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Let G̃ be a connected reductive algebraic group defined over the
field Fq and let F and F ∗ be two Frobenius maps such that
F m = (F ∗)m for some integer m. Let G̃ F , G̃ F ∗

, and G̃ F m = G̃(F ∗)m

be the finite groups of fixed points. In this article we consider the
case where G̃ = GL(2, F̄q), F is the usual Frobenius map so that
G̃ F = GL(2,q) and F ∗ is the twisted Frobenius map such that G̃ F ∗ =
U (n,q). In this case, F 2 = (F ∗)2 and G̃ F 2 = G̃(F ∗)2 = GL(2,q2). This
article provides connections between the complex representation
theory of these groups using the norm maps (see [C. Curtis,
T. Shoji, A norm map for endomorphism algebras of Gelfand–Graev
representations, in: Progr. Math., vol. 141, 1997, pp. 185–194]) from
the Gelfand–Graev Hecke algebra of GL(2,q2) to the Gelfand–Graev
Hecke algebras of both GL(2,q) and U (2,q).

© 2008 Elsevier Inc. All rights reserved.

1. Background information and notation

Let G̃ denote a connected reductive algebraic group defined over a finite field Fq where q is a
power of a prime and let α : G̃ → G̃ be a Frobenius endomorphism. An α-stable maximal torus of G̃
will be denoted by T̃ and the unipotent radical of an α-stable Borel in G̃ will be denoted by Ũ . For
any subgroup Ã of G̃ , the group Ãα of fixed points will be denoted by A. In particular let G = G̃α . That
is, G is a finite group of Lie type. A maximal torus of G is a subgroup of G of the form T = T̃ α . The
Gelfand–Graev characters of G are the induced characters Γ = IndG

U (ψ) where ψ is a nondegenerate
linear character of U = Ũα . For the groups considered in this paper the center of G̃ is connected. Thus
given a Frobenius endomorphism, there will be only one Gelfand–Graev character Γ (see [3, p. 519]).
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Given a nondegenerate linear character of U , ψ , let e denote the central primitive idempotent in
CU corresponding to ψ :

e = |U |−1
∑
u∈U

ψ
(
u−1)u.

Then H = eCGe is called the Hecke algebra of the Gelfand–Graev representation of G [4, Section 11].
The Hecke algebra constructed using the Gelfand–Graev representation is anti-isomorphic to the CG-
endomorphism algebra of the induced CG-module affording the Gelfand–Graev character of G . Thus,
since the Gelfand–Graev character is multiplicity free, the Hecke algebra H is commutative.

The standard basis of H is constructed in the following way. Let {xi | i ∈ I} be a collection of
double coset representatives of U in G and let J = { j | j ∈ I, x j ψ = ψ on U ∩ x j U }. (Here x j ψ

denotes the character of the conjugate group x j U and is defined by x j ψ(x j u) = ψ(u) for u ∈ U .)
Then {[U : x j U ∩ U ]ex je | j ∈ J } is the standard basis of H [4, Proposition 11.30]. In this section
[U : xU ∩ U ]exe will be denoted by cx and for the remainder of the article [U : xU ∩ U ] will be
denoted by ind(x).

There is a bijection from the set of irreducible characters χ of G such that 〈χ,Γ 〉 �= 0 to the set
of all irreducible characters of H . Also the primitive central idempotents of H are {eε} where ε is a
primitive central idempotent of CG associated with a χ such that 〈χ,Γ 〉 �= 0. Since H is commutative,
these idempotents are actually primitive idempotents. Thus they give us the simple module CGeε
which affords χ [4, Corollary 11.27].

Let T̃o denote a maximally split α-stable maximal torus of G̃ . The G̃-conjugacy classes of α-stable
maximal tori of G̃ are parametrized by the α-conjugacy classes of NG̃(T̃o)/T̃o where the α-conjugate
of x by g is defined to be gxα(g)−1 [3]. In fact, given any α-conjugacy class [x] of the Weyl group
NG̃(T̃o)/T̃o ,

Tx = {
A ∈ T̃o

∣∣ xAx−1 = α(A)
}

is conjugate (in G̃) to a maximal torus of G . And conversely, every maximal torus of G is conjugate to
some Tx [3]. Given an α-stable maximal torus T̃ of G̃ , let RG

T ,θ denote the Deligne–Lusztig generalized

character, where θ is an irreducible character of the torus T = T̃ α (see, for example [1, Chapter 7]). Let
Q G

T denote the Green function, which is defined for all unipotent elements u ∈ G by Q G
T (u) = RG

T ,θ (u)

(see, for example [1, p. 212]). Given a pair (T̃ , θ) there exists a unique irreducible character χT ,θ

of G such that 〈χT ,θ ,Γ 〉 �= 0 and 〈χT ,θ , RG
T ,θ 〉 �= 0. Also any irreducible character χ of G such that

〈χ,Γ 〉 �= 0 coincides with a χT ,θ for some pair (T̃ , θ) [3, Theorem 2.1]. Thus the irreducible characters
of H can be indexed by the pairs (T̃ , θ). Also two irreducible characters f T ,θ and f T ′,θ, of H are equal
if and only if (T̃ , θ) and (T̃ ′, θ ′) are geometrically conjugate [3, Theorem 3.1].

The following theorem is from [3, Theorem 4.2].

Theorem 1.1. Given a Frobenius endomorphism α defined on G̃, let T̃ be an α-stable maximal torus of G̃ and
let T = T̃ α . Let θ be an irreducible character of T extended to CT . Let G = G̃α and let Γ = IndG

U (ψ) denote
the Gelfand–Graev representation where Ũ is the unipotent radical of an α-stable Borel in G̃ , U = Ũα and ψ

is a nondegenerate linear character of U . Let H denote the Hecke algebra corresponding to G.

(i) There exists a unique homomorphism fT : H → CT , independent of θ, which has the property that each
character f T ,θ : H → C can be factored as f T ,θ = θ · f T .

(ii) f T (cx) = ∑
t∈T f T (cx)(t)t where cx is an element in the standard basis of H and the coefficients f T (cx)(t)

are given by

f T (cx)(t) = [U : xU ∩ U ]
〈Q G

T ,Γ 〉|U ||CG(t)|
∑

g∈G,u∈U
(guxg−1)s=t

ψ
(
u−1)Q CG (t)

T

((
guxg−1)

u

)
.
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Note that if α is a Frobenius endomorphism then αm is also a Frobenius endomorphism for any
nonnegative integer m. Denote by f m

T the homomorphism f T described in the previous theorem when
G = G̃αm

. Similarly denote by Hm the Hecke algebra corresponding to G̃αm
. The following theorem is

from [6, Theorem 1].

Theorem 1.2. Using the notation in the previous theorem and the paragraph following that theorem, let Nm
T

denote the extension of the usual norm map from T̃ αm
to T̃ α to a homomorphism of the group algebras. There

exists a unique homomorphism of algebras Δm : Hm → H that has the property f T · Δm = Nm
T · f m

T for all

α-stable maximal tori T̃ of G̃ .

The map Δm will be called the norm map of the Hecke algebras Hm and H .
We will consider the following specific set up. Let G̃ = GL(2, F̄q). Let F : G̃ → G̃ be the Frobe-

nius endomorphism given by F (aij) = (aq
i j). Let F ∗ : G̃ → G̃ be the Frobenius endomorphism given

by F ∗(aij) = (aq
ji)

−1. Note that G̃ F m = GL(2,qm) and G̃ F ∗ = U (2,q). It will be convenient to take an

isomorphic copy of this unitary group given by w0G̃ F ∗
w−1

0 where

w0 =
(

0 −1
1 0

)
.

In the remainder of this paper U (2,q) will mean the group w0G̃ F ∗
w−1

0 .
Let B denote the upper triangular matrices of GL(2, F̄q) and let U denote its maximal unipotent

subgroup. Let

U (m) = U F m =
{(

1 a
0 1

) ∣∣∣ a ∈ Fqm

}

and

U∗ = (
w0U w−1

0

)F ∗ =
{(

1 a
0 1

) ∣∣∣ a ∈ Fq

}
.

Note that U∗ = U (1) . Each nontrivial linear character, ψm of U (m) corresponds to a nontrivial linear
character, χm , of the additive group of Fqm by ψm

( 1 a
0 1

) = χm(a). Fix a nontrivial linear character χ1 of

U (1) then choose (and fix) the nontrivial linear character of U (m) , ψm , to be such that χm = χ1 · T rqm,q .
When m = 1, χm will be denoted by just χ .

In the following a diagonal matrix
( a 0

0 b

)
will be denoted by (a,b) and the unipotent element

( 1 a
0 1

)
will be denoted by [a].

The maximal tori of GL(2,qm) are

T (m)
0 = T F m

e = {
(t, u)

∣∣ t, u ∈ F∗
qm

}
,

T (m)
1 = T F m

(1,2) = {(
t, tqm ) ∣∣ t ∈ F∗

q2m

}
.

The maximal tori of the unitary group U (2,q) are

T ∗
0 = T F ∗

e = {(
t, t−q) ∣∣ t ∈ F∗

q2

}
,

T ∗
1 = T F ∗

(1,2) = {
(t, u)

∣∣ t, u ∈ F∗
2 , tq+1 = uq+1 = 1

}
.
q
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Note that in both GL(2,qm) and U (2,q) the Weyl group is

W =
{(

1 0
0 1

)
,

(
0 −1
1 0

)
= w0

}
∼= S2.

When α = F m , we will denote Hm , f m
T , Nm

T and Δm (defined in Theorem 1.1 and Theorem 1.2) by

H(m), f (m)
T , N(m)

T and Δ(m) respectively. When α = F ∗ , we will denote H and f T by H∗ and f ∗
T . When

α = F ∗ and m = 2 we will denote Nm
T and Δm by N∗

T and Δ∗ respectively.

2. Main results

This article provides some explicit descriptions of the maps f (m)
T , f ∗

T ,Δ(m) and Δ∗ (defined in the
previous section). In the last section of this article these descriptions lead to a direct comparison
of the images of Δ(2) and Δ∗ of all the basis elements of H(2) . In particular, in Theorem 10.4 it is
shown the images of Δ(2) and Δ∗ are equal on the basis elements of H(2) with a slight adjustment.
In addition, it is then shown in Theorem 10.7 that the images of Δ∗ of certain basis elements of H(2)

can be written in terms of Dickson polynomials.
The main results in Sections 9 and 10 describe the image under Δ(2) and Δ∗ of basis elements

of the Hecke algebra H(2) as well as describe a certain subset of this basis in which these two maps
are the same. In this way, the results in Sections 9 and 10 exhibit connections between the complex
representation theory of GL(2,q), U (2,q) and GL(2,q2). Exhibiting connections between the represen-
tation theories of these groups has been investigated by many people. In particular, the connection
between the representation theory of GL(n,q) and U (n,q) know as Ennola duality was shown to be
true in all cases by Kawanaka [8] and connections between the representation theory of GL(n,q) and
GL(n,qm) were revealed by Shintani [9].

It would be an interesting problem to generalize the connections investigated in this article. That
is, let α and α∗ be any two Frobenius maps on a connected reduction algebraic group G̃ (as discussed
in Section 1) such that αm = (α∗)m . Using the norm maps from [6] (described in Section 1 above), it
would be interesting to describe the connections between the representation theory of G̃α, G̃α∗

and
G̃αm = G̃(α∗)m

.

3. The Hecke algebra for GL(2,qm)

Let

e(m) = 1

qm

∑
u∈U (m)

ψm
(
u−1)u.

Then

H(m) = 〈
ind(n)e(m)ne(m)

∣∣ n ∈ S, nψm = ψm on U (m) ∩ nU (m)
〉
,

where S is a set of double coset representatives of U (m) in GL(2,qm). Note that

(u, v)w0 =
(

0 −u
v 0

)
.

Using the Bruhat decomposition, we see a set of double coset representatives of U (m) in GL(2,qm) is

S =
{(

u 0
0 v

)
,

(
0 −u
v 0

) ∣∣∣ u, v ∈ Fqm

}
.
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In order to determine the standard basis of H(m) we first need to determine the set {n | n ∈ S, nψm =
ψm on U (m) ∩ nU (m)}.

Let y ∈ U (m) so y = [b] for some b ∈ Fqm . Let x ∈ T (m)
0 w0. Then x = ( 0 −u

v 0

)
for some u, v ∈ F∗

qm .
Then

xyx−1 =
(

1 0
−vu−1b 1

)
.

So xyx−1 ∈ U (m) if and only if −vu−1b = 0. But this is true if and only if b = 0 (since u and v are
nonzero). Thus xU (m) ∩ U (m) = I when x ∈ T (m)

o w0. For such an x, ind(x) = |U (m)| = qm . Note that the
condition ψm(y) = ψm(xyx−1) trivially holds for all y ∈ U (m) ∩ xU (m) = I .

Now suppose x ∈ T (m)
0 . Then x = ( u 0

0 v

)
for some u, v ∈ F∗

qm . Note that xU (m)x−1 = U (m) so ind(x) =
1. Also

xyx−1 =
(

1 uv−1b
0 1

)
.

The condition ψm(y) = ψm(xyx−1) for all y ∈ U (m) ∩ xU (m) implies χm(b) = χm(uv−1b) for all b ∈ Fqm .
Thus uv−1 = 1. Thus u = v . Thus the standard basis for the Hecke algebra corresponding to GL(2,qm)

is
{

qme(m)

(
0 −u
v 0

)
e(m),

(
u 0
0 u

)
e(m)

∣∣∣ u, v ∈ F∗
qm

}
.

Denote
( 0 −u

v 0

)
by xu,v and denote the basis element qme(m)xu,v e(m) by c(m)

u,v . Denote
( u 0

0 u

)
by xu and

denote the basis element e(m)xue(m) by c(m)
u .

4. The structure constants of H (m)

In order to demonstrate all the structure constants for this Hecke algebra we will first need the
following lemma.

Lemma 4.1. c(m)
u,1 c(m)

v,1 = qmc(m)
−u δu,v + ∑

w∈F∗
qm

χm(−w v−1 − uv w−1 − u−1 w)c(m)

w,w−1uv
.

Proof. Let I be an index set for the standard basis. Denote the basis elements by ai , i ∈ I . Order
these basis elements so that ai = xui e

(m) for some ui ∈ F∗
qm for i � qm − 1 and ai = qme(m)xui ,vi e

(m)

for i � qm . We have c(m)
u,1 c(m)

v,1 = ∑
k∈I μkak where μk = qm ∑

y∈D1∩xk D−1
2

c(m)
u,1 (y)c(m)

v,1 (y−1xk). (See [4,

Proposition 11.30]). In this sum D1 = U (m)xu,1U (m) and D−1
2 = U (m)x−1

v,1U (m) . Note that

D1 =
{
[r]

(
0 −u
1 0

)
[s]

∣∣∣ r, s ∈ Fqm

}
=

{(
r −u + rs
1 s

) ∣∣∣ r, s ∈ Fqm

}

and

D−1
2 =

{
[a]

(
0 1

−v−1 0

)
[b]

∣∣∣ a,b ∈ Fqm

}
=

{( −av−1 1 − abv−1

−v−1 −bv−1

) ∣∣∣ a,b ∈ Fqm

}
.

First consider the case when k � qm − 1. Then xk = ( w 0
0 w

)
for some w ∈ F∗

qm . Then

xk D−1
2 =

{( −aw v−1 w − abv−1 w
−w v−1 −bv−1 w

) ∣∣∣ a,b ∈ Fqm

}
.
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In order to determine the set D1 ∩ xk D−1
2 we need to find for which a,b ∈ Fqm we have

(
r −u + rs
1 s

)
=

( −aw v−1 w − abv−1 w
−w v−1 −bv−1 w

)
.

A comparison of the 2, 1 entries shows that this intersection is empty unless w = −v . So assume
w = −v . Then we have

(
r −u + rs
1 s

)
=

(
a w + ab
1 b

)
.

Thus a = r and b = s and the intersection D1 ∩ xk D−1
2 is D1 when w = −u = −v . Otherwise the inter-

section is empty. Thus assume xk = (−u,−u) and u = v . Let y ∈ D1. Then y = ( r −u+rs
1 s

)
and y−1xk =

u−1
( s u−rs

−1 r

)( −u 0
0 −u

) = ( −s −u+rs
1 −r

)
. Thus c(m)

u,1 (y) = 1
qm χm(r + s) and c(m)

v,1 (y−1xk) = 1
qm χm(−r − s). Thus

c(m)
u,1 (y)c(m)

v,1 (y−1xk) = 1
q2m . Thus μk = qm ∑

y∈D1
1

q2m = qm when xk = (−u,−u) and u = v . Otherwise
μk = 0.

Now consider the case when k � qm . Then xk = ( 0 −w1
w2 0

)
for some nonzero w1, w2 ∈ Fqm . Then

xk D−1
2 =

{(
w1 v−1 bw1 v−1

−aw2 v−1 w2 − abw2 v−1

) ∣∣∣ a,b ∈ Fqm

}
.

In order to determine the set D1 ∩ xk D−1
2 we need to find for which a,b ∈ Fqm we have

(
r −u + rs
1 s

)
=

(
w1 v−1 bw1 v−1

−aw2 v−1 w2 − abw2 v−1

)
.

A comparison of the 1, 1 and 2, 1 entries shows that this intersection is empty unless r = w1 v−1 and
a = −w−1

2 v . So assume these two conditions. Then we have

(
w1 v−1 −u + w1 v−1s

1 s

)
=

(
w1 v−1 bw1 v−1

1 w2 + b

)
.

Setting the 1, 2 entries of both matrices equal to each other and the 2, 2 entries of both matrices
equal to each other we have s = w2 + b and s = b + w−1

1 uv . Thus w2 + b = b + w−1
1 uv . Thus b can

be chosen to be any element in Fqm . Then s is determined by b and the intersection is empty unless

w1 w2 = uv . Thus, for the case xk = ( 0 −w1
w2 0

)
, we have the set D1 ∩ xk D−1

2 has qm elements when
w1 w2 = uv otherwise this intersection is empty. Assume w1 w2 = uv . Let y be an element in this
intersection. Then

y =
(

w1 v−1 sw1 v−1 − u
1 s

)
.

Thus

y−1xk = u−1
(

s −sw1 v−1 + u
−1 w1 v−1

)(
0 −w1

w2 0

)
=

( −s + w2 −su−1 w1

1 u−1 w1

)
.

Thus in this case c(m)
u,1 (y) = 1

qm χm(−w1 v−1 − s) and c(m)
v,1 (y−1xk) = 1

qm χm(s − w2 − u−1 w1) =
1

qm χm(s − uv w−1
1 − u−1 w1). Thus c(m)

u,1 (y)c(m)
v,1 (y−1xk) = 1

2m χm(−w1 v−1 − uv w−1
1 − u−1 w1). Thus
q
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μk = qm ∑
y∈D1∩ xk D−1

2

1
q2m χm(−w1 v−1 − uv w−1

1 − u−1 w1) = χm(−w1 v−1 − uv w−1
1 − u−1 w1) when

xk = ( 0 −w1
w2 0

)
is such that w1 w2 = uv . Otherwise μk = 0 when k � qm .

Combining these two cases we have that

c(m)
u,1 c(m)

v,1 = qmc(m)
−u δu,v +

∑
w1∈F∗

qm

χm
(−w1 v−1 − uv w−1

1 − u−1 w1
)
c(m)

w1,w−1
1 uv

. �

The following proposition provides all the structure constants for H (m) .

Proposition 4.2. Let t, u, v, x, y ∈ F∗
qm . Then

(i) c(m)
u c(m)

v = c(m)
uv ,

(ii) c(m)
u c(m)

t,v = c(m)
ut,uv and

(iii) c(m)
t,u c(m)

x,y = qmc(m)
−tyδty,ux + ∑

w∈F∗
qm

χm(−x−1 yw − tu−1xy−1 w−1 − t−1uw)c(m)

uyw,txw−1 .

Proof. As xu is central, parts (i) and (ii) of the proposition are clear. Note that
( 0 −a

b 0

) = ( b 0
0 b

)( 0 −ab−1

1 0

)
.

Thus

c(m)
t,u c(m)

x,y =
(

u 0
0 u

)(
y 0
0 y

)
c(m)

tu−1,1
c(m)

xy−1,1
.

Therefore, using Lemma 4.1, we have

c(m)
t,u c(m)

x,y =
(

uy 0
0 uy

)[
qmc(m)

−tu−1δtu−1,xy−1

+
∑

w∈F∗
qm

χm
(−w

(
xy−1)−1 − tu−1xy−1 w−1 − (

tu−1)−1
w

)
c(m)

w,w−1tu−1xy−1

]

= qmc(m)
−tyδty,ux +

∑
w∈F∗

qm

χm
(−x−1 yw − tu−1xy−1 w−1 − t−1uw

)
c(m)

uyw,txw−1 . �

5. The Hecke algebra for U (2,q)

Recall H∗ denotes the Hecke algebra corresponding to U (2,q). Let

e∗ = 1

q

∑
u∈U∗

ψ1
(
u−1)u.

Note that e∗ = e(1) . Then

H∗ = 〈
ind(n)e(1)ne(1)

∣∣ n ∈ S∗, nψ1 = ψ1 on U (1) ∩ nU (1)
〉
,

where S∗ is a set of double coset representatives of U (1) in U (2,q). Note that

S∗ =
{(

t 0
0 t−q

)
,

(
0 −t

t−q 0

) ∣∣∣ t ∈ F∗
q2

}
.
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In order to determine the standard basis of H∗ we first need to determine the set {n ∈ S∗ | nψ1 = ψ1
on U (1) ∩ nU (1)}.

Let y ∈ U (1) so y = [b] for some b ∈ Fq . Let x ∈ T ∗
0 w0. Then x = ( 0 −u

u−q 0

)
for some u ∈ F∗

q2 . Then

xyx−1 =
(

0 −u
u−q 0

)(
1 b
0 1

)(
0 uq

−u−1 0

)
=

(
1 0

−u−1−qb 1

)
.

So xyx−1 ∈ U (1) if and only if −u−1−qb = 0. But this is true if and only if b = 0 (since u is nonzero).
Thus xU (1) ∩ U (1) = I when x ∈ T ∗

0 w0. For such an x, ind(x) = |U (1)| = q. Note that the condition
ψ1(y) = ψ1(xyx−1) trivially holds for all y ∈ U (1) ∩ xU (1) = I .

Now suppose x ∈ T ∗
0 . Then x = ( u 0

0 u−q

)
for some u ∈ F∗

q2 . Note that xU (1)x−1 = U (1) so ind(x) = 1.

Also

xyx−1 =
(

u 0
0 u−q

)(
1 b
0 1

)(
u−1 0

0 uq

)
=

(
1 uq+1b
0 1

)
.

The condition ψ1(y) = ψ1(xyx−1) for all y ∈ U (1)∩ xU (1) implies χ1(b) = χ1(uq+1b) for all b ∈ Fq .
Thus uq+1 = 1. Thus the standard basis for the Hecke algebra corresponding to U (2,q) is

{
qe∗

(
0 −v

v−q 0

)
e∗,

(
u 0
0 u

)
e∗

∣∣∣ u, v ∈ F∗
q2 , uq+1 = 1

}
.

Denote
( 0 −v

v−q 0

)
by xv,v−q and denote the basis element qe∗xv,v−q e∗ by c∗

v,v−q . Denote
( u 0

0 u

)
by xu

and denote the basis element xue∗ by c∗
u .

6. The structure constants of H∗

The following proposition provides all the structure constants for the Hecke algebra H∗ .

Proposition 6.1. Let u, v, x, z ∈ F∗
q2 be such that uq+1 = vq+1 = 1. Then

(i) c∗
uc∗

v = c∗
uv ,

(ii) c∗
uc∗

x,x−q = c∗
ux,ux−q and

(iii) c∗
x,x−q c∗

z,z−q = qc∗
−zx−q δxq+1,zq+1 + ∑

w∈F∗
q
χ1(−wz−q−1 − w−1xq+1zq+1 − wx−q−1)c∗

x−q z−q w,xzw−1 .

Proof. As in Proposition 4.2 parts (i) and (ii) are clear. Let I be an index set for the standard basis.
Denote the basis elements by ai . Order these basis elements so that ai = xui e

∗ for some ui ∈ F∗
q2 with

uq+1
i = 1 for i � q + 1 and ai = qe∗xvi ,v−q

i
e∗ for some vi ∈ F∗

q2 for i � q + 2. We have c∗
x,x−q c∗

z,z−q =∑
k∈I μkak where μk = q

∑
y∈D1∩ xk D−1

2
c∗

x,x−q (y)c∗
z,z−q (y−1xk). In this sum D1 = U (1)xx,x−q U (1) and

D−1
2 = U (1)x−1

z,z−q U (1) . Note that

D1 =
{(

1 r
0 1

)(
0 −x

x−q 0

)(
1 s
0 1

) ∣∣∣ r, s ∈ Fq

}
=

{(
rx−q −x + rsx−q

x−q sx−q

) ∣∣∣ r, s ∈ Fq

}

and

D−1
2 =

{(
1 a
0 1

)(
0 zq

−z−1 0

)(
1 b
0 1

) ∣∣∣ a,b ∈ Fq

}
=

{( −az−1 zq − abz−1

−z−1 −bz−1

) ∣∣∣ a,b ∈ Fq

}
.
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First consider the case when k � q + 1. Then xk = (w, w) for some w ∈ Fq2 with wq+1 = 1. Then

xk D−1
2 =

{( −awz−1 wzq − abwz−1

−wz−1 −bwz−1

) ∣∣∣ a,b ∈ Fq

}
.

In order to determine the set D1 ∩ xk D−1
2 we need to find for which a,b ∈ Fq we have

(
rx−q −x + rsx−q

x−q sx−q

)
=

( −awz−1 wzq − abwz−1

−wz−1 −bwz−1

)
.

A comparison of the 2, 1 entries shows that this intersection is empty unless w = −yx−q . So assume
w = −zx−q . Then we have

(
rx−q −x + rsx−q

x−q sx−q

)
=

(
ax−q −zq+1x−q + abx−q

x−q bx−q

)
.

Thus a = r and b = s and the intersection is empty unless w = −zx−q and xq+1 = zq+1. (Note that
given these two conditions (−zx−q)q+1 = zq+1x−q2−q = −xq+1x−1−q = 1. Thus wq+1 = 1 as required.)
Thus assume xk = (−zx−q,−zx−q) and xq+1 = zq+1. Let y ∈ D1 ∩ xk D−1

2 . Then y = ( rx−q −x+rsx−q

x−q sx−q

)
and

y−1xk = xq−1
(

sx−q x − rsx−q

−x−q rx−q

)( −zx−q 0
0 −zx−q

)

=
(

sx−1 xq − rsx−1

−x−1 rx−1

)( −zx−q 0
0 −zx−q

)

=
( −szx−q−1 −z + rsx−q−1

zx−q−1 −rzx−q−1

)
=

( −sz−q −z + rsy−q−1

z−q −rz−q

)
.

Thus c∗
x,x−q (y) = q( 1

q2 χ(r + s)) and c∗
z,z−q (y−1xk) = q( 1

q2 χ(−r − s)). Thus μk = q
∑

y∈D1
1

q2 χ(r + s −
r − s) = q when xk = (−zx−q,−zx−q) and xq+1 = zq+1. Otherwise μk = 0 for k � q + 1.

Now consider the case when k � q + 2. Then xk = ( 0 −w
w−q 0

)
for some nonzero w ∈ Fq2 . Then

xk D−1
2 =

{(
wz−1 bwz−1

−aw−q z−1 zq w−q − abw−q z−1

) ∣∣∣ a,b ∈ Fq

}
.

In order to determine the set D1 ∩ xk D−1
2 we need to find for which a,b ∈ Fq we have

(
rx−q −x + rsx−q

x−q sx−q

)
=

(
wz−1 bwz−1

−aw−q z−1 zq w−q − abw−q z−1

)
.

A comparison of the 1, 1 and 2, 1 entries shows that this intersection is empty unless r = wxq z−1 and
a = −wqx−q z. So assume these two conditions. Then we have

(
wz−1 −x + wz−1s
x−q sx−q

)
=

(
wz−1 bwz−1

x−q zq w−q + bx−q

)
.

Setting the 1, 2 entries of both matrices equal to each other and the 2, 2 entries of both matrices
equal to each other we have s = xq zq w−q + b and s = b + w−1xz. Thus xq zq w−q + b = b + w−1xz.
Thus b can be chosen to be any element in Fq . Then s is determined by b and the intersection is
empty unless w1−q = (xz)1−q . Thus, for the case xk = ( 0 −w

−q

)
, we have the set D1 ∩ xk D−1

2 has q

w 0
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elements when w1−q = (xz)1−q otherwise this intersection is empty. Assume w1−q = (xz)1−q . Let y
be any element in this intersection. Since

y =
(

rx−q −x + rsx−q

x−q sx−q

)

we have c∗
x,x−q (y) = 1

q χ(−r − s) = 1
q χ(−wxq z−1 − s). On the other hand,

y−1xk = xq−1
(

sx−q −rsx−q + x
−x−q rx−q

)(
0 −w

w−q 0

)

= xq−1
( −rsx−q w−q + xw−q −swx−q

rw−qx−q wx−q

)
=

( −rsx−1 w−q + w−qxq −sx−1 w
rw−qx−1 x−1 w

)
.

To determine c∗
y,y−q (y−1xk) we need to determine c,d ∈ Fq such that

[c]
(

0 −z
z−q 0

)
[d] = y−1xk.

Thus cz−q = −sz−q + w−qxq and dz−q = x−1 w . That is, c = −s + w−qxq zq = −s + w−1xz and d =
zqx−1 w . Thus c∗

y,y−q (y−1xk) = 1
q χ(s − w−1xz − wx−1zq). Thus μk = q

∑
s∈Fq

1
q2 χ(−wxq z−1 − s + s −

w−1xz − wx−1zq) = χ(−wxq z−1 − w−1xz − wx−1zq) when wq−1 = (xz)q−1. Otherwise μk = 0 for
k � q + 2.

Combining these two cases we have that

c∗
x,x−q c∗

z,z−q = qc∗
−zx−q δxq+1,zq+1 +

∑
w∈F∗

q2 ,wq−1=(xz)q−1

χ
(−wxq z−1 − w−1xz − wx−1zq)c∗

w,w−q .

Make the change of variable t = wxq zq . Note the condition wq−1 = (xz)q−1 implies tq−1 =
wq−1x−q+1z−q+1 = 1. So t ∈ F∗

q . Thus

c∗
x,x−q c∗

z,z−q = −qc∗
zx−q δxq+1,zq+1 +

∑
t∈F∗

q

χ1
(−tz−q−1 − t−1xq+1zq+1 − tx−q−1)c∗

tx−q z−q,t−1xz. �

7. The maps f T ∗
i

: H∗ → CT ∗
i

In this section we will provide the image of f ∗
Ti

on each standard basis element of H∗ .

Proposition 7.1.

(i) f ∗
Ti

(c∗
u) = (u, u) for both i = 0 and i = 1.

(ii) f ∗
T0

(
c∗

u,u−q

) =
∑

a∈F∗
q2 ,a−q+1=u−q+1

χ
(−uq(a + a−q))(a,a−q).

(iii) f ∗
T1

(
c∗

u,u−q

) =
∑

a,b∈F∗
q2 ,u−q+1=ab,aq+1=bq+1=1

χ
(−uq(a + b)

)
(a,b)

=
∑

a∈F∗
q2 ,aq+1=1

χ
(−(

auq + a−1u
))(

a,a−1u−q+1).
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Proof. First we need to prove the following lemma.

Lemma 7.2. Let (t, t−q) ∈ T ∗
0 and let (t1, t2) ∈ T ∗

1 . Let [r] = ( 1 r
0 1

) ∈ U (1) and let n = (u, u−q)w0 . Then [r]n
and (t, t−q) have the same characteristic equation if and only if ru−q = t + t−q and u−q+1 = t−q+1 . Also [r]n
and (t1, t2) have the same characteristic equation if and only if ru−q = t1 + t2 and u−q+1 = t1t2 .

Proof. This lemma is clear since

det
(
xI − [r]n) = det

[(
x 0
0 x

)
−

(
1 r
0 1

)(
0 −u

u−q 0

)]

= det

(
x − ru−q u
−u−q x

)
= x2 − ru−qx + u−q+1

and det(xI − (t, t−q)) = x2 − (t + t−q)x + t−q+1 and det(xI − (t1, t2)) = x2 − (t1 + t2) + t1t2. �
We will now prove part (i) of the proposition. In this proof U (2,q) will be denoted by G and T

will denote either maximal torus T ∗
0 of T ∗

1 . We have

f ∗
T

(
c∗

v

)
(t) = [U (1): xv U (1) ∩ U (1)]

〈Q G
T ,Γ 〉|U (1)||CG(t)|

∑
g∈G, [r]∈U (1)

(g[r]xv g−1)s=t

ψ1
([r]−1)Q CG (t)

T

((
g[r]xv g−1)

u

)

= 1

±q|CG(t)|
∑

g∈G, [r]∈U (1)

(g[r]xv g−1)s=t

ψ1
([r]−1)Q CG (t)

T

((
g[r]xv g−1)

u

)
.

If t = (a,b) with a �= b then (g[r]xv g−1)s = (gxv g−1)s = (v, v) �= t . So if t = (a,b) with a �= b then
f ∗

T (c∗
v)(t) = 0.

If t = (a,a) then (g[r]xv g−1)s = (v, v) which equals t if and only if a = v . So assume a = v . Then

f ∗
T

(
c∗

v

)
(t) = 1

±q|G|
∑

g∈G, [r]∈U (1)

ψ1
([r]−1)Q G

T

([r])

= 1

±q

∑
[r]∈U (1)

ψ1
([r]−1)Q G

T

([r])

= ±q−1(q + 1 − 1) = ±1.

(In the second to last equality we used the fact that Q G
T (I) = q + 1 and Q G

T ([r]) = 1 for [r] �= I , [7,
Theorem 9.16].) This proves part (i) of the proposition.

We will now prove parts (ii) and (iii) of the proposition. As in the proof of part (i), U (2,q) will be
denoted by G and T denotes either T ∗

0 or T ∗
1 .

First suppose t = (t1, t1) (with t−q
1 = t1). Then

f ∗
T

(
c∗

v,v−q

)
(t1, t1) = q

±q|G|
∑

g∈G, [r]∈U (1)

(g[r]x −q g−1)s=t

ψ1
([r]−1)Q G

T

((
g[r]xv,v−q g−1)

u

)
.

v,v
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But, by Lemma 7.2 the only [r] such that [r]xv,v−q and t have the same characteristic equation is

[r] =
(

1 vq(t1 + t1)

0 1

)
.

Thus

f ∗
T

(
c∗

v,v−q

)
(t1, t1) = 1

±|G|
∑
g∈G

(g[2t1 vq]xv,v−q g−1)s=t

χ
(−2t1 vq)Q G

T

((
g
[
2t1 vq]xv,v−q g−1)

u

)
.

The number of g ∈ G such that (g[2t1 vq]xv,v−q g−1)s = t is equal to |CG(t)| (= |G|). Also note that the
unipotent part of [2t1 vq]xv,v−q �= I . Thus Q G

T ((g[2t1 vq]xv,v−q g−1)u) = 1. Thus

f ∗
T

(
c∗

v,v−q

)
(t1, t1) = ±χ

(−2t1 vq).
Now suppose t = (t1, t2) with t1 �= t2. (If T = T ∗

0 then t2 = t−q
1 .) Then

f ∗
T

(
c∗

v,v−q

)
(t1, t2) = q

±q|T |
∑

g∈G, [r]∈U (1)

(g[r]xv,v−q g−1)s=t

ψ1
([r]−1)Q T

T

((
g[r]xv,v−q g−1)

u

)

= 1

±|T |
∑

g∈G,[r]∈U (1)

(g[r]xv,v−q g−1)s=t

ψ1
([r]−1).

As above the only [r] such that [r]xv,v−q and t have the same characteristic equation is

[r] = [
vq(t1 + t2)

]
.

Also the number of g ∈ G such that (g[(t1 + t2)vq]xv,v−q g−1)s = t is equal to |CG(t)| (= |T |). Thus
f ∗

T (c∗
v,v−q )(t1, t2) = ±χ(−(t1 + t2)vq) when t1 �= t2. Combining these two cases proves parts (ii) and

(iii) of the proposition. �
Proposition 6.1 provided the structure constants for all the basis elements of H∗ and Proposi-

tion 7.1 provides the images of the homomorphisms f T ∗ on these basis elements of H∗ . Without
using the fact that f ∗

T1
is a homomorphism, but instead using Chang’s Lemma [2, Lemma 1.2], it is

now straightforward to verify that f ∗
T1

(c∗
1,1c∗

1,1) = f ∗
T1

(c∗
1,1) f ∗

T1
(c∗

1,1). It would be interesting to explore
what other identities could be exhibited using the fact that f ∗

Ti
(c∗

u,u−q c∗
v,v−q ) = f ∗

Ti
(c∗

u,u−q ) f ∗
Ti

(c∗
v,v−q ).

8. The maps f (m)
Ti

: H (m) → CT (m)
i

The proof of the following proposition is analogous to the proof of the proposition in the previ-
ous section and is thus omitted. This proposition provides the image of the maps f (m)

Ti
for all basis

elements of H(m) .

Proposition 8.1.

(i) f (m)
T (c(m)

u ) = (u, u) for both i = 0 and i = 1.

i
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(ii) f (m)
T0

(
c(m)

u,v
) =

∑
a,b∈F∗

qm ,ab=uv

χm
(−v−1(a + b)

)
(a,b)

=
∑

a∈F∗
qm

χm
(−(

av−1 + a−1u
))(

a,a−1uv
)
.

(iii) f (m)
T1

(
c(m)

u,v
) =

∑
a∈F∗

q2m ,aqm+1=uv

χm
(−v−1(a + aqm ))(

a,aqm )
.

9. The image of Δ(2) : H (2) → H (1)

Note N(2)
T0

: T (2)
0 → T (1)

0 is given by N(2)
T0

(t1, t2) = (t1+q
1 , t1+q

2 ). Also N(2)
T1

: T (2)
0 → T (1)

1 is given by

N(2)
T1

(t1, t2) = (t1tq
2, tq

1t2). In this section we will determine the image of some of the standard basis

elements of H(2) under the norm map Δ(2) .
Let Pm(x, y) be the polynomial:

Pm(x, y) =
[m/2]∑

j=0

(−1)m− j−1 m

m − j

(
m − j

j

)
xm−2 j y j .

In [5] it was shown that

Δ(m)
(
c(m)

1,1

) = Pm
(
c(1)

1,1,qc(1)
−1

)
. (1)

Note that

P2(x, y) =
1∑

j=0

(−1)1− j 2

2 − j

(
2 − j

j

)
x2−2 j y j = −x2 + 2y.

Thus identity (1) when m = 2 becomes:

Δ(2)
(
c(2)

1,1

) = −(
c(1)

1,1

)2 + 2qc(1)
−1. (2)

The following three lemmas are extensions of identity (2). Note that this first lemma only applies for
u ∈ F∗

q (not all of F∗
q2 ).

Lemma 9.1. Δ(2)(c(2)
u,1) = P2(c(1)

u,1,qc(1)
−u) for all u ∈ F∗

q .

Proof. Note that by Proposition 8.1

N(2)
T0

f (2)
T0

(
c(2)

u,1

) = N(2)
T0

( ∑
x,y∈F∗

q2
xy=u

χ2
(−(x + y)

)
(x, y)

)

=
∑

x∈F∗
q2

χ2
(−(

x + ux−1))(xq+1, uq+1x−q−1).

Thus using u ∈ F∗
q we have
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N(2)
T0

f (2)
T0

(
c(2)

u,1

) =
∑

x∈F∗
q2

χ
(−(

x + xq + ux−1 + ux−q))(xq+1, u2x−q−1)

=
∑

w∈F∗
q

∑
x∈F∗

q2

xq+1=w

χ
(−(

x + xq + uxq w−1 + uxw−1))(w, u2 w−1).

Fix a w ∈ F∗
q . The coefficient of (w, u2 w−1) in the above equation is

∑
x∈F∗

q2

xq+1=w

χ
(−(

x + xq + uxq w−1 + uxw−1))

= −
∑

x∈F∗
q2

xq+1=w

χ
((

1 + uw−1)x + (
1 + uw−1)xq)

(since u,w∈Fq)= −
∑

x∈F∗
q2

xq+1=w

χ
((

1 + uw−1)x + (
1 + uw−1)q

xq)

(by [2, Lemma 1.2])=
∑
b∈F∗

q

χ
(
b + (

1 + uw−1)(1 + uw−1)wb−1) − qδuw−1,−1

=
∑
b∈F∗

q

χ
(
b + (

1 + uw−1 + uw−1 + u2 w−2)wb−1) − qδu,−w

=
∑
b∈F∗

q

χ
(
b + wb−1 + 2ub−1 + u2 w−1b−1) − qδu,−w .

Thus we have

N(2)
T0

f (2)
T0

(
c(2)

u,1

) = q(u, u) +
∑

w,b∈F∗
q

χ
(
b + wb−1 + 2ub−1 + u2 w−1b−1)(w, u2 w−1).

On the other hand, note that using first Lemma 4.1 and then Proposition 8.1 we have

f (1)
T0

(−(
c(1)

u,1

)2 + 2qc(1)
−u

) = f (1)
T0

(
qc(1)

−u −
∑
t∈F∗

q

χ
(−2u−1t − u2t−1)c(1)

t,u2t−1 + 2qc(1)
u

)

= q(u, u) −
∑
t∈F∗

q

χ
(
2u−1t + u2t−1) ∑

w,v∈F∗
q

w v=u2

χ
(−u−2t(w + v)

)
(w, v)

= q(u, u) −
∑
t∈F∗

q

χ
(
2u−1t + u2t−1) ∑

w∈F∗
q

χ
(−u−2t

(
w + u2 w−1))(w, u2 w−1)

= q(u, u) +
∑

t,w∈F∗
q

χ
(
2u−1t + u2t−1 + u−2t w + t w−1)(w, u2 w−1).

Making the change of variable b = t−1u2 we get

f (1)
T0

(−(
c(1)

u,1

)2 + 2qc(1)
−u

) = q(u, u) +
∑

b,w∈F∗
q

χ
(
2ub−1 + b + b−1 w + u2 w−1b−1)(w, u2 w−1).

Thus N(2)
T f (2)

T (c(2)
u,1) = f (1)

T (−(c(1)
u,1)

2 + 2qc(1)
−u).
0 0 0
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By an analogous proof it also follows that N(1)
T1

f (2)
T1

(c(2)
u,1) = f (1)

T1
(−(c(1)

u,1)
2 + 2qc(1)

u ).
Thus

NT f (2)
T

(
c(2)

u,1

) = f (1)
T

(−(
c(1)

u,1

)2 + 2qc(1)
u

)

for all maximal tori T and all u ∈ F∗
q . That is,

NT f (2)
T

(
c(2)

u,1

) = f (1)
T

(
P2

(
c(1)

u,1,qc(1)
−u

))

for all maximal tori T and all u ∈ F∗
q . Thus Δ(2)(c(2)

u,1) = P2(c(1)
u,1,qc(1)

−u). �
Lemma 9.2. Δ(2)(c(2)

u ) = c(1)

uq+1 for all u ∈ F∗
q2 .

Proof. This follows from the fact that N(2)
T f (2)

T (c(2)
u ) = (uq+1, uq+1) = f (1)

T (c(1)

uq+1) for all maximal tori
T and all u ∈ F∗

q2 . �
Lemma 9.3. Δ(2)(c(2)

u,v) = c(1)

vq+1Δ
(2)(c(2)

v−1u,1
) for all u, v ∈ F∗

q2 .

Proof. Note that the basis element

c(2)
u,v = q2e(2)

(
0 −u
v 0

)
e(2)

= q2e(2)

(
v 0
0 v

)(
0 −uv−1

1 0

)
e(2)

= c(2)
v c(2)

v−1u,1
.

Thus, using that Δ(2) is a homomorphism, Δ(2)(c(2)
u,v) = Δ(2)(c(2)

v c(2)

v−1u,1
) = Δ(2)(c(2)

v )Δ(2)(c(2)

v−1u,1
) =

(by Lemma 9.2) c(1)

vq+1Δ
(2)(c(2)

v−1u,1
). �

Note that (unlike Lemma 9.1) the following lemma holds for all v ∈ F∗
q2 .

Proposition 9.4. Δ(2)(c(2)

v,v−q ) = c(1)

v−q−1 P2(c(1)

vq+1,1
,qc(1)

−vq+1 ) for all v ∈ F∗
q2 .

Proof. By Lemma 9.3 Δ(2)(c(2)

v,v−q ) = c(1)

v−q−1Δ
(2)(c(2)

vq+1,1
). But vq+1 is an element of F∗

q so we can apply

Lemma 9.1 to get Δ(2)(c(2)

v,v−q ) = c(1)

v−q−1 P2(c(1)

vq+1,1
,qc(1)

−vq+1 ). �
10. The image of Δ∗ : H (2) → H∗

Let B denote the standard basis of H(2) . Thus

B = {
c(2)

u , c(2)
u,v

∣∣ u, v ∈ F∗
q2

} =
{(

u 0
0 u

)
e(2), q2e(2)

(
0 −u
v 0

)
e(2)

∣∣∣ u, v ∈ F∗
q2

}
.

Let

B F ∗ = {
c(2)

u , c(2)
−q

∣∣ u, v ∈ F∗
2 , uq+1 = 1

}
.
v,v q
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That is, B F ∗
is the subset of B of elements which are constructed using the matrices

( 0 −u
v 0

)
and

( u 0
0 u

)
which are also used in the construction of the basis of H∗ . Note that the previous section provides
the image under Δ(2) of all the elements in B F ∗

. In this section we will determine the image under
Δ∗ : H(2) → H∗ of all elements in B F ∗

. Furthermore, it will be shown that the norm maps Δ(2) and
Δ∗ are equal on a certain subset of B F ∗

.
To simplify notation, in this section we will denote e∗ (= e(1)) by e. Since H(1) = 〈qe(u, v)w0e,

(u, u)e | u, v ∈ Fq〉 and H∗ = 〈qe(x, x−q)w0e, (y, y)e | x, y ∈ Fq2 , yq+1 = 1〉, the intersection H(1) ∩ H∗

is nonempty. Let C denote the intersection of these standard bases of H (1) and H∗ . Then

C = {
c(1)
±1, c(1)

v,v−1

∣∣ v ∈ F∗
q

} = {
c∗±1, c∗

v,v−1

∣∣ v ∈ F∗
q

}
.

Lemma 10.1. Let c ∈ C , then f ∗
Ti

(c) = f (1)
Ti

(c) for i = 0,1.

Proof. If c = c(1)
±1 then f ∗

Ti
(c) = (±1,±1) = f (1)

Ti
(c).

Now suppose c = c(1)

u,u−1 for some u ∈ F∗
q . Then, by Proposition 7.1

f ∗
T0

(
c∗

u,u−1

) = f ∗
T0

(
c∗

u,u−q

) =
∑

a∈F∗
q2 ,a−q+1=u−q+1

χ
(−uq(a + a−q))(a,a−q)

=
∑
a∈F∗

q

χ
(−u

(
a + a−1))(a,a−1),

since u ∈ F∗
q and thus a−q+1 = u−q+1 = 1 implies u ∈ F∗

q . On the other hand, by Proposition 8.1

f (1)
T0

(
c(1)

u,u−1

) =
∑

a,b∈F∗
q ,ab=1

χ
(−u(a + b)

)
(a,b)

=
∑
a∈F∗

q

χ
(−u

(
a + a−1))(a,a−1).

Thus f ∗
T0

(c∗
u,u−q ) = f (1)

T0
(c(1)

u,u−1) for all u ∈ F∗
q . Similarly by Proposition 7.1

f ∗
T1

(
c∗

u,u−q

) =
∑

a,b∈F∗
q2

ab=u−q+1,aq+1=bq+1=1

χ
(−u(a + b)

)
(a,b)

=
∑

a∈F∗
q2 ,aq+1=1

χ
(−u

(
a + a−1))(a,a−1),

since u−q+1 = 1. On the other hand, by Proposition 8.1

f (1)
T1

(
c(1)

u,u−1

) =
∑

a∈F∗
q2 ,aq+1=1

χ
(−u

(
a + a−1))(a,a−1).

Thus f ∗
T (c∗ −q ) = f (1)

T (c(1)
−1) for all u ∈ F∗

q . �

1 u,u 1 u,u
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Lemma 10.2. Let b ∈ B F ∗
then

(i) for b = c(2)
u we have N∗

i f (2)
Ti

(c(2)
u ) = (u−q+1, u−q+1)N(2)

i f (2)
Ti

(c(2)
u ) and

(ii) for b = c(2)

t,t−q we have N∗
i f (2)

Ti
(c(2)

t,t−q ) = (t−q+1, t−q+1)N(2)
i f (2)

Ti
(c(2)

t,t−q ) for i = 0,1.

Proof. First assume b = c(2)
u . Since b ∈ B F ∗

we have uq+1 = 1. Thus f Ti (c(2)
u ) = (u, u) and thus

N(2)
i f Ti (c(2)

u ) = (uq+1, uq+1) = (1,1). On the other hand N(2)
i f Ti (c(2)

u ) = (u−q+1, u−q+1). Thus

N∗
i f (2)

Ti
(c(2)

u ) = (u−q+1, u−q+1)N(2)
i f (2)

Ti
(c(2)

u ).

Now assume b = c(2)

t,t−q for some t ∈ F∗
q2 . We have, using Proposition 8.1,

N∗
0 f (2)

T0

(
c(2)

t,t−q

) = N∗
0

∑
a,b∈F∗

q2 ,ab=t−q+1

χ2
(−tq(a + b)

)
(a,b)

= N∗
0

∑
a∈F∗

q2

χ2
(−tq(a + a−1t−q+1))(a,a−1t−q+1)

=
∑

a∈F∗
q2

χ2
(−tqa − ta−1)(a1+qt−q+1,a−1−qt−q+1)

= (
t−q+1, t−q+1) ∑

a∈F∗
q2

χ2
(−tqa − ta−1)(a1+q,a−1−q)

= (
t−q+1, t−q+1)N(2)

0

∑
a∈F∗

q2

χ2
(−tqa − ta−1)(a,a−1t−q+1)

= (
t−q+1, t−q+1)N(2)

0 f (2)
T0

(
c(2)

t,t−q

)
.

Similarly,

N∗
1 f (2)

T1

(
c(2)

t,t−q

) = N∗
1

∑
a∈F∗

q4 ,aq2+1=t−q+1

χ2
(−tq(a + aq2))(

a,aq2)

=
∑

a∈F∗
q4 ,qq2+1=t−q+1

χ2
(−tq(a + a−1t−q+1))(a1−q,aq2−q3)

.

Since aq2+1 = t−q+1 we have aq2 = a−1t−q+1 and aq3 = a−qt−1+q . Thus a1−q = a1+q3
t−q+1 and

aq2−q3 = aq2+qt−q+1. Thus

N∗
1 f (2)

T1

(
c(2)

t,t−q

) =
∑

a∈F∗
q4 ,qq2+1=t−q+1

χ2
(−tq(a + a−1t−q+1))(a1+q3

t−q+1,aq2+qt−q+1)

= (
t−q+1, t−q+1) ∑

a∈F∗
q4

qq2+1=t−q+1

χ2
(−tq(a + a−1t−q+1))(a1+q3

,aq2+q)

= (
t−q+1, t−q+1)N(2)

1

∑
a∈F∗

q4

qq2+1=t−q+1

χ2
(−tq(a + a−1t−q+1))(a,aq2)

= (
t−q+1, t−q+1)N(2)

1 f (2)
T

(
c(2)

−q

)
. �
1 t,t
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By Proposition 9.4, Δ(2)(c(2)

v,v−q ) = c(1)

v−q−1 P2(c(1)

vq+1,1
,qc(1)

−vq+1 ). Thus

Δ(2)
(
c(2)

v,v−q

) = (
v−q−1, v−q−1)(−c(1)

vq+1,1
c(1)

vq+1,1
+ 2qc(1)

−vq+1

)

= −c(1)

1,v−q−1 c(1)

vq+1,1
+ 2qc(1)

−1

= −
∑

w∈F∗
q

χ
(−v−q−1 w − vq+1 vq+1 w−1 − v−q−1 w

)
c(1)

v−q−1 w,vq+1 w−1 + qc(1)
−1.

But v−q−1 w is an element of Fq thus Δ(2)(c(2)

v,v−q ) ∈ H(1) ∩ H∗ .

Lemma 10.3. f ∗
Ti

Δ(2)(c(2)

t,t−q ) = f (1)
Ti

Δ(2)(c(2)

t,t−q ).

Proof. This follows immediately from the comments preceding this lemma and Lemma 10.1. �
Theorem 10.4. Let b ∈ B F ∗

then

(i) for b = c(2)
u , Δ∗(c(2)

u ) = (u−q+1, u−q+1)Δ(2)(c(2)
u ) and

(ii) for b = c(2)

t,t−q , Δ∗(c(2)

t,t−q ) = (t−q+1, t−q+1)Δ(2)(c(2)

t,t−q ).

Proof. Let b ∈ B F ∗
. Then b = c(2)

x for some x ∈ F∗
q2 such that xq+1 = 1 or b = c(2)

x,x−q for some x ∈ F∗
q2 .

Thus

f ∗
Ti

((
x−q+1, x−q+1)Δ(2)(b)

) = (
x−q+1, x−q+1) f ∗

Ti
Δ(2)(b)

(by Lemma 10.3)= (
x−q+1, x−q+1) f (1)

Ti
Δ(2)(b)

(by Theorem 1.2)= (
x−q+1, x−q+1)N(2)

i f (2)
Ti

(b)

(by Lemma 10.2)= N∗
i f (2)

Ti
(b).

Since this is true for all maximal tori Ti , we have Δ∗(b) = (x−q+1, x−q+1)Δ(2)(b) by uniqueness of Δ∗
in Theorem 1.2. �
Corollary 10.5. Let t ∈ F∗

q then Δ∗(c(2)

t,t−1 ) = Δ(2)(c(2)

t,t−1 ) and Δ∗(c(2)
±1) = Δ(2)(c(2)

±1).

Proof. This follows immediately from Theorem 10.4 since t−q+1 = 1 when t ∈ F∗
q and ±1−q+1 = 1. �

Lemma 10.6. The structure constants of elements in C are the same whether the elements are viewed as in H∗
or as in H(1) .

Proof. A comparison of Propositions 4.2 and 6.1 immediately shows this lemma is true when one (or
both) of the two elements multiplied together is central. Thus we only need to compare c(1)

t,t−1 c(1)

u,u−1

and c∗
t,t−1 c∗

u,u−1 for t, u ∈ F∗
q . According to Proposition 4.2

c(1)

t,t−1 c(1)

u,u−1 = qc(1)

−tu−1δtu−1,t−1u +
∑

w∈F∗
q

χ
(−u−2 w − t2u2 w−1 − t−2 w

)
c(1)

t−1u−1 w,tuw
.
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Whereas, according to Proposition 6.1

c∗
t,t−1 c∗

u,u−1 = qc∗
−ut−1δt2,u2 +

∑
w∈F∗

q

χ
(−u−2 w − t2u2 w−1 − t−2 w

)
c∗

t−1u−1 w,tuw .

This lemma then follows from the fact that δtu−1,t−1u = δt2,u2 . �
Theorem 10.7. For all t ∈ F∗

q2 , Δ∗(c(2)

t,t−q ) = P2(c∗
t,t−q ,qc∗

t−q+1).

Proof.

Δ∗(c(2)

t,t−q

) (by Theorem 10.4)= (
t−q+1, t−q+1)Δ(2)

(
c(2)

t,t−q

)
(by Proposition 9.4)= (

t−q+1, t−q+1)c(1)

t−q−1 P2
(
c(1)

tq+1,1
,qc(1)

−tq+1

)
(by definition of P2(x,y))= (

t−q+1, t−q+1)c(1)

t−q−1

(−(
c(1)

tq+1,1

)2 + 2qc(1)

tq+1

)
(by Proposition 4.2 and Lemma 10.6)= −(

c∗
t,t−q

)2 + 2qc∗
t−q+1

= P2
(
c∗

t,t−q ,qc∗
t−q+1

)
. �
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