (t1, ) with t1 # tp. (If T =T then t; =t;?.) Then

fi(ey v-a) (1. t2) = % Z Y1 ([T]_l)QTT((g[T]Xv,rqg_l)u)
geG, [rleu®
(gl g8 Ds=t
1
=T Z v ([r171).

geG,[reu®
(glrlx, ,—q g Hs=t

As above the only [r] such that [r]x, ,~¢ and t have the same characteristic equation is
[r]=[vit: +1t2)].

Also the number of g € G such that (g[(t1 + tz)Vq]XV,V—qg71)5 =t is equal to |Cc(t)| (=|T|). Thus
fr(cy -t t2) = £ x (= (t1 + t2)v?) when ty # t. Combining these two cases proves parts (ii) and
(iii) of the proposition. O

Proposition 6.1 provided the structure constants for all the basis elements of H* and Proposi-
tion 7.1 provides the images of the homomorphisms fr+ on these basis elements of H*. Without
using the fact that f} is a homomorphism, but instead using Chang’s Lemma [2, Lemma 1.2], it is

1
now straightforward to verify that f}"l (€] €1 = f}"1 iy f;‘] (7 1)- It would be interesting to explore
what other identities could be exhibited using the fact that f}"i (€} =aCy =) = f;‘i (c; u,q)f;‘i (€} -a)-

8. The maps f;'i") tH™ CT,.('")

The proof of the following proposition is analogous to the proof of the proposition in the previ-
ous section and is thus omitted. This proposition provides the image of the maps f;'in) for all basis
elements of H™,

Proposition 8.1.

(i) fi"(c™) = (u,u) for bothi=0andi=1.
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(i) A= Y. xm(-v'@+b)@.b

a,beF;‘m,abzuv

= xm(—(av"+a'u))(a.a "uv).

aeFZm

(ii) f(m)( ") = Z xm(—v ' a+a"))(a,a").

acF*, . a?"+H=yy
q

9. The image of A® : H® — H®

Note N(TZO) : T[()z) — T(()l) is given by N(Z)(ﬁ ty) = (th ;ﬂ). Also N(sz) : T(()Z) — T](D is given by
N(Tzl)(ﬁ, ty) = (t1tg, t?tz). In this section we will determine the image of some of the standard basis

elements of H® under the norm map A,
Let Py (x, y) be the polynomial:

[m/2] m m—
Pn(x,y) = —pymiT (T ) xmyd
mx )= (=1 m—]( j ) ¥

In [5] it was shown that
A = P(e 0c) Q0
Note that
1 ) 9_
Py, y) =) (D' ( . J) XAyl = 42y
= 2—j ]
Thus identity (1) when m =2 becomes:
A(Z)( (2)) (C?{) +2qc(1) 2)

The following three lemmas are extensions of identity (2). Note that this first lemma only applies for
u € Fj (not all of Fzz ).

Lemma 9.1. AQ)(C;Z,)Q = Pz(cf,])l chf,)for allu e Fj.

Proof. Note that by Proposition 8.1

NE 2 (c ,)=N§fﬁ( > Xz(—<x+y>)<x,y>)

x,yeFZ2
xy=u

= ¥ el ek ) (au o),

%
xel-‘q2

Thus using u € F; we have
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N(2) (2) & Z X X+Xq +ux" +ux*Q))(xq+l,u2x7q71)
xeF*
= Z Z x(— x+xq+uxqw_l+UXW_1))(W,U2W_1)-
wqu xeF*,
x‘”liw

Fixawe FZ' The coefficient of (w, u?w™=1) in the above equation is

Z x(—(x+x" +ux®w™ +uxw™))

xel-‘(’;2
X+ —w
=— > x((1+uwx+ (1 +uw)x)
XEFZZ
xIt=w
(since uweFq) _ Z x((+uw )x+ (1 +uw "))
xeF*,
x‘ﬁ’liw
(by [2 Lemma 12 Z x(b+(1+uw (1 +uw )wb!) — g8, 1
beFy
= Z x(b+(1+uw ! +uw  +utw 2 wb ) — qby —w
beF;
= Z x(b+wb™ " +2ub™ +utw b)) — g8y _w.
beF;
Thus we have
NZ () =quwy + > x(b+wb™ +2ub™! +u?w b7 (wouPw ).
w,beFy

On the other hand, note that using first Lemma 4.1 and then Proposition 8.1 we have

f(l)( ((1)) +2qC(l)) (1)<qc(_13 ZX —ou Yt —udt— l) E])Zt +2qC(l))

teF;

=q(u,u) — Z x(u e+ utc) Z x (u"2t(w +v))(w, v)

teF; w,veFa‘

wv= u2

=q(u,u)—2x( u e+t ZX t(w+uPw ) (w,utw™)

teF; weFg
=q(u,u) + Z x(ult vt FuPew + ew ) (w, uPw ).

t,wekFy

Making the change of variable b = t~'u? we get
f“)( (c (1)) +2qc) =qu,u) + Z x(Qub ' +b+b7'w+utw b (w,utw .

b,weF;

Thus N(Z)f_;Z)(C(Z)) — f;])( (C(]))Z +2qc(1)
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By an analogous proof it also follows that N(l)f(z) (2)) = f;l)( (c(l) )2+ 2qc(1))
Thus

NTf(Z)( (2)) f(l)( ( (1)) +2qc(l))
for all maximal tori T and all u € FZ;. That is,
Nrf2 (e = £17 (Pa(eh ac))

for all maximal tori T and all u € F}. Thus A® (cﬁ) = Pz(cgl)l qc). o

Lemma 9.2. A® (c?) = cfl]q)ﬂ forall u € F,.

Proof. This follows from the fact that N(Tz) f}z) (cf,z)) = (uit!, ytth) = f;”(cl(l]q)ﬂ) for all maximal tori
T and all u eF;‘Z. |

Lemma 9.3. A@ (¢, cf;)ﬂ A@ (C(vz-)m.])for allu,v eFy,.

Proof. Note that the basis element

0 —u
—g%e® ( M- ) NE)
-1
— 42, 0\(0 —uv )
qae (o v>(1 0 >e

(2) c?

vlul

Thus, using that A@ is a homomorphism, A@ (c?}) = A@ (c?'¢ f,z) D= A(z)(cf,z))A(z)(Cf/Z,)lu D=
1 2 ’
(by Lemma 9.2) cf/q)ﬂ A® (Cf/,)luJ). ]

Note that (unlike Lemma 9.1) the following lemma holds for all v € FZZ
Proposition 9.4. A® (c(v%il_q) = cf:,)q,l Py (C‘()q)+1 ],qca‘),qul ) forall v € F},

Proof. By Lemma 9.3 A® (c(vz)v_q) = cf},)q A(z)(c(z) )- But v4*1 is an element of F; so we can apply

2 1 1 1
Lemma 9.1 to get A (cf,’)v,,,) :cf}lH Py (c‘(/q)+1 » qc< ‘),qﬂ) ]

10. The image of A* : H® — H*

Let B denote the standard basis of H@®. Thus

_ 2 @ (v 0\ & 2,@(0 —u) @
B ={cy ,cuv|u,veFZZ}_:(O u)e() q’e )(v 0 el uveF, .

Let

B (e v e a1 1)
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That is, BF" is the subset of BB of elements which are constructed using the matrices (0 o ") and (0 u)
which are also used in the construction of the basis of H*. Note that the previous section provides
the image under A® of all the elements in BF". In this section we will determine the image under
A*: H® — H* of all elements in BF". Furthermore, it will be shown that the norm maps A® and
A* are equal on a certain subset of BF".

To simplify notation, in this section we will denote e* (=e™) by e. Since HV = (ge(u, v)woe,
(u,u)e|u,v € Fy) and H* = (ge(x, x D)woe, (¥, y)e | X,y € Fp, y9T1 =1), the intersection H N H*
is nonempty. Let C denote the intersection of these standard bases of H) and H*. Then

n
C= (e, [veR;) = {ehy s, | v )
Lemma 10.1. Let ¢ € C, then f}*l_ ()= f;il)(c) fori=0,1.

Proof. If c =c!!] then fi©)=(F1,£1) = f}”(c).

(eY)

Now suppose ¢ = Cout for some u € Fj. Then, by Proposition 7.1

f'ijo(cz,ufl) Zf;o(cz,u*‘?) = Z X(—uq(a‘l‘aiq))(a, aiq)

acF*, ,a=0H =y—a+1
q

=2 x(-u@+a))(@a™),

aqu

since u € F and thus a~ 91 =y=9+1 =1 implies u € F;. On the other hand, by Proposition 8.1

P )= > x(-u@+b)@.b)

a,beF;,ab=1

—ZX u(@+a))(a.at).

acky

Thus f}*o (cz u—a) = f(l)(cill;_l) forall u e F;;. Similarly by Proposition 7.1

f, (Cuma) = > X (-u@+b))@,b)
a,beF*
ab:u*ﬁl,aqf]z:bfﬁrl:]

= ¥ xlufraaa)

acF*, a9t1=1
q

since u~9t1 = 1. On the other hand, by Proposition 8.1

f(l)( Sirl) _ Z x(~u(@+a"))(a,a ).

acF*, ai+1=1
q

Thus fT] (cu u-a) = f;l)(c(l)f ) for all u eFé. O

u,u-!
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Lemma 10.2. Let b € BF” then

(i) for b = c?’ we have N*f(z) ¢y = @I+, ‘q“)N(z)f(z) ?) and
(i) forb= cgi) . we have N*f(z) Ezt),q) = (791t~ q“)Ni(z)f;iz) (cft),q)fori =0,1.

Proof. First assume b = c{?. Since b € BF" we have u?*! = 1. Thus fri ?) = (u,u) and thus

N?Z)f c?) = @9+, u9+1) = (1,1). On the other hand N(z)frl(ca) (u=9t1 y=9*t1). Thus
SPRe _ _ 2@, Q2
NEFD () = e, u NS £ (),

2)

Now assume b =, for some t € FZZ. We have, using Proposition 8.1,

NP2 )=Ns Y xe(~t'@+b)@.b)

a.beFL’;z,ab:t*qJrl
=N} Z x2(=tU(a+a 't ) (a,a" 1)
acF*,
q
=Y xa(—tla—ta™ ") (@I g7
aeFZz
= (LT Y xo(—ta—ta ) (@', a79)
aeFZ2
= (c79, t’q“)N(()z) Z x2(—t%a —ta~")(a,a" eI
aEF*

(t q+1 ot q+1)N(2)f<2)( ;2[>_q)'

Similarly,

N =N Y (et a)) (@)

aeF%,, 9%+ =—q+1
q

R R ara)

acF',, q‘12+1 =t—q+1
q

. 2 _ 2 1. 3 L .— _ 3 _
Since af +; =t91 we have a9° = a1t~ and a9 = a 9t~1*9, Thus a'~9 = a7 ¢=9*! and
ad" 9 =@ +9¢t—9+1 Thus

N*f(z)( izt)*q) = Z x2(—t%(a+ a’1t*q“))(a”qgt*‘H1 , aq2+qt*q+1)

aeF;‘4 ,qe2 1 =¢—a+1

— (tfqﬂ’ t—q+1) Z X2 (—tq (a+a—1t—q+1))(al+q3’aq2+q)
acF*,
g2 =gt
SN (- ) @)
aEFZ4
qP et

(t q+1 ot q+1)N(2)f(2)( ﬁ)ﬁq)_ O
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Py @ ). Thus

By Proposition 9.4, A (cffi/,q) =cW part 104 oan

v—a-1

A(Z)( ) q) :(v‘q_1,v_q_1)( C(l) (1) —|—2qc(1) )

va+1 1 vq+1 1 va+1

1 1 1
= 53/ -0~ 1ciq)+11+2qc()

=— Z X (—v T Tw — Iy aH Ty =a=Ty) (D L Aac.

v=a-lw vatly
weFy

But v=9~'w is an element of F; thus A(Z)(C(z) ) e HV nH*,
Lemma 103. f; A? (%) ) = f1 4@ ().
Proof. This follows immediately from the comments preceding this lemma and Lemma 10.1. O

Theorem 10.4. Let b € BE” then

(i) forb=c?, A*(c?) = @91, u=01) AP (c?) and
(i) forb=c® , A*(c® )= 9, ¢~ quI)A(Z)(c(z)

-0 [
Proof. Let b e BF*. Then b = c,(cz) for some x € F*2 such that xX3*1 =1 or b = c q for some x € F*
Thus
f;fi((x—qﬂ , X_q+1)A(2) (b)) — (X_q+l,x_q+])f}kiA(2> (b)

(by Leména 10.3) (X_q_H X_q.H)f;l)A(z) b)
K i
(by Theozrem 1.2)( —q+1 _q+1)N(2)f(2)(b)

(by Lemma 10.2) 2
= N} 12 (b).

Since this is true for all maximal tori T;, we have A*(b) = (x~9t1, x~9t1) A@ (b) by uniqueness of A*
in Theorem 1.2. O

Corollary 10.5. Let t € F; then A*(cfi{ =A@ (c(z) ) and A*(c2)) = AD (D).

Proof. This follows immediately from Theorem 10.4 since t~971 =1 when t € F; and +179t1=1. g

Lemma 10.6. The structure constants of elements in C are the same whether the elements are viewed as in H*
orasin HD.

Proof. A comparison of Propositions 4.2 and 6.1 immediately shows this lemma is true when one (or
both) of the two elements multiplied together is central. Thus we only need to compare cft) 162131 1
and ¢t ¢} _; for t,u € Fj. According to Proposition 4.2

@ () (0Y] -2 2,2.—1 -2 (1)
Coe1Cyu-1 = gy Syt -1y + Z x(—umtw—tutw -t W)thlu*]w,tuw‘
weFj
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Whereas, according to Proposition 6.1

* * _ * -2 2.2..,—1 -2
1€y 1 =ac 182 2 + Z x(—u=*w—trutw ! —t%w)c

*
wekFg

*
t~lu=Tw,tuw"

This lemma then follows from the fact that §;-1 (-1, =82 2. O

Theorem 10.7. For all t € F:;Z, A*(c(z) )= PZ(C;F‘?’ qc;*_qﬂ).

t,t=4
Proof.
(e ) P TE PV e e a0 )
IR (e e afeggh 1 acin)
IR AT (o e e (e )+ 2000)
(by Proposition 4.iand Lemma 10.6) —(C:t,q)z + 2qC;k,q+1
=Py(c} 496 q11)- O
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