Notes on the norm map between the Hecke algebras of the Gelfand-Graev representations of $G L\left(2, q^{2}\right)$ and $U(2, q)$

Julianne G. Rainbolt
Department of Mathematics and Computer Science, Saint Louis University, Saint Louis, MO 63103, USA

ARTICLE INFO

Article history:

Received 21 August 2007
Available online 4 September 2008
Communicated by Ronald Solomon

Keywords:

Finite groups of Lie type
Representation theory

Abstract

Let \tilde{G} be a connected reductive algebraic group defined over the field \mathbf{F}_{q} and let F and F^{*} be two Frobenius maps such that $F^{m}=\left(F^{*}\right)^{m}$ for some integer m. Let $\tilde{G}^{F}, \tilde{G}^{F^{*}}$, and $\tilde{G}^{F^{m}}=\tilde{G}^{\left(F^{*}\right)^{m}}$ be the finite groups of fixed points. In this article we consider the case where $\tilde{G}=G L\left(2, \bar{F}_{q}\right), F$ is the usual Frobenius map so that $\tilde{G}^{F}=G L(2, q)$ and F^{*} is the twisted Frobenius map such that $\tilde{G}^{F^{*}}=$ $U(n, q)$. In this case, $F^{2}=\left(F^{*}\right)^{2}$ and $\tilde{G}^{F^{2}}=\tilde{G}^{\left(F^{*}\right)^{2}}=G L\left(2, q^{2}\right)$. This article provides connections between the complex representation theory of these groups using the norm maps (see [C. Curtis, T. Shoji, A norm map for endomorphism algebras of Gelfand-Graev representations, in: Progr. Math., vol. 141, 1997, pp. 185-194]) from the Gelfand-Graev Hecke algebra of $G L\left(2, q^{2}\right)$ to the Gelfand-Graev Hecke algebras of both $G L(2, q)$ and $U(2, q)$.

© 2008 Elsevier Inc. All rights reserved.

1. Background information and notation

Let \tilde{G} denote a connected reductive algebraic group defined over a finite field \mathbf{F}_{q} where q is a power of a prime and let $\alpha: \tilde{G} \rightarrow \tilde{G}$ be a Frobenius endomorphism. An α-stable maximal torus of \tilde{G} will be denoted by \tilde{T} and the unipotent radical of an α-stable Borel in \tilde{G} will be denoted by \tilde{U}. For any subgroup \tilde{A} of \tilde{G}, the group \tilde{A}^{α} of fixed points will be denoted by A. In particular let $G=\tilde{G}^{\alpha}$. That is, G is a finite group of Lie type. A maximal torus of G is a subgroup of G of the form $T=\tilde{T}^{\alpha}$. The Gelfand-Graev characters of G are the induced characters $\Gamma=\operatorname{Ind}_{U}^{G}(\psi)$ where ψ is a nondegenerate linear character of $U=\tilde{U}^{\alpha}$. For the groups considered in this paper the center of \tilde{G} is connected. Thus given a Frobenius endomorphism, there will be only one Gelfand-Graev character Γ (see [3, p. 519]).

[^0]Given a nondegenerate linear character of U, ψ, let e denote the central primitive idempotent in $\mathbf{C} U$ corresponding to ψ :

$$
e=|U|^{-1} \sum_{u \in U} \psi\left(u^{-1}\right) u
$$

Then $H=e \mathbf{C G e}$ is called the Hecke algebra of the Gelfand-Graev representation of G [4, Section 11]. The Hecke algebra constructed using the Gelfand-Graev representation is anti-isomorphic to the CGendomorphism algebra of the induced CG-module affording the Gelfand-Graev character of G. Thus, since the Gelfand-Graev character is multiplicity free, the Hecke algebra H is commutative.

The standard basis of H is constructed in the following way. Let $\left\{x_{i} \mid i \in I\right\}$ be a collection of double coset representatives of U in G and let $J=\left\{j \mid j \in I,{ }^{x_{j}} \psi=\psi\right.$ on $\left.U \cap{ }^{x_{j}} U\right\}$. (Here ${ }^{x_{j}} \psi$ denotes the character of the conjugate group ${ }^{x_{j}} U$ and is defined by ${ }^{x_{j}} \psi\left({ }^{(x} u\right)=\psi(u)$ for $u \in U$.) Then $\left\{\left[U:{ }^{x_{j}} U \cap U\right] e x_{j} e \mid j \in J\right\}$ is the standard basis of H [4, Proposition 11.30]. In this section [$U:{ }^{x} U \cap U$]exe will be denoted by c_{x} and for the remainder of the article [$U:{ }^{x} U \cap U$] will be denoted by ind (x).

There is a bijection from the set of irreducible characters χ of G such that $\langle\chi, \Gamma\rangle \neq 0$ to the set of all irreducible characters of H. Also the primitive central idempotents of H are $\{e \epsilon\}$ where ϵ is a primitive central idempotent of $\mathbf{C} G$ associated with a χ such that $\langle\chi, \Gamma\rangle \neq 0$. Since H is commutative, these idempotents are actually primitive idempotents. Thus they give us the simple module CGe which affords χ [4, Corollary 11.27].

Let \tilde{T}_{o} denote a maximally split α-stable maximal torus of \tilde{G}. The \tilde{G}-conjugacy classes of α-stable maximal tori of \tilde{G} are parametrized by the α-conjugacy classes of $N_{\tilde{G}}\left(\tilde{T}_{o}\right) / \tilde{T}_{o}$ where the α-conjugate of x by g is defined to be $g x \alpha(g)^{-1}$ [3]. In fact, given any α-conjugacy class [x] of the Weyl group $N_{\tilde{G}}\left(\tilde{T}_{o}\right) / \tilde{T}_{o}$,

$$
T_{x}=\left\{A \in \tilde{T}_{o} \mid x A x^{-1}=\alpha(A)\right\}
$$

is conjugate (in \tilde{G}) to a maximal torus of G. And conversely, every maximal torus of G is conjugate to some T_{X} [3]. Given an α-stable maximal torus \tilde{T} of \tilde{G}, let $R_{T, \theta}^{G}$ denote the Deligne-Lusztig generalized character, where θ is an irreducible character of the torus $T=\tilde{T}^{\alpha}$ (see, for example [1, Chapter 7]). Let Q_{T}^{G} denote the Green function, which is defined for all unipotent elements $u \in G$ by $Q_{T}^{G}(u)=R_{T, \theta}^{G}(u)$ (see, for example [1, p. 212]). Given a pair (\tilde{T}, θ) there exists a unique irreducible character $\chi_{T, \theta}$ of G such that $\left\langle\chi_{T, \theta}, \Gamma\right\rangle \neq 0$ and $\left\langle\chi_{T, \theta}, R_{T, \theta}^{G}\right\rangle \neq 0$. Also any irreducible character χ of G such that $\langle\chi, \Gamma\rangle \neq 0$ coincides with a $\chi_{T, \theta}$ for some pair (\tilde{T}, θ) [3, Theorem 2.1]. Thus the irreducible characters of H can be indexed by the pairs (\tilde{T}, θ). Also two irreducible characters $f_{T, \theta}$ and $f_{T^{\prime}, \theta}$, of H are equal if and only if (\tilde{T}, θ) and ($\tilde{T}^{\prime}, \theta^{\prime}$) are geometrically conjugate [3, Theorem 3.1].

The following theorem is from [3, Theorem 4.2].
Theorem 1.1. Given a Frobenius endomorphism α defined on \tilde{G}, let \tilde{T} be an α-stable maximal torus of \tilde{G} and let $T=\tilde{T}^{\alpha}$. Let θ be an irreducible character of T extended to $\mathbf{C T}$. Let $G=\tilde{G}^{\alpha}$ and let $\Gamma=\operatorname{Ind} d_{U}^{G}(\psi)$ denote the Gelfand-Graev representation where \tilde{U} is the unipotent radical of an α-stable Borel in $\tilde{G}, U=\tilde{U}^{\alpha}$ and ψ is a nondegenerate linear character of U. Let H denote the Hecke algebra corresponding to G.
(i) There exists a unique homomorphism $f_{T}: H \rightarrow \mathbf{C T}$, independent of θ, which has the property that each character $f_{T, \theta}: H \rightarrow \mathbf{C}$ can be factored as $f_{T, \theta}=\theta \cdot f_{T}$.
(ii) $f_{T}\left(c_{X}\right)=\sum_{t \in T} f_{T}\left(c_{X}\right)(t) t$ where c_{X} is an element in the standard basis of H and the coefficients $f_{T}\left(c_{X}\right)(t)$ are given by

$$
f_{T}\left(c_{x}\right)(t)=\frac{\left[U:{ }^{x} U \cap U\right]}{\left\langle Q_{T}^{G}, \Gamma\right\rangle|U|\left|C_{G}(t)\right|} \sum_{\substack{g \in G, u \in U \\\left(\mathrm{guxg}^{-1}\right)_{s}=t}} \psi\left(u^{-1}\right) Q_{T}^{C_{G}(t)}\left(\left(\mathrm{guxg}^{-1}\right)_{u}\right) .
$$

Note that if α is a Frobenius endomorphism then α^{m} is also a Frobenius endomorphism for any nonnegative integer m. Denote by f_{T}^{m} the homomorphism f_{T} described in the previous theorem when $G=\tilde{G}^{\alpha^{m}}$. Similarly denote by H^{m} the Hecke algebra corresponding to $\tilde{G}^{\alpha^{m}}$. The following theorem is from [6, Theorem 1].

Theorem 1.2. Using the notation in the previous theorem and the paragraph following that theorem, let N_{T}^{m} denote the extension of the usual norm map from $\tilde{T}^{\alpha^{m}}$ to \tilde{T}^{α} to a homomorphism of the group algebras. There exists a unique homomorphism of algebras $\Delta^{m}: H^{m} \rightarrow H$ that has the property $f_{T} \cdot \Delta^{m}=N_{T}^{m} \cdot f_{T}^{m}$ for all α-stable maximal tori \tilde{T} of \tilde{G}.

The map Δ^{m} will be called the norm map of the Hecke algebras H^{m} and H.
We will consider the following specific set up. Let $\tilde{G}=G L\left(2, \overline{\mathbf{F}}_{q}\right)$. Let $F: \tilde{G} \rightarrow \tilde{G}$ be the Frobenius endomorphism given by $F\left(a_{i j}\right)=\left(a_{i j}^{q}\right)$. Let $F^{*}: \tilde{G} \rightarrow \tilde{G}$ be the Frobenius endomorphism given by $F^{*}\left(a_{i j}\right)=\left(a_{j i}^{q}\right)^{-1}$. Note that $\tilde{G}^{F^{m}}=G L\left(2, q^{m}\right)$ and $\tilde{G}^{F^{*}}=U(2, q)$. It will be convenient to take an isomorphic copy of this unitary group given by $w_{0} \tilde{G}^{F^{*}} w_{0}^{-1}$ where

$$
w_{0}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

In the remainder of this paper $U(2, q)$ will mean the group $w_{0} \tilde{G}^{F^{*}} w_{0}^{-1}$.
Let B denote the upper triangular matrices of $G L\left(2, \overline{\mathbf{F}}_{q}\right)$ and let U denote its maximal unipotent subgroup. Let

$$
U^{(m)}=U^{F^{m}}=\left\{\left.\left(\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right) \right\rvert\, a \in \mathbf{F}_{q^{m}}\right\}
$$

and

$$
U^{*}=\left(w_{0} U w_{0}^{-1}\right)^{F^{*}}=\left\{\left.\left(\begin{array}{cc}
1 & a \\
0 & 1
\end{array}\right) \right\rvert\, a \in \mathbf{F}_{q}\right\}
$$

Note that $U^{*}=U^{(1)}$. Each nontrivial linear character, ψ_{m} of $U^{(m)}$ corresponds to a nontrivial linear character, χ_{m}, of the additive group of $\mathbf{F}_{q^{m}}$ by $\psi_{m}\left(\begin{array}{cc}1 & a \\ 0 & 1\end{array}\right)=\chi_{m}(a)$. Fix a nontrivial linear character χ_{1} of $U^{(1)}$ then choose (and fix) the nontrivial linear character of $U^{(m)}, \psi_{m}$, to be such that $\chi_{m}=\chi_{1} \cdot T r_{q^{m}, q}$. When $m=1, \chi_{m}$ will be denoted by just χ.

In the following a diagonal matrix $\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)$ will be denoted by (a, b) and the unipotent element $\left(\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right)$ will be denoted by [a].

The maximal tori of $G L\left(2, q^{m}\right)$ are

$$
\begin{aligned}
& T_{0}^{(m)}=T_{e}^{F^{m}}=\left\{(t, u) \mid t, u \in \mathbf{F}_{q^{m}}^{*}\right\}, \\
& T_{1}^{(m)}=T_{(1,2)}^{F^{m}}=\left\{\left(t, t^{q^{m}}\right) \mid t \in \mathbf{F}_{q^{2} m}^{*}\right\} .
\end{aligned}
$$

The maximal tori of the unitary group $U(2, q)$ are

$$
\begin{gathered}
T_{0}^{*}=T_{e}^{F^{*}}=\left\{\left(t, t^{-q}\right) \mid t \in \mathbf{F}_{q^{2}}^{*}\right\}, \\
T_{1}^{*}=T_{(1,2)}^{F^{*}}=\left\{(t, u) \mid t, u \in \mathbf{F}_{q^{2}}^{*}, t^{q+1}=u^{q+1}=1\right\} .
\end{gathered}
$$

Note that in both $G L\left(2, q^{m}\right)$ and $U(2, q)$ the Weyl group is

$$
W=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)=w_{0}\right\} \cong S_{2}
$$

When $\alpha=F^{m}$, we will denote $H^{m}, f_{T}^{m}, N_{T}^{m}$ and Δ^{m} (defined in Theorem 1.1 and Theorem 1.2) by $H^{(m)}, f_{T}^{(m)}, N_{T}^{(m)}$ and $\Delta^{(m)}$ respectively. When $\alpha=F^{*}$, we will denote H and f_{T} by H^{*} and f_{T}^{*}. When $\alpha=F^{*}$ and $m=2$ we will denote N_{T}^{m} and Δ^{m} by N_{T}^{*} and Δ^{*} respectively.

2. Main results

This article provides some explicit descriptions of the maps $f_{T}^{(m)}, f_{T}^{*}, \Delta^{(m)}$ and Δ^{*} (defined in the previous section). In the last section of this article these descriptions lead to a direct comparison of the images of $\Delta^{(2)}$ and Δ^{*} of all the basis elements of $H^{(2)}$. In particular, in Theorem 10.4 it is shown the images of $\Delta^{(2)}$ and Δ^{*} are equal on the basis elements of $H^{(2)}$ with a slight adjustment. In addition, it is then shown in Theorem 10.7 that the images of Δ^{*} of certain basis elements of $H^{(2)}$ can be written in terms of Dickson polynomials.

The main results in Sections 9 and 10 describe the image under $\Delta^{(2)}$ and Δ^{*} of basis elements of the Hecke algebra $H^{(2)}$ as well as describe a certain subset of this basis in which these two maps are the same. In this way, the results in Sections 9 and 10 exhibit connections between the complex representation theory of $G L(2, q), U(2, q)$ and $G L\left(2, q^{2}\right)$. Exhibiting connections between the representation theories of these groups has been investigated by many people. In particular, the connection between the representation theory of $G L(n, q)$ and $U(n, q)$ know as Ennola duality was shown to be true in all cases by Kawanaka [8] and connections between the representation theory of $G L(n, q)$ and $G L\left(n, q^{m}\right)$ were revealed by Shintani [9].

It would be an interesting problem to generalize the connections investigated in this article. That is, let α and α^{*} be any two Frobenius maps on a connected reduction algebraic group \tilde{G} (as discussed in Section 1) such that $\alpha^{m}=\left(\alpha^{*}\right)^{m}$. Using the norm maps from [6] (described in Section 1 above), it $\underset{\tilde{G}^{m}}{\text { would }} \underset{\sim}{b} e$ interesting to describe the connections between the representation theory of $\tilde{G}^{\alpha}, \tilde{G}^{\alpha^{*}}$ and $\tilde{G}^{\alpha^{m}}=\tilde{G}^{\left(\alpha^{*}\right)^{m}}$.

3. The Hecke algebra for $\operatorname{GL}\left(2, \boldsymbol{q}^{\boldsymbol{m}}\right)$

Let

$$
e^{(m)}=\frac{1}{q^{m}} \sum_{u \in U^{(m)}} \psi_{m}\left(u^{-1}\right) u
$$

Then

$$
\left.H^{(m)}=\left\langle i n d(n) e^{(m)} n e^{(m)}\right| n \in S,{ }^{n} \psi_{m}=\psi_{m} \text { on } U^{(m)} \cap{ }^{n} U^{(m)}\right\rangle
$$

where S is a set of double coset representatives of $U^{(m)}$ in $G L\left(2, q^{m}\right)$. Note that

$$
(u, v) w_{0}=\left(\begin{array}{cc}
0 & -u \\
v & 0
\end{array}\right)
$$

Using the Bruhat decomposition, we see a set of double coset representatives of $U^{(m)}$ in $G L\left(2, q^{m}\right)$ is

$$
S=\left\{\left(\begin{array}{cc}
u & 0 \\
0 & v
\end{array}\right), \left.\left(\begin{array}{cc}
0 & -u \\
v & 0
\end{array}\right) \right\rvert\, u, v \in \mathbf{F}_{q^{m}}\right\} .
$$

In order to determine the standard basis of $H^{(m)}$ we first need to determine the set $\left\{n \mid n \in S,{ }^{n} \psi_{m}=\right.$ ψ_{m} on $\left.U^{(m)} \cap{ }^{n} U^{(m)}\right\}$.

Let $y \in U^{(m)}$ so $y=[b]$ for some $b \in \mathbf{F}_{q^{m}}$. Let $x \in T_{0}^{(m)} w_{0}$. Then $x=\left(\begin{array}{cc}0 & -u \\ v & 0\end{array}\right)$ for some $u, v \in \mathbf{F}_{q^{m}}^{*}$. Then

$$
x y x^{-1}=\left(\begin{array}{cc}
1 & 0 \\
-v u^{-1} b & 1
\end{array}\right) .
$$

So $x y x^{-1} \in U^{(m)}$ if and only if $-v u^{-1} b=0$. But this is true if and only if $b=0$ (since u and v are nonzero). Thus ${ }^{x} U^{(m)} \cap U^{(m)}=I$ when $x \in T_{o}^{(m)} w_{0}$. For such an $x, \operatorname{ind}(x)=\left|U^{(m)}\right|=q^{m}$. Note that the condition $\psi_{m}(y)=\psi_{m}\left(x y x^{-1}\right)$ trivially holds for all $y \in U^{(m)} \cap{ }^{x} U^{(m)}=I$.

Now suppose $x \in T_{0}^{(m)}$. Then $x=\left(\begin{array}{ll}u & 0 \\ 0 & v\end{array}\right)$ for some $u, v \in \mathbf{F}_{q^{m}}^{*}$. Note that $x U^{(m)} x^{-1}=U^{(m)}$ so ind $(x)=$ 1. Also

$$
x y x^{-1}=\left(\begin{array}{cc}
1 & u v^{-1} b \\
0 & 1
\end{array}\right) .
$$

The condition $\psi_{m}(y)=\psi_{m}\left(x y x^{-1}\right)$ for all $y \in U^{(m)} \cap{ }^{x} U^{(m)}$ implies $\chi_{m}(b)=\chi_{m}\left(u v^{-1} b\right)$ for all $b \in \mathbf{F}_{q^{m}}$. Thus $u v^{-1}=1$. Thus $u=v$. Thus the standard basis for the Hecke algebra corresponding to $G L\left(2, q^{m}\right)$ is

$$
\left\{q^{m} e^{(m)}\left(\begin{array}{cc}
0 & -u \\
v & 0
\end{array}\right) e^{(m)}, \left.\left(\begin{array}{cc}
u & 0 \\
0 & u
\end{array}\right) e^{(m)} \right\rvert\, u, v \in \mathbf{F}_{q^{m}}^{*}\right\} .
$$

Denote $\left(\begin{array}{cc}0 & -u \\ v & 0\end{array}\right)$ by $x_{u, v}$ and denote the basis element $q^{m} e^{(m)} x_{u, v} e^{(m)}$ by $c_{u, v}^{(m)}$. Denote $\left(\begin{array}{ll}u & 0 \\ 0 & u\end{array}\right)$ by x_{u} and denote the basis element $e^{(m)} x_{u} e^{(m)}$ by $c_{u}^{(m)}$.

4. The structure constants of $\boldsymbol{H}^{(m)}$

In order to demonstrate all the structure constants for this Hecke algebra we will first need the following lemma.

Lemma 4.1. $c_{u, 1}^{(m)} c_{v, 1}^{(m)}=q^{m} c_{-u}^{(m)} \delta_{u, v}+\sum_{w \in \mathbf{F}_{q^{m}}^{*}} \chi_{m}\left(-w v^{-1}-u v w^{-1}-u^{-1} w\right) c_{w, w^{-1} u v^{(m)}}$.
Proof. Let I be an index set for the standard basis. Denote the basis elements by $a_{i}, i \in I$. Order these basis elements so that $a_{i}=x_{u_{i}} e^{(m)}$ for some $u_{i} \in \mathbf{F}_{q^{m}}^{*}$ for $i \leqslant q^{m}-1$ and $a_{i}=q^{m} e^{(m)} x_{u_{i}, v_{i}} e^{(m)}$ for $i \geqslant q^{m}$. We have $c_{u, 1}^{(m)} c_{v, 1}^{(m)}=\sum_{k \in I} \mu_{k} a_{k}$ where $\mu_{k}=q^{m} \sum_{y \in D_{1} \cap x_{k} D_{2}^{-1}} c_{u, 1}^{(m)}(y) c_{v, 1}^{(m)}\left(y^{-1} x_{k}\right)$. (See [4, Proposition 11.30]). In this sum $D_{1}=U^{(m)} x_{u, 1} U^{(m)}$ and $D_{2}^{-1}=U^{(m)} x_{v, 1}^{-1} U^{(m)}$. Note that

$$
D_{1}=\left\{\left.[r]\left(\begin{array}{cc}
0 & -u \\
1 & 0
\end{array}\right)[s] \right\rvert\, r, s \in \mathbf{F}_{q^{m}}\right\}=\left\{\left.\left(\begin{array}{cc}
r & -u+r s \\
1 & s
\end{array}\right) \right\rvert\, r, s \in \mathbf{F}_{q^{m}}\right\}
$$

and

$$
D_{2}^{-1}=\left\{\left.[a]\left(\begin{array}{cc}
0 & 1 \\
-v^{-1} & 0
\end{array}\right)[b] \right\rvert\, a, b \in \mathbf{F}_{q^{m}}\right\}=\left\{\left.\left(\begin{array}{cc}
-a v^{-1} & 1-a b v^{-1} \\
-v^{-1} & -b v^{-1}
\end{array}\right) \right\rvert\, a, b \in \mathbf{F}_{q^{m}}\right\} .
$$

First consider the case when $k \leqslant q^{m}-1$. Then $x_{k}=\left(\begin{array}{cc}w & 0 \\ 0 & w\end{array}\right)$ for some $w \in \mathbf{F}_{q^{m}}^{*}$. Then

$$
x_{k} D_{2}^{-1}=\left\{\left.\left(\begin{array}{cc}
-a w v^{-1} & w-a b v^{-1} w \\
-w v^{-1} & -b v^{-1} w
\end{array}\right) \right\rvert\, a, b \in \mathbf{F}_{q^{m}}\right\} .
$$

In order to determine the set $D_{1} \cap x_{k} D_{2}^{-1}$ we need to find for which $a, b \in \mathbf{F}_{q^{m}}$ we have

$$
\left(\begin{array}{cc}
r & -u+r s \\
1 & s
\end{array}\right)=\left(\begin{array}{cc}
-a w v^{-1} & w-a b v^{-1} w \\
-w v^{-1} & -b v^{-1} w
\end{array}\right)
$$

A comparison of the 2,1 entries shows that this intersection is empty unless $w=-v$. So assume $w=-v$. Then we have

$$
\left(\begin{array}{cc}
r & -u+r s \\
1 & s
\end{array}\right)=\left(\begin{array}{cc}
a & w+a b \\
1 & b
\end{array}\right)
$$

Thus $a=r$ and $b=s$ and the intersection $D_{1} \cap x_{k} D_{2}^{-1}$ is D_{1} when $w=-u=-v$. Otherwise the intersection is empty. Thus assume $x_{k}=(-u,-u)$ and $u=v$. Let $y \in D_{1}$. Then $y=\left(\begin{array}{cc}r & -u+r s \\ 1 & s\end{array}\right)$ and $y^{-1} x_{k}=$ $u^{-1}\left(\begin{array}{cc}s & u-r s \\ -1 & r\end{array}\right)\left(\begin{array}{cc}-u & 0 \\ 0 & -u\end{array}\right)=\left(\begin{array}{cc}-s & -u+r s \\ 1 & -r\end{array}\right)$. Thus $c_{u, 1}^{(m)}(y)=\frac{1}{q^{m}} \chi_{m}(r+s)$ and $c_{v, 1}^{(m)}\left(y^{-1} x_{k}\right)=\frac{1}{q^{m}} \chi_{m}(-r-s)$. Thus $c_{u, 1}^{(m)}(y) c_{v, 1}^{(m)}\left(y^{-1} x_{k}\right)=\frac{1}{q^{2 m}}$. Thus $\mu_{k}=q^{m} \sum_{y \in D_{1}} \frac{1}{q^{2 m}}=q^{m}$ when $x_{k}=(-u,-u)$ and $u=v$. Otherwise $\mu_{k}=0$.

Now consider the case when $k \geqslant q^{m}$. Then $x_{k}=\left(\begin{array}{cc}0 & -w_{1} \\ w_{2} & 0\end{array}\right)$ for some nonzero $w_{1}, w_{2} \in \mathbf{F}_{q^{m}}$. Then

$$
x_{k} D_{2}^{-1}=\left\{\left.\left(\begin{array}{cc}
w_{1} v^{-1} & b w_{1} v^{-1} \\
-a w_{2} v^{-1} & w_{2}-a b w_{2} v^{-1}
\end{array}\right) \right\rvert\, a, b \in \mathbf{F}_{q^{m}}\right\}
$$

In order to determine the set $D_{1} \cap x_{k} D_{2}^{-1}$ we need to find for which $a, b \in \mathbf{F}_{q^{m}}$ we have

$$
\left(\begin{array}{cc}
r & -u+r s \\
1 & s
\end{array}\right)=\left(\begin{array}{cc}
w_{1} v^{-1} & b w_{1} v^{-1} \\
-a w_{2} v^{-1} & w_{2}-a b w_{2} v^{-1}
\end{array}\right)
$$

A comparison of the 1,1 and 2,1 entries shows that this intersection is empty unless $r=w_{1} v^{-1}$ and $a=-w_{2}^{-1} v$. So assume these two conditions. Then we have

$$
\left(\begin{array}{cc}
w_{1} v^{-1} & -u+w_{1} v^{-1} s \\
1 & s
\end{array}\right)=\left(\begin{array}{cc}
w_{1} v^{-1} & b w_{1} v^{-1} \\
1 & w_{2}+b
\end{array}\right) .
$$

Setting the 1,2 entries of both matrices equal to each other and the 2,2 entries of both matrices equal to each other we have $s=w_{2}+b$ and $s=b+w_{1}^{-1} u v$. Thus $w_{2}+b=b+w_{1}^{-1} u v$. Thus b can be chosen to be any element in $\mathbf{F}_{q^{m}}$. Then s is determined by b and the intersection is empty unless $w_{1} w_{2}=u v$. Thus, for the case $x_{k}=\left(\begin{array}{cc}0 & -w_{1} \\ w_{2} & 0\end{array}\right)$, we have the set $D_{1} \cap x_{k} D_{2}^{-1}$ has q^{m} elements when $w_{1} w_{2}=u v$ otherwise this intersection is empty. Assume $w_{1} w_{2}=u v$. Let y be an element in this intersection. Then

$$
y=\left(\begin{array}{cc}
w_{1} v^{-1} & s w_{1} v^{-1}-u \\
1 & s
\end{array}\right) .
$$

Thus

$$
y^{-1} x_{k}=u^{-1}\left(\begin{array}{cc}
s & -s w_{1} v^{-1}+u \\
-1 & w_{1} v^{-1}
\end{array}\right)\left(\begin{array}{cc}
0 & -w_{1} \\
w_{2} & 0
\end{array}\right)=\left(\begin{array}{cc}
-s+w_{2} & -s u^{-1} w_{1} \\
1 & u^{-1} w_{1}
\end{array}\right) .
$$

Thus in this case $c_{u, 1}^{(m)}(y)=\frac{1}{q^{m}} \chi_{m}\left(-w_{1} v^{-1}-s\right)$ and $c_{v, 1}^{(m)}\left(y^{-1} \chi_{k}\right)=\frac{1}{q^{m}} \chi_{m}\left(s-w_{2}-u^{-1} w_{1}\right)=$ $\frac{1}{q^{m}} \chi_{m}\left(s-u v w_{1}^{-1}-u^{-1} w_{1}\right)$. Thus $c_{u, 1}^{(m)}(y) c_{v, 1}^{(m)}\left(y^{-1} \chi_{k}\right)=\frac{1}{q^{2 m}} \chi_{m}\left(-w_{1} v^{-1}-u v w_{1}^{-1}-u^{-1} w_{1}\right)$. Thus
$\mu_{k}=q^{m} \sum_{y \in D_{1} \cap x_{k} D_{2}^{-1} \frac{1}{q^{2 m}}} \chi_{m}\left(-w_{1} v^{-1}-u v w_{1}^{-1}-u^{-1} w_{1}\right)=\chi_{m}\left(-w_{1} v^{-1}-u v w_{1}^{-1}-u^{-1} w_{1}\right)$ when $x_{k}=\left(\begin{array}{cc}0 & -w_{1} \\ w_{2} & 0\end{array}\right)$ is such that $w_{1} w_{2}=u v$. Otherwise $\mu_{k}=0$ when $k \geqslant q^{m}$.

Combining these two cases we have that

$$
c_{u, 1}^{(m)} c_{v, 1}^{(m)}=q^{m} c_{-u}^{(m)} \delta_{u, v}+\sum_{w_{1} \in \mathbf{F}_{q^{*}}} \chi_{m}\left(-w_{1} v^{-1}-u v w_{1}^{-1}-u^{-1} w_{1}\right) c_{w_{1}, w_{1}^{-1} u v}^{(m)} .
$$

The following proposition provides all the structure constants for $H^{(m)}$.
Proposition 4.2. Let $t, u, v, x, y \in \mathbf{F}_{q^{m}}^{*}$. Then
(i) $c_{u}^{(m)} c_{v}^{(m)}=c_{u v}^{(m)}$,
(ii) $c_{u}^{(m)} c_{t, v}^{(m)}=c_{u t, u v}^{(m)}$ and
(iii) $c_{t, u}^{(m)} c_{x, y}^{(m)}=q^{m} c_{-t y}^{(m)} \delta_{t y, u x}+\sum_{w \in \mathbf{F}_{q^{*}}^{*}} \chi_{m}\left(-x^{-1} y w-t u^{-1} x y^{-1} w^{-1}-t^{-1} u w\right) c_{u y w, t x w^{-1}}^{(m)}$.

Proof. As X_{u} is central, parts (i) and (ii) of the proposition are clear. Note that $\left(\begin{array}{cc}0 & -a \\ b & 0\end{array}\right)=\left(\begin{array}{l}b \\ 0 \\ 0\end{array}\right)\left(\begin{array}{cc}0 & -a b^{-1} \\ 1 & 0\end{array}\right)$. Thus

$$
c_{t, u}^{(m)} c_{x, y}^{(m)}=\left(\begin{array}{ll}
u & 0 \\
0 & u
\end{array}\right)\left(\begin{array}{ll}
y & 0 \\
0 & y
\end{array}\right) c_{t u^{-1}, 1}^{(m)} c_{x y^{-1}, 1}^{(m)} .
$$

Therefore, using Lemma 4.1, we have

$$
\begin{aligned}
c_{t, u}^{(m)} c_{x, y}^{(m)}= & \left(\begin{array}{cc}
u y & 0 \\
0 & u y
\end{array}\right)\left[q^{m} c_{-t u^{-1}}^{(m)} \delta_{t u^{-1}, x y^{-1}}\right. \\
& \left.+\sum_{w \in \mathbf{F}_{q^{m}}^{*}} \chi_{m}\left(-w\left(x y^{-1}\right)^{-1}-t u^{-1} x y^{-1} w^{-1}-\left(t u^{-1}\right)^{-1} w\right) c_{w, w^{-1} t u^{-1} x y^{-1}}^{(m)}\right] \\
= & q^{m} c_{-t y}^{(m)} \delta_{t y, u x}+\sum_{w \in \mathbf{F}_{q^{m}}^{*}} \chi_{m}\left(-x^{-1} y w-t u^{-1} x y^{-1} w^{-1}-t^{-1} u w\right) c_{u y w, t x w^{-1}}^{(m)} .
\end{aligned}
$$

5. The Hecke algebra for $\boldsymbol{U}(2, q)$

Recall H^{*} denotes the Hecke algebra corresponding to $U(2, q)$. Let

$$
e^{*}=\frac{1}{q} \sum_{u \in U^{*}} \psi_{1}\left(u^{-1}\right) u .
$$

Note that $e^{*}=e^{(1)}$. Then

$$
\left.H^{*}=\left\langle\operatorname{ind}(n) e^{(1)} n e^{(1)}\right| n \in S^{*},{ }^{n} \psi_{1}=\psi_{1} \text { on } U^{(1)} \cap{ }^{n} U^{(1)}\right\rangle,
$$

where S^{*} is a set of double coset representatives of $U^{(1)}$ in $U(2, q)$. Note that

$$
S^{*}=\left\{\left(\begin{array}{cc}
t & 0 \\
0 & t^{-q}
\end{array}\right), \left.\left(\begin{array}{cc}
0 & -t \\
t^{-q} & 0
\end{array}\right) \right\rvert\, t \in \mathbf{F}_{q^{2}}^{*}\right\} .
$$

In order to determine the standard basis of H^{*} we first need to determine the set $\left\{n \in S^{*} \mid{ }^{n} \psi_{1}=\psi_{1}\right.$ on $\left.U^{(1)} \cap{ }^{n} U^{(1)}\right\}$.

Let $y \in U^{(1)}$ so $y=[b]$ for some $b \in \mathbf{F}_{q}$. Let $x \in T_{0}^{*} w_{0}$. Then $x=\left(\begin{array}{cc}0 & -u \\ u^{-q} & 0\end{array}\right)$ for some $u \in \mathbf{F}_{q^{2}}^{*}$. Then

$$
x y x^{-1}=\left(\begin{array}{cc}
0 & -u \\
u^{-q} & 0
\end{array}\right)\left(\begin{array}{cc}
1 & b \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
0 & u^{q} \\
-u^{-1} & 0
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
-u^{-1-q} b & 1
\end{array}\right) .
$$

So $x y x^{-1} \in U^{(1)}$ if and only if $-u^{-1-q} b=0$. But this is true if and only if $b=0$ (since u is nonzero). Thus ${ }^{x} U^{(1)} \cap U^{(1)}=I$ when $x \in T_{0}^{*} w_{0}$. For such an x, ind $(x)=\left|U^{(1)}\right|=q$. Note that the condition $\psi_{1}(y)=\psi_{1}\left(x y x^{-1}\right)$ trivially holds for all $y \in U^{(1)} \cap{ }^{x} U^{(1)}=I$.

Now suppose $x \in T_{0}^{*}$. Then $x=\left(\begin{array}{cc}u & 0 \\ 0 & u^{-q}\end{array}\right)$ for some $u \in \mathbf{F}_{q^{2}}^{*}$. Note that $x U^{(1)} x^{-1}=U^{(1)}$ so $\operatorname{ind}(x)=1$. Also

$$
x y x^{-1}=\left(\begin{array}{cc}
u & 0 \\
0 & u^{-q}
\end{array}\right)\left(\begin{array}{cc}
1 & b \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
u^{-1} & 0 \\
0 & u^{q}
\end{array}\right)=\left(\begin{array}{cc}
1 & u^{q+1} b \\
0 & 1
\end{array}\right)
$$

The condition $\psi_{1}(y)=\psi_{1}\left(x y x^{-1}\right)$ for all $y \in U^{(1)} \cap{ }^{x} U^{(1)}$ implies $\chi_{1}(b)=\chi_{1}\left(u^{q+1} b\right)$ for all $b \in \mathbf{F}_{q}$. Thus $u^{q+1}=1$. Thus the standard basis for the Hecke algebra corresponding to $U(2, q)$ is

$$
\left\{q e^{*}\left(\begin{array}{cc}
0 & -v \\
v^{-q} & 0
\end{array}\right) e^{*}, \left.\left(\begin{array}{cc}
u & 0 \\
0 & u
\end{array}\right) e^{*} \right\rvert\, u, v \in \mathbf{F}_{q^{2}}^{*}, u^{q+1}=1\right\} .
$$

Denote $\left(\begin{array}{cc}0 & -v \\ v^{-q} & 0\end{array}\right)$ by $x_{v, v^{-q}}$ and denote the basis element $q e^{*} x_{v, v^{-q}} e^{*}$ by $c_{v, v^{-q}}^{*}$. Denote $\left(\begin{array}{ll}u & 0 \\ 0 & u\end{array}\right)$ by x_{u} and denote the basis element $x_{u} e^{*}$ by c_{u}^{*}.

6. The structure constants of \boldsymbol{H}^{*}

The following proposition provides all the structure constants for the Hecke algebra H^{*}.
Proposition 6.1. Let $u, v, x, z \in \mathbf{F}_{q^{2}}^{*}$ be such that $u^{q+1}=v^{q+1}=1$. Then
(i) $c_{u}^{*} c_{v}^{*}=c_{u v}^{*}$,
(ii) $c_{u}^{*} c_{x, x^{-q}}^{*}=c_{u x, u x^{-q}}^{*}$ and
(iii) $c_{x, x^{-q}}^{*} c_{z, z^{-q}}^{*}=q c_{-z x^{-q}}^{*} \delta_{x^{q+1}, z^{q+1}}+\sum_{w \in \mathbf{F}_{q}^{*}} \chi_{1}\left(-w z^{-q-1}-w^{-1} x^{q+1} z^{q+1}-w x^{-q-1}\right) c_{x^{-q} z^{-q} q_{w, x z w^{-1}}^{*}}$.

Proof. As in Proposition 4.2 parts (i) and (ii) are clear. Let I be an index set for the standard basis. Denote the basis elements by a_{i}. Order these basis elements so that $a_{i}=x_{u_{i}} e^{*}$ for some $u_{i} \in \mathbf{F}_{q^{2}}^{*}$ with $u_{i}^{q+1}=1$ for $i \leqslant q+1$ and $a_{i}=q e^{*} x_{v_{i}, v_{i}^{-q}} e^{*}$ for some $v_{i} \in \mathbf{F}_{q^{2}}^{*}$ for $i \geqslant q+2$. We have $c_{x, x^{-q}}^{*} c_{z, z^{-q}}^{*}=$
 $D_{2}^{-1}=U^{(1)} x_{z, z^{-q}}^{-1} U^{(1)}$. Note that

$$
D_{1}=\left\{\left.\left(\begin{array}{ll}
1 & r \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
0 & -x \\
x^{-q} & 0
\end{array}\right)\left(\begin{array}{cc}
1 & s \\
0 & 1
\end{array}\right) \right\rvert\, r, s \in \mathbf{F}_{q}\right\}=\left\{\left.\left(\begin{array}{cc}
r x^{-q} & -x+r s x^{-q} \\
x^{-q} & s x^{-q}
\end{array}\right) \right\rvert\, r, s \in \mathbf{F}_{q}\right\}
$$

and

$$
D_{2}^{-1}=\left\{\left.\left(\begin{array}{cc}
1 & a \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
0 & z^{q} \\
-z^{-1} & 0
\end{array}\right)\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right) \right\rvert\, a, b \in \mathbf{F}_{q}\right\}=\left\{\left.\left(\begin{array}{cc}
-a z^{-1} & z^{q}-a b z^{-1} \\
-z^{-1} & -b z^{-1}
\end{array}\right) \right\rvert\, a, b \in \mathbf{F}_{q}\right\} .
$$

First consider the case when $k \leqslant q+1$. Then $x_{k}=(w, w)$ for some $w \in \mathbf{F}_{q^{2}}$ with $w^{q+1}=1$. Then

$$
x_{k} D_{2}^{-1}=\left\{\left.\left(\begin{array}{cc}
-a w z^{-1} & w z^{q}-a b w z^{-1} \\
-w z^{-1} & -b w z^{-1}
\end{array}\right) \right\rvert\, a, b \in \mathbf{F}_{q}\right\} .
$$

In order to determine the set $D_{1} \cap x_{k} D_{2}^{-1}$ we need to find for which $a, b \in \mathbf{F}_{q}$ we have

$$
\left(\begin{array}{cc}
r x^{-q} & -x+r s x^{-q} \\
x^{-q} & s x^{-q}
\end{array}\right)=\left(\begin{array}{cc}
-a w z^{-1} & w z^{q}-a b w z^{-1} \\
-w z^{-1} & -b w z^{-1}
\end{array}\right) .
$$

A comparison of the 2,1 entries shows that this intersection is empty unless $w=-y x^{-q}$. So assume $w=-z x^{-q}$. Then we have

$$
\left(\begin{array}{cc}
r x^{-q} & -x+r s x^{-q} \\
x^{-q} & s x^{-q}
\end{array}\right)=\left(\begin{array}{cc}
a x^{-q} & -z^{q+1} x^{-q}+a b x^{-q} \\
x^{-q} & b x^{-q}
\end{array}\right) .
$$

Thus $a=r$ and $b=s$ and the intersection is empty unless $w=-z x^{-q}$ and $x^{q+1}=z^{q+1}$. (Note that given these two conditions $\left(-z x^{-q}\right)^{q+1}=z^{q+1} x^{-q^{2}-q}=-x^{q+1} x^{-1-q}=1$. Thus $w^{q+1}=1$ as required.) Thus assume $x_{k}=\left(-z x^{-q},-z x^{-q}\right)$ and $x^{q+1}=z^{q+1}$. Let $y \in D_{1} \cap x_{k} D_{2}^{-1}$. Then $y=\left(\begin{array}{cc}r x^{-q} & -x+r s x^{-q} \\ x^{-q} & s x^{-q}\end{array}\right)$ and

$$
\begin{aligned}
y^{-1} x_{k} & =x^{q-1}\left(\begin{array}{cc}
s x^{-q} & x-r s x^{-q} \\
-x^{-q} & r x^{-q}
\end{array}\right)\left(\begin{array}{cc}
-z x^{-q} & 0 \\
0 & -z x^{-q}
\end{array}\right) \\
& =\left(\begin{array}{cc}
s x^{-1} & x^{q}-r s x^{-1} \\
-x^{-1} & r x^{-1}
\end{array}\right)\left(\begin{array}{cc}
-z x^{-q} & 0 \\
0 & -z x^{-q}
\end{array}\right) \\
& =\left(\begin{array}{cc}
-s z x^{-q-1} & -z+r s x^{-q-1} \\
z x^{-q-1} & -r z x^{-q-1}
\end{array}\right)=\left(\begin{array}{cc}
-s z^{-q} & -z+r s y^{-q-1} \\
z^{-q} & -r z^{-q}
\end{array}\right) .
\end{aligned}
$$

Thus $c_{x, x^{-q}}^{*}(y)=q\left(\frac{1}{q^{2}} \chi(r+s)\right)$ and $c_{z, z^{-q}}^{*}\left(y^{-1} x_{k}\right)=q\left(\frac{1}{q^{2}} \chi(-r-s)\right)$. Thus $\mu_{k}=q \sum_{y \in D_{1}} \frac{1}{q^{2}} \chi(r+s-$ $r-s)=q$ when $x_{k}=\left(-z x^{-q},-z x^{-q}\right)$ and $x^{q+1}=z^{q+1}$. Otherwise $\mu_{k}=0$ for $k \leqslant q+1$.

Now consider the case when $k \geqslant q+2$. Then $x_{k}=\left(\begin{array}{cc}0-q & -w \\ w^{-q} & 0\end{array}\right)$ for some nonzero $w \in \mathbf{F}_{q^{2}}$. Then

$$
x_{k} D_{2}^{-1}=\left\{\left.\left(\begin{array}{cc}
w z^{-1} & b w z^{-1} \\
-a w^{-q} z^{-1} & z^{q} w^{-q}-a b w^{-q} z^{-1}
\end{array}\right) \right\rvert\, a, b \in \mathbf{F}_{q}\right\} .
$$

In order to determine the set $D_{1} \cap x_{k} D_{2}^{-1}$ we need to find for which $a, b \in \mathbf{F}_{q}$ we have

$$
\left(\begin{array}{cc}
r x^{-q} & -x+r s x^{-q} \\
x^{-q} & s x^{-q}
\end{array}\right)=\left(\begin{array}{cc}
w z^{-1} & b w z^{-1} \\
-a w^{-q} z^{-1} & z^{q} w^{-q}-a b w^{-q} z^{-1}
\end{array}\right) .
$$

A comparison of the 1,1 and 2,1 entries shows that this intersection is empty unless $r=w x^{q} z^{-1}$ and $a=-w^{q} \chi^{-q} z$. So assume these two conditions. Then we have

$$
\left(\begin{array}{cc}
w z^{-1} & -x+w z^{-1} s \\
x^{-q} & s x^{-q}
\end{array}\right)=\left(\begin{array}{cc}
w z^{-1} & b w z^{-1} \\
x^{-q} & z^{q} w^{-q}+b x^{-q}
\end{array}\right) .
$$

Setting the 1,2 entries of both matrices equal to each other and the 2,2 entries of both matrices equal to each other we have $s=x^{q} z^{q} w^{-q}+b$ and $s=b+w^{-1} x z$. Thus $x^{q} z^{q} w^{-q}+b=b+w^{-1} x z$. Thus b can be chosen to be any element in \mathbf{F}_{q}. Then s is determined by b and the intersection is empty unless $w^{1-q}=(x z)^{1-q}$. Thus, for the case $x_{k}=\left(\begin{array}{cc}0 & -w \\ w^{-q} & 0\end{array}\right)$, we have the set $D_{1} \cap x_{k} D_{2}^{-1}$ has q
elements when $w^{1-q}=(x z)^{1-q}$ otherwise this intersection is empty. Assume $w^{1-q}=(x z)^{1-q}$. Let y be any element in this intersection. Since

$$
y=\left(\begin{array}{cc}
r x^{-q} & -x+r s x^{-q} \\
x^{-q} & s x^{-q}
\end{array}\right)
$$

we have $c_{x, x^{-q}}^{*}(y)=\frac{1}{q} \chi(-r-s)=\frac{1}{q} \chi\left(-w x^{q} z^{-1}-s\right)$. On the other hand,

$$
\begin{aligned}
y^{-1} x_{k} & =x^{q-1}\left(\begin{array}{cc}
s x^{-q} & -r s x^{-q}+x \\
-x^{-q} & r x^{-q}
\end{array}\right)\left(\begin{array}{cc}
0 & -w \\
w^{-q} & 0
\end{array}\right) \\
& =x^{q-1}\left(\begin{array}{cc}
-r s x^{-q} w^{-q}+x w^{-q} & -s w x^{-q} \\
r w^{-q} \chi^{-q} & w x^{-q}
\end{array}\right)=\left(\begin{array}{cc}
-r s x^{-1} w^{-q}+w^{-q} x^{q} & -s x^{-1} w \\
r w^{-q} \chi^{-1} & x^{-1} w
\end{array}\right) .
\end{aligned}
$$

To determine $c_{y, y^{-q}}^{*}\left(y^{-1} x_{k}\right)$ we need to determine $c, d \in \mathbf{F}_{q}$ such that

$$
[c]\left(\begin{array}{cc}
0 & -z \\
z^{-q} & 0
\end{array}\right)[d]=y^{-1} x_{k} .
$$

Thus $c z^{-q}=-s z^{-q}+w^{-q} \chi^{q}$ and $d z^{-q}=x^{-1} w$. That is, $c=-s+w^{-q} \chi^{q} z^{q}=-s+w^{-1} x z$ and $d=$ $z^{q} x^{-1} w$. Thus $c_{y, y^{-q}}^{*}\left(y^{-1} x_{k}\right)=\frac{1}{q} \chi\left(s-w^{-1} x z-w x^{-1} z^{q}\right)$. Thus $\mu_{k}=q \sum_{s \in \mathbf{F}_{q}} \frac{1}{q^{2}} \chi\left(-w x^{q} z^{-1}-s+s-\right.$ $\left.w^{-1} x z-w x^{-1} z^{q}\right)=\chi\left(-w x^{q} z^{-1}-w^{-1} x z-w x^{-1} z^{q}\right)$ when $w^{q-1}=(x z)^{q-1}$. Otherwise $\mu_{k}=0$ for $k \geqslant q+2$.

Combining these two cases we have that

$$
c_{x, x^{-q}}^{*} c_{z, z^{-q}}^{*}=q c_{-z x^{-q}}^{*} \delta_{x^{q+1}, z^{q+1}}+\sum_{w \in \mathbf{F}_{q^{2}}^{*}, w^{q-1}=(x z)^{q-1}} \chi\left(-w x^{q} z^{-1}-w^{-1} x z-w x^{-1} z^{q}\right) c_{w, w^{-q}}^{*} .
$$

Make the change of variable $t=w x^{q} z^{q}$. Note the condition $w^{q-1}=(x z)^{q-1}$ implies $t^{q-1}=$ $w^{q-1} x^{-q+1} z^{-q+1}=1$. So $t \in \mathbf{F}_{q}^{*}$. Thus

$$
c_{x, x^{-q}}^{*} c_{z, z^{-q}}^{*}=-q c_{z x^{-q}}^{*} \delta_{x q+1}, z^{q+1}+\sum_{t \in \mathbf{F}_{q}^{*}} \chi_{1}\left(-t z^{-q-1}-t^{-1} x^{q+1} z^{q+1}-t x^{-q-1}\right) c_{t x^{-q} z^{-q}, t^{-1} x z}^{*} .
$$

7. The maps $\boldsymbol{f}_{T_{i}^{*}}: H^{*} \rightarrow \mathrm{CT}_{\boldsymbol{i}}^{*}$

In this section we will provide the image of $f_{T_{i}}^{*}$ on each standard basis element of H^{*}.

Proposition 7.1.

(i) $f_{T_{i}}^{*}\left(c_{u}^{*}\right)=(u, u)$ for both $i=0$ and $i=1$.

$$
\begin{align*}
f_{T_{0}}^{*}\left(c_{u, u^{-q}}^{*}\right) & =\sum_{a \in \mathbf{F}_{q^{2}}^{*}, a^{-q+1}=u^{-q+1}} \chi\left(-u^{q}\left(a+a^{-q}\right)\right)\left(a, a^{-q}\right) . \tag{ii}\\
f_{T_{1}}^{*}\left(c_{u, u^{-q}}^{*}\right) & =\sum_{a, b \in \mathbf{F}_{q^{2}}^{*}, u^{-q+1}=a b, a^{q+1}=b^{q+1}=1} \chi\left(-u^{q}(a+b)\right)(a, b) \tag{iii}\\
& =\sum_{a \in \mathbf{F}_{q^{2}}^{*}, a^{q+1}=1} \chi\left(-\left(a u^{q}+a^{-1} u\right)\right)\left(a, a^{-1} u^{-q+1}\right) .
\end{align*}
$$

Proof. First we need to prove the following lemma.
Lemma 7.2. Let $\left(t, t^{-q}\right) \in T_{0}^{*}$ and let $\left(t_{1}, t_{2}\right) \in T_{1}^{*}$. Let $[r]=\left(\begin{array}{c}1 \\ 0 \\ 0\end{array}\right) \in U^{(1)}$ and let $n=\left(u, u^{-q}\right) w_{0}$. Then $[r] n$ and $\left(t, t^{-q}\right)$ have the same characteristic equation if and only if ru $u^{-q}=t+t^{-q}$ and $u^{-q+1}=t^{-q+1}$. Also $[r] n$ and $\left(t_{1}, t_{2}\right)$ have the same characteristic equation if and only if $r u^{-q}=t_{1}+t_{2}$ and $u^{-q+1}=t_{1} t_{2}$.

Proof. This lemma is clear since

$$
\begin{aligned}
\operatorname{det}(x I-[r] n) & =\operatorname{det}\left[\left(\begin{array}{cc}
x & 0 \\
0 & x
\end{array}\right)-\left(\begin{array}{cc}
1 & r \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
0 & -u \\
u^{-q} & 0
\end{array}\right)\right] \\
& =\operatorname{det}\left(\begin{array}{cc}
x-r u^{-q} & u \\
-u^{-q} & x
\end{array}\right)=x^{2}-r u^{-q} x+u^{-q+1}
\end{aligned}
$$

and $\operatorname{det}\left(x I-\left(t, t^{-q}\right)\right)=x^{2}-\left(t+t^{-q}\right) x+t^{-q+1}$ and $\operatorname{det}\left(x I-\left(t_{1}, t_{2}\right)\right)=x^{2}-\left(t_{1}+t_{2}\right)+t_{1} t_{2}$.
We will now prove part (i) of the proposition. In this proof $U(2, q)$ will be denoted by G and T will denote either maximal torus T_{0}^{*} of T_{1}^{*}. We have

$$
\begin{aligned}
f_{T}^{*}\left(c_{v}^{*}\right)(t) & =\frac{\left[U^{(1)}: x_{v} U^{(1)} \cap U^{(1)}\right]}{\left\langle Q_{T}^{G}, \Gamma\right\rangle\left|U^{(1)}\right|\left|C_{G}(t)\right|} \sum_{\substack{g \in G,[r] \in U^{(1)} \\
\left(g[r] x_{v} g^{-1}\right)_{s}=t}} \psi_{1}\left([r]^{-1}\right) Q_{T}^{C_{G}(t)}\left(\left(g[r] x_{v} g^{-1}\right)_{u}\right) \\
& =\frac{1}{ \pm q\left|C_{G}(t)\right|} \sum_{\substack{g \in G,[r] \in U^{(1)} \\
\left(g[r] x_{v} g^{-1}\right)_{s}=t}} \psi_{1}\left([r]^{-1}\right) Q_{T}^{C_{G}(t)}\left(\left(g[r] x_{v} g^{-1}\right)_{u}\right) .
\end{aligned}
$$

If $t=(a, b)$ with $a \neq b$ then $\left(g[r] x_{v} g^{-1}\right)_{s}=\left(g x_{v} g^{-1}\right)_{s}=(v, v) \neq t$. So if $t=(a, b)$ with $a \neq b$ then $f_{T}^{*}\left(c_{v}^{*}\right)(t)=0$.

If $t=(a, a)$ then $\left(g[r] x_{v} g^{-1}\right)_{s}=(v, v)$ which equals t if and only if $a=v$. So assume $a=v$. Then

$$
\begin{aligned}
f_{T}^{*}\left(c_{v}^{*}\right)(t) & =\frac{1}{ \pm q|G|} \sum_{g \in G,[r] \in U^{(1)}} \psi_{1}\left([r]^{-1}\right) Q_{T}^{G}([r]) \\
& =\frac{1}{ \pm q} \sum_{[r] \in U^{(1)}} \psi_{1}\left([r]^{-1}\right) Q_{T}^{G}([r]) \\
& = \pm q^{-1}(q+1-1)= \pm 1 .
\end{aligned}
$$

(In the second to last equality we used the fact that $Q_{T}^{G}(I)=q+1$ and $Q_{T}^{G}([r])=1$ for $[r] \neq I,[7$, Theorem 9.16].) This proves part (i) of the proposition.

We will now prove parts (ii) and (iii) of the proposition. As in the proof of part (i), $U(2, q)$ will be denoted by G and T denotes either T_{0}^{*} or T_{1}^{*}.

First suppose $t=\left(t_{1}, t_{1}\right)$ (with $\left.t_{1}^{-q}=t_{1}\right)$. Then

$$
f_{T}^{*}\left(c_{v, v^{-q}}^{*}\right)\left(t_{1}, t_{1}\right)=\frac{q}{ \pm q|G|} \sum_{\substack{g \in G,[r] \in U^{(1)} \\\left(g[r] x_{v, v}-q g^{-1}\right)_{s}=t}} \psi_{1}\left([r]^{-1}\right) Q_{T}^{G}\left(\left(g[r] x_{v, v^{-q}} g^{-1}\right)_{u}\right)
$$

But, by Lemma 7.2 the only $[r]$ such that $[r] x_{v, v^{-q}}$ and t have the same characteristic equation is

$$
[r]=\left(\begin{array}{cc}
1 & v^{q}\left(t_{1}+t_{1}\right) \\
0 & 1
\end{array}\right)
$$

Thus

$$
f_{T}^{*}\left(c_{v, v^{-q}}^{*}\right)\left(t_{1}, t_{1}\right)=\frac{1}{ \pm|G|} \sum_{\substack{g \in G \\\left(g\left[2 t_{1} v^{q}\right] x_{v, v}-q \\ g^{-1}\right)_{s}=t}} \chi\left(-2 t_{1} v^{q}\right) Q_{T}^{G}\left(\left(g\left[2 t_{1} v^{q}\right] x_{v, v^{-q}} g^{-1}\right)_{u}\right)
$$

The number of $g \in G$ such that $\left(g\left[2 t_{1} v^{q}\right] x_{v, v^{-q}} g^{-1}\right)_{s}=t$ is equal to $\left|C_{G}(t)\right|(=|G|)$. Also note that the unipotent part of $\left[2 t_{1} v^{q}\right] x_{v, v^{-q}} \neq I$. Thus $Q_{T}^{G}\left(\left(g\left[2 t_{1} v^{q}\right] x_{v, v^{-q}} g^{-1}\right)_{u}\right)=1$. Thus

$$
f_{T}^{*}\left(c_{v, v^{-q}}^{*}\right)\left(t_{1}, t_{1}\right)= \pm \chi\left(-2 t_{1} v^{q}\right) .
$$

Now suppose $t=\left(t_{1}, t_{2}\right)$ with $t_{1} \neq t_{2}$. (If $T=T_{0}^{*}$ then $t_{2}=t_{1}^{-q}$.) Then

$$
\begin{aligned}
f_{T}^{*}\left(c_{v, v^{-q}}^{*}\right)\left(t_{1}, t_{2}\right) & =\frac{q}{ \pm q|T|} \sum_{\substack{g \in G,[r] \in U^{(1)} \\
\left(g[r] x_{v, v}-q \\
g^{-1}\right)_{s}=t}} \psi_{1}\left([r]^{-1}\right) Q_{T}^{T}\left(\left(g[r] x_{v, v^{-q}} g^{-1}\right)_{u}\right) \\
& =\frac{1}{ \pm|T|} \sum_{\substack{g \in G,[r] \in U^{(1)} \\
\left(g[r] x_{v, v}-q g^{-1}\right)_{s}=t}} \psi_{1}\left([r]^{-1}\right)
\end{aligned}
$$

As above the only $[r]$ such that $[r] x_{v, v^{-q}}$ and t have the same characteristic equation is

$$
[r]=\left[v^{q}\left(t_{1}+t_{2}\right)\right] .
$$

Also the number of $g \in G$ such that $\left(g\left[\left(t_{1}+t_{2}\right) v^{q}\right] x_{v, v^{-q}} g^{-1}\right)_{s}=t$ is equal to $\left|C_{G}(t)\right|(=|T|)$. Thus $f_{T}^{*}\left(c_{v, v^{-q}}^{*}\right)\left(t_{1}, t_{2}\right)= \pm \chi\left(-\left(t_{1}+t_{2}\right) v^{q}\right)$ when $t_{1} \neq t_{2}$. Combining these two cases proves parts (ii) and (iii) of the proposition.

Proposition 6.1 provided the structure constants for all the basis elements of H^{*} and Proposition 7.1 provides the images of the homomorphisms $f_{T^{*}}$ on these basis elements of H^{*}. Without using the fact that $f_{T_{1}}^{*}$ is a homomorphism, but instead using Chang's Lemma [2, Lemma 1.2], it is now straightforward to verify that $f_{T_{1}}^{*}\left(c_{1,1}^{*} c_{1,1}^{*}\right)=f_{T_{1}}^{*}\left(c_{1,1}^{*}\right) f_{T_{1}}^{*}\left(c_{1,1}^{*}\right)$. It would be interesting to explore what other identities could be exhibited using the fact that $f_{T_{i}}^{*}\left(c_{u, u^{-q}}^{*} c_{v, v^{-q}}^{*}\right)=f_{T_{i}}^{*}\left(c_{u, u^{-q}}^{*}\right) f_{T_{i}}^{*}\left(c_{v, v^{-q}}^{*}\right)$.
8. The maps $\boldsymbol{f}_{T_{i}}^{(\boldsymbol{m})}: \mathbf{H}^{(\boldsymbol{m})} \rightarrow \mathbf{C T} \boldsymbol{i}_{i}^{(m)}$

The proof of the following proposition is analogous to the proof of the proposition in the previous section and is thus omitted. This proposition provides the image of the maps $f_{T_{i}}^{(m)}$ for all basis elements of $H^{(m)}$.

Proposition 8.1.

(i) $f_{T_{i}}^{(m)}\left(c_{u}^{(m)}\right)=(u, u)$ for both $i=0$ and $i=1$.
(ii)

$$
\begin{aligned}
f_{T_{0}}^{(m)}\left(c_{u, v}^{(m)}\right) & =\sum_{a, b \in \mathbf{F}_{q^{m}}^{*}, a b=u v} \chi_{m}\left(-v^{-1}(a+b)\right)(a, b) \\
& =\sum_{a \in \mathbf{F}_{q^{m}}^{*}} \chi_{m}\left(-\left(a v^{-1}+a^{-1} u\right)\right)\left(a, a^{-1} u v\right)
\end{aligned}
$$

(iii)

$$
f_{T_{1}}^{(m)}\left(c_{u, v}^{(m)}\right)=\sum_{a \in \mathbf{F}_{q^{2}}^{*}, a^{q^{m}+1}=u v} \chi_{m}\left(-v^{-1}\left(a+a^{q^{m}}\right)\right)\left(a, a^{q^{m}}\right)
$$

9. The image of $\Delta^{(2)}: H^{(2)} \rightarrow H^{(1)}$

Note $N_{T_{0}}^{(2)}: T_{0}^{(2)} \rightarrow T_{0}^{(1)}$ is given by $N_{T_{0}}^{(2)}\left(t_{1}, t_{2}\right)=\left(t_{1}^{1+q}, t_{2}^{1+q}\right)$. Also $N_{T_{1}}^{(2)}: T_{0}^{(2)} \rightarrow T_{1}^{(1)}$ is given by $N_{T_{1}}^{(2)}\left(t_{1}, t_{2}\right)=\left(t_{1} t_{2}^{q}, t_{1}^{q} t_{2}\right)$. In this section we will determine the image of some of the standard basis elements of $H^{(2)}$ under the norm map $\Delta^{(2)}$.

Let $P_{m}(x, y)$ be the polynomial:

$$
P_{m}(x, y)=\sum_{j=0}^{[m / 2]}(-1)^{m-j-1} \frac{m}{m-j}\binom{m-j}{j} x^{m-2 j} y^{j}
$$

In [5] it was shown that

$$
\begin{equation*}
\Delta^{(m)}\left(c_{1,1}^{(m)}\right)=P_{m}\left(c_{1,1}^{(1)}, q c_{-1}^{(1)}\right) \tag{1}
\end{equation*}
$$

Note that

$$
P_{2}(x, y)=\sum_{j=0}^{1}(-1)^{1-j} \frac{2}{2-j}\binom{2-j}{j} x^{2-2 j} y^{j}=-x^{2}+2 y
$$

Thus identity (1) when $m=2$ becomes:

$$
\begin{equation*}
\Delta^{(2)}\left(c_{1,1}^{(2)}\right)=-\left(c_{1,1}^{(1)}\right)^{2}+2 q c_{-1}^{(1)} \tag{2}
\end{equation*}
$$

The following three lemmas are extensions of identity (2). Note that this first lemma only applies for $u \in \mathbf{F}_{q}^{*}\left(\right.$ not all of $\left.\mathbf{F}_{q^{2}}^{*}\right)$.

Lemma 9.1. $\Delta^{(2)}\left(c_{u, 1}^{(2)}\right)=P_{2}\left(c_{u, 1}^{(1)}, q c_{-u}^{(1)}\right)$ for all $u \in \mathbf{F}_{q}^{*}$.
Proof. Note that by Proposition 8.1

$$
\begin{aligned}
N_{T_{0}}^{(2)} f_{T_{0}}^{(2)}\left(c_{u, 1}^{(2)}\right) & =N_{T_{0}}^{(2)}\left(\sum_{\substack{x, y \in \mathbf{F}_{q^{2}}^{*} \\
x y=u}} \chi_{2}(-(x+y))(x, y)\right) \\
& =\sum_{x \in \mathbf{F}_{q^{2}}^{*}} \chi_{2}\left(-\left(x+u x^{-1}\right)\right)\left(x^{q+1}, u^{q+1} x^{-q-1}\right)
\end{aligned}
$$

Thus using $u \in \mathbf{F}_{q}^{*}$ we have

$$
\begin{aligned}
N_{T_{0}}^{(2)} f_{T_{0}}^{(2)}\left(c_{u, 1}^{(2)}\right) & =\sum_{\substack{x \in \mathbf{F}_{q^{2}}^{*}}} \chi\left(-\left(x+x^{q}+u x^{-1}+u x^{-q}\right)\right)\left(x^{q+1}, u^{2} x^{-q-1}\right) \\
& =\sum_{w \in \mathbf{F}_{q}^{*}} \sum_{\substack{x \in \mathbf{F}_{q^{2}}^{*} \\
x^{q+1}=w}} \chi\left(-\left(x+x^{q}+u x^{q} w^{-1}+u x w^{-1}\right)\right)\left(w, u^{2} w^{-1}\right) .
\end{aligned}
$$

Fix a $w \in \mathbf{F}_{q}^{*}$. The coefficient of $\left(w, u^{2} w^{-1}\right)$ in the above equation is

$$
\begin{aligned}
& \sum_{\substack{x \in \mathbf{F}_{q^{*}}^{*} \\
x^{q+1}=w}} \chi\left(-\left(x+x^{q}+u x^{q} w^{-1}+u x w^{-1}\right)\right) \\
& =-\sum_{\substack{x \in \mathbf{F}_{q^{2}}^{*} \\
x^{q}=w}} \chi\left(\left(1+u w^{-1}\right) x+\left(1+u w^{-1}\right) x^{q}\right) \\
& \stackrel{(\text { since }}{\substack{\left.u, w \in \mathbf{F}_{q}\right)}}=\sum_{\substack{x \in \mathbf{F}_{q^{2}}^{*} \\
=}} \chi\left(\left(1+u w^{-1}\right) x+\left(1+u w^{-1}\right)^{q} x^{q}\right) \\
& \quad \stackrel{x^{q+1}=w}{ }=\sum_{b \in \mathbf{F}_{q}^{*}} \chi\left(b+\left(1+u w^{-1}+u w^{-1}+u^{2} w^{-2}\right) w b^{-1}\right)-q \delta_{u,-w} \\
& =\sum_{b \in \mathbf{F}_{q}^{*}} \chi\left(b+w b^{-1}+2 u b^{-1}+u^{2} w^{-1} b^{-1}\right)-q \delta_{u,-w} .
\end{aligned}
$$

Thus we have

$$
N_{T_{0}}^{(2)} f_{T_{0}}^{(2)}\left(c_{u, 1}^{(2)}\right)=q(u, u)+\sum_{w, b \in \mathbf{F}_{q}^{*}} \chi\left(b+w b^{-1}+2 u b^{-1}+u^{2} w^{-1} b^{-1}\right)\left(w, u^{2} w^{-1}\right) .
$$

On the other hand, note that using first Lemma 4.1 and then Proposition 8.1 we have

$$
\begin{aligned}
f_{T_{0}}^{(1)}\left(-\left(c_{u, 1}^{(1)}\right)^{2}+2 q c_{-u}^{(1)}\right) & =f_{T_{0}}^{(1)}\left(q c_{-u}^{(1)}-\sum_{t \in \mathbf{F}_{q}^{*}} \chi\left(-2 u^{-1} t-u^{2} t^{-1}\right) c_{t, u^{2} t^{-1}}^{(1)}+2 q c_{u}^{(1)}\right) \\
& =q(u, u)-\sum_{t \in \mathbf{F}_{q}^{*}} \chi\left(2 u^{-1} t+u^{2} t^{-1}\right) \sum_{w, v \in \mathbf{F}_{q}^{*}} \chi\left(-u^{-2} t(w+v)\right)(w, v) \\
& =q(u, u)-\sum_{t \in \mathbf{F}_{q}^{*}} \chi\left(2 u^{-1} t+u^{2} t^{-1}\right) \sum_{w \in \mathbf{F}_{q}^{*}}^{w v=u^{2}} \chi\left(-u^{-2} t\left(w+u^{2} w^{-1}\right)\right)\left(w, u^{2} w^{-1}\right) \\
& =q(u, u)+\sum_{t, w \in \mathbf{F}_{q}^{*}} \chi\left(2 u^{-1} t+u^{2} t^{-1}+u^{-2} t w+t w^{-1}\right)\left(w, u^{2} w^{-1}\right) .
\end{aligned}
$$

Making the change of variable $b=t^{-1} u^{2}$ we get

$$
f_{T_{0}}^{(1)}\left(-\left(c_{u, 1}^{(1)}\right)^{2}+2 q c_{-u}^{(1)}\right)=q(u, u)+\sum_{b, w \in \mathbf{F}_{q}^{*}} \chi\left(2 u b^{-1}+b+b^{-1} w+u^{2} w^{-1} b^{-1}\right)\left(w, u^{2} w^{-1}\right) .
$$

Thus $N_{T_{0}}^{(2)} f_{T_{0}}^{(2)}\left(c_{u, 1}^{(2)}\right)=f_{T_{0}}^{(1)}\left(-\left(c_{u, 1}^{(1)}\right)^{2}+2 q c_{-u}^{(1)}\right)$.

By an analogous proof it also follows that $N_{T_{1}}^{(1)} f_{T_{1}}^{(2)}\left(c_{u, 1}^{(2)}\right)=f_{T_{1}}^{(1)}\left(-\left(c_{u, 1}^{(1)}\right)^{2}+2 q c_{u}^{(1)}\right)$.
Thus

$$
N_{T} f_{T}^{(2)}\left(c_{u, 1}^{(2)}\right)=f_{T}^{(1)}\left(-\left(c_{u, 1}^{(1)}\right)^{2}+2 q c_{u}^{(1)}\right)
$$

for all maximal tori T and all $u \in \mathbf{F}_{q}^{*}$. That is,

$$
N_{T} f_{T}^{(2)}\left(c_{u, 1}^{(2)}\right)=f_{T}^{(1)}\left(P_{2}\left(c_{u, 1}^{(1)}, q c_{-u}^{(1)}\right)\right)
$$

for all maximal tori T and all $u \in \mathbf{F}_{q}^{*}$. Thus $\Delta^{(2)}\left(c_{u, 1}^{(2)}\right)=P_{2}\left(c_{u, 1}^{(1)}, q c_{-u}^{(1)}\right)$.
Lemma 9.2. $\Delta^{(2)}\left(c_{u}^{(2)}\right)=c_{u^{q+1}}^{(1)}$ for all $u \in \mathbf{F}_{q^{2}}^{*}$.
Proof. This follows from the fact that $N_{T}^{(2)} f_{T}^{(2)}\left(c_{u}^{(2)}\right)=\left(u^{q+1}, u^{q+1}\right)=f_{T}^{(1)}\left(c_{u^{q+1}}^{(1)}\right)$ for all maximal tori T and all $u \in \mathbf{F}_{q^{2}}^{*}$.

Lemma 9.3. $\Delta^{(2)}\left(c_{u, v}^{(2)}\right)=c_{v^{q+1}}^{(1)} \Delta^{(2)}\left(c_{v^{-1} u, 1}^{(2)}\right)$ for all $u, v \in \mathbf{F}_{q^{2}}^{*}$.
Proof. Note that the basis element

$$
\begin{aligned}
c_{u, v}^{(2)} & =q^{2} e^{(2)}\left(\begin{array}{cc}
0 & -u \\
v & 0
\end{array}\right) e^{(2)} \\
& =q^{2} e^{(2)}\left(\begin{array}{cc}
v & 0 \\
0 & v
\end{array}\right)\left(\begin{array}{cc}
0 & -u v^{-1} \\
1 & 0
\end{array}\right) e^{(2)} \\
& =c_{v}^{(2)} c_{v^{-1} u, 1}^{(2)}
\end{aligned}
$$

Thus, using that $\Delta^{(2)}$ is a homomorphism, $\Delta^{(2)}\left(c_{u, v}^{(2)}\right)=\Delta^{(2)}\left(c_{v}^{(2)} c_{v^{-1} u, 1}^{(2)}\right)=\Delta^{(2)}\left(c_{v}^{(2)}\right) \Delta^{(2)}\left(c_{v^{-1} u, 1}^{(2)}\right)=$ (by Lemma 9.2) $c_{v^{q+1}}^{(1)} \Delta^{(2)}\left(c_{v^{-1} u, 1}^{(2)}\right)$.

Note that (unlike Lemma 9.1) the following lemma holds for all $v \in \mathbf{F}_{q^{2}}^{*}$.
Proposition 9.4. $\Delta^{(2)}\left(c_{v, v^{-q}}^{(2)}\right)=c_{v^{-q-1}}^{(1)} P_{2}\left(c_{v^{q+1}, 1}^{(1)}, q c_{-v^{q+1}}^{(1)}\right)$ for all $v \in \mathbf{F}_{q^{2}}^{*}$.
Proof. By Lemma $9.3 \Delta^{(2)}\left(c_{v, v^{-q}}^{(2)}\right)=c_{v^{-q-1}}^{(1)} \Delta^{(2)}\left(c_{v^{q+1}, 1}^{(2)}\right)$. But v^{q+1} is an element of \mathbf{F}_{q}^{*} so we can apply Lemma 9.1 to get $\Delta^{(2)}\left(c_{v, v^{-q}}^{(2)}\right)=c_{v^{-q-1}}^{(1)} P_{2}\left(c_{v^{q+1}, 1}^{(1)}, q c_{-v^{q+1}}^{(1)}\right)$.

10. The image of $\Delta^{*}: H^{(2)} \rightarrow H^{*}$

Let \mathcal{B} denote the standard basis of $H^{(2)}$. Thus

$$
\mathcal{B}=\left\{c_{u}^{(2)}, c_{u, v}^{(2)} \mid u, v \in \mathbf{F}_{q^{2}}^{*}\right\}=\left\{\left(\begin{array}{cc}
u & 0 \\
0 & u
\end{array}\right) e^{(2)}, \left.q^{2} e^{(2)}\left(\begin{array}{cc}
0 & -u \\
v & 0
\end{array}\right) e^{(2)} \right\rvert\, u, v \in \mathbf{F}_{q^{2}}^{*}\right\}
$$

Let

$$
\mathcal{B}^{F^{*}}=\left\{c_{u}^{(2)}, c_{v, v^{-q}}^{(2)} \mid u, v \in \mathbf{F}_{q^{2}}^{*}, u^{q+1}=1\right\}
$$

That is, $\mathcal{B}^{F^{*}}$ is the subset of \mathcal{B} of elements which are constructed using the matrices $\left(\begin{array}{cc}0 & -u \\ v & 0\end{array}\right)$ and $\left(\begin{array}{ll}u & 0 \\ 0 & u\end{array}\right)$ which are also used in the construction of the basis of H^{*}. Note that the previous section provides the image under $\Delta^{(2)}$ of all the elements in $\mathcal{B}^{F^{*}}$. In this section we will determine the image under $\Delta^{*}: H^{(2)} \rightarrow H^{*}$ of all elements in $\mathcal{B}^{F^{*}}$. Furthermore, it will be shown that the norm maps $\Delta^{(2)}$ and Δ^{*} are equal on a certain subset of $\mathcal{B}^{F^{*}}$.

To simplify notation, in this section we will denote $e^{*}\left(=e^{(1)}\right)$ by e. Since $H^{(1)}=\left\langle q e(u, v) w_{0} e\right.$, $(u, u) e\left|u, v \in \mathbf{F}_{q}\right\rangle$ and $H^{*}=\left\langle q e\left(x, x^{-q}\right) w_{0} e,(y, y) e \mid x, y \in \mathbf{F}_{q^{2}}, y^{q+1}=1\right\rangle$, the intersection $H^{(1)} \cap H^{*}$ is nonempty. Let \mathcal{C} denote the intersection of these standard bases of $H^{(1)}$ and H^{*}. Then

$$
\mathcal{C}=\left\{c_{ \pm 1}^{(1)}, c_{v, v^{-1}}^{(1)} \mid v \in \mathbf{F}_{q}^{*}\right\}=\left\{c_{ \pm 1}^{*}, c_{v, v^{-1}}^{*} \mid v \in \mathbf{F}_{q}^{*}\right\} .
$$

Lemma 10.1. Let $c \in \mathcal{C}$, then $f_{T_{i}}^{*}(c)=f_{T_{i}}^{(1)}(c)$ for $i=0,1$.
Proof. If $c=c_{ \pm 1}^{(1)}$ then $f_{T_{i}}^{*}(c)=(\pm 1, \pm 1)=f_{T_{i}}^{(1)}(c)$.
Now suppose $c=c_{u, u^{-1}}^{(1)}$ for some $u \in \mathbf{F}_{q}^{*}$. Then, by Proposition 7.1

$$
\begin{aligned}
f_{T_{0}}^{*}\left(c_{u, u^{-1}}^{*}\right)=f_{T_{0}}^{*}\left(c_{u, u^{-q}}^{*}\right) & =\sum_{a \in \mathbf{F}_{q^{2}}^{*}, a^{-q+1}=u^{-q+1}} \chi\left(-u^{q}\left(a+a^{-q}\right)\right)\left(a, a^{-q}\right) \\
& =\sum_{a \in \mathbf{F}_{q}^{*}} \chi\left(-u\left(a+a^{-1}\right)\right)\left(a, a^{-1}\right)
\end{aligned}
$$

since $u \in \mathbf{F}_{q}^{*}$ and thus $a^{-q+1}=u^{-q+1}=1$ implies $u \in \mathbf{F}_{q}^{*}$. On the other hand, by Proposition 8.1

$$
\begin{aligned}
f_{T_{0}}^{(1)}\left(c_{u, u^{-1}}^{(1)}\right) & =\sum_{a, b \in \mathbf{F}_{q}^{*}, a b=1} \chi(-u(a+b))(a, b) \\
& =\sum_{a \in \mathbf{F}_{q}^{*}} \chi\left(-u\left(a+a^{-1}\right)\right)\left(a, a^{-1}\right) .
\end{aligned}
$$

Thus $f_{T_{0}}^{*}\left(c_{u, u^{-q}}^{*}\right)=f_{T_{0}}^{(1)}\left(c_{u, u^{-1}}^{(1)}\right)$ for all $u \in \mathbf{F}_{q}^{*}$. Similarly by Proposition 7.1

$$
\begin{aligned}
f_{T_{1}}^{*}\left(c_{u, u^{-q}}^{*}\right) & =\sum_{\substack{a, b \mathbf{F}_{q^{2}}^{*} \\
a b=u^{-q+1}, a^{q+1}=b^{q+1}=1}} \chi(-u(a+b))(a, b) \\
& =\sum_{a \in \mathbf{F}_{q_{2}^{*}}^{*}, a^{q+1}=1} \chi\left(-u\left(a+a^{-1}\right)\right)\left(a, a^{-1}\right),
\end{aligned}
$$

since $u^{-q+1}=1$. On the other hand, by Proposition 8.1

$$
f_{T_{1}}^{(1)}\left(c_{u, u^{-1}}^{(1)}\right)=\sum_{a \in \mathbf{F}_{q^{2}}^{*}, a^{q+1}=1} \chi\left(-u\left(a+a^{-1}\right)\right)\left(a, a^{-1}\right) .
$$

Thus $f_{T_{1}}^{*}\left(c_{u, u^{-q}}^{*}\right)=f_{T_{1}}^{(1)}\left(c_{u, u^{-1}}^{(1)}\right)$ for all $u \in \mathbf{F}_{q}^{*}$.

Lemma 10.2. Let $b \in \mathcal{B}^{F^{*}}$ then
(i) for $b=c_{u}^{(2)}$ we have $N_{i}^{*} f_{T_{i}}^{(2)}\left(c_{u}^{(2)}\right)=\left(u^{-q+1}, u^{-q+1}\right) N_{i}^{(2)} f_{T_{i}}^{(2)}\left(c_{u}^{(2)}\right)$ and
(ii) for $b=c_{t, t^{-q}}^{(2)}$ we have $N_{i}^{*} f_{T_{i}}^{(2)}\left(c_{t, t^{-q}}^{(2)}\right)=\left(t^{-q+1}, t^{-q+1}\right) N_{i}^{(2)} f_{T_{i}}^{(2)}\left(c_{t, t^{-q}}^{(2)}\right)$ for $i=0,1$.

Proof. First assume $b=c_{u}^{(2)}$. Since $b \in \mathcal{B}^{F^{*}}$ we have $u^{q+1}=1$. Thus $f_{T_{i}}\left(c_{u}^{(2)}\right)=(u, u)$ and thus $N_{i}^{(2)} f_{T_{i}}\left(c_{u}^{(2)}\right)=\left(u^{q+1}, u^{q+1}\right)=(1,1)$. On the other hand $N_{i}^{(2)} f_{T_{i}}\left(c_{u}^{(2)}\right)=\left(u^{-q+1}, u^{-q+1}\right)$. Thus $N_{i}^{*} f_{T_{i}}^{(2)}\left(c_{u}^{(2)}\right)=\left(u^{-q+1}, u^{-q+1}\right) N_{i}^{(2)} f_{T_{i}}^{(2)}\left(c_{u}^{(2)}\right)$.

Now assume $b=c_{t, t^{-q}}^{(2)}$ for some $t \in \mathbf{F}_{q^{2}}^{*}$. We have, using Proposition 8.1,

$$
\begin{aligned}
N_{0}^{*} f_{T_{0}}^{(2)}\left(c_{t, t^{-q}}^{(2)}\right) & =N_{0}^{*} \sum_{a, b \in \mathbf{F}_{q^{2}}^{*}, a b=t^{-q+1}} \chi_{2}\left(-t^{q}(a+b)\right)(a, b) \\
& =N_{0}^{*} \sum_{a \in \mathbf{F}_{q^{2}}^{*}} \chi_{2}\left(-t^{q}\left(a+a^{-1} t^{-q+1}\right)\right)\left(a, a^{-1} t^{-q+1}\right) \\
& =\sum_{a \in \mathbf{F}_{q^{2}}^{*}} \chi_{2}\left(-t^{q} a-t a^{-1}\right)\left(a^{1+q} t^{-q+1}, a^{-1-q} t^{-q+1}\right) \\
& =\left(t^{-q+1}, t^{-q+1}\right) \sum_{a \in \mathbf{F}_{q^{2}}^{*}} \chi_{2}\left(-t^{q} a-t a^{-1}\right)\left(a^{1+q}, a^{-1-q}\right) \\
& =\left(t^{-q+1}, t^{-q+1}\right) N_{0}^{(2)} \sum_{a \in \mathbf{F}_{q^{2}}^{*}} \chi_{2}\left(-t^{q} a-t a^{-1}\right)\left(a, a^{-1} t^{-q+1}\right) \\
& =\left(t^{-q+1}, t^{-q+1}\right) N_{0}^{(2)} f_{T_{0}}^{(2)}\left(c_{t, t^{-q}}^{(2)}\right) .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
N_{1}^{*} f_{T_{1}}^{(2)}\left(c_{t, t^{-}}^{(2)}\right) & =N_{1}^{*} \sum_{a \in \mathbf{F}_{q^{4}}^{*}, a^{q^{2}+1}=t^{-q+1}} \chi_{2}\left(-t^{q}\left(a+a^{q^{2}}\right)\right)\left(a, a^{q^{2}}\right) \\
& =\sum_{a \in \mathbf{F}_{q^{4}}^{*}, q^{q^{2}+1}=t^{-q+1}} \chi_{2}\left(-t^{q}\left(a+a^{-1} t^{-q+1}\right)\right)\left(a^{1-q}, a^{q^{2}-q^{3}}\right) .
\end{aligned}
$$

Since $a^{q^{2}+1}=t^{-q+1}$ we have $a^{q^{2}}=a^{-1} t^{-q+1}$ and $a^{q^{3}}=a^{-q} t^{-1+q}$. Thus $a^{1-q}=a^{1+q^{3}} t^{-q+1}$ and $a^{q^{2}-q^{3}}=a^{q^{2}+q} t^{-q+1}$. Thus

$$
\begin{aligned}
N_{1}^{*} f_{T_{1}}^{(2)}\left(c_{t, t^{-q}}^{(2)}\right) & =\sum_{\substack{a \in \mathbf{F}_{q^{4}}^{*}, q^{q^{2}+1}=t^{-q+1}}} \chi_{2}\left(-t^{q}\left(a+a^{-1} t^{-q+1}\right)\right)\left(a^{1+q^{3}} t^{-q+1}, a^{q^{2}+q} t^{-q+1}\right) \\
& =\left(t^{-q+1}, t^{-q+1}\right) \sum_{\substack{a \in \mathbf{F}_{4}^{*} \\
q^{q^{2}+1}=t^{-q+1}}} \chi_{2}\left(-t^{q}\left(a+a^{-1} t^{-q+1}\right)\right)\left(a^{1+q^{3}}, a^{q^{2}+q}\right) \\
& =\left(t^{-q+1}, t^{-q+1}\right) N_{1}^{(2)} \sum_{\substack{a \in \mathbf{F}_{q^{*}}^{4}}} \chi_{2}\left(-t^{q}\left(a+a^{-1} t^{-q+1}\right)\right)\left(a, a^{q^{2}}\right) \\
& =\left(t^{-q+1}, t^{-q+1}\right) N_{1}^{(2)} f_{T_{1}}^{q^{q^{2}+1}=t^{-q+1}}\left(\begin{array}{c}
t, t^{-q} \\
(2)
\end{array} .\right.
\end{aligned}
$$

By Proposition 9.4, $\Delta^{(2)}\left(c_{v, v^{-q}}^{(2)}\right)=c_{v^{-q-1}}^{(1)} P_{2}\left(c_{v^{q+1}, 1}^{(1)}, q c_{-v^{q+1}}^{(1)}\right)$. Thus

$$
\begin{aligned}
\Delta^{(2)}\left(c_{v, v^{-q}}^{(2)}\right) & =\left(v^{-q-1}, v^{-q-1}\right)\left(-c_{v^{q+1}, 1}^{(1)} c_{v q+1}^{(1)}+2 q c_{-v^{q+1}}^{(1)}\right) \\
& =-c_{1, v^{-q-1}}^{(1)} c_{v^{q+1}, 1}^{(1)}+2 q c_{-1}^{(1)} \\
& =-\sum_{w \in \mathbf{F}_{q}^{*}} \chi\left(-v^{-q-1} w-v^{q+1} v^{q+1} w^{-1}-v^{-q-1} w\right) c_{v^{-q-1} w, v^{q+1} w^{-1}}^{(1)}+q c_{-1}^{(1)} .
\end{aligned}
$$

But $v^{-q-1} w$ is an element of \mathbf{F}_{q} thus $\Delta^{(2)}\left(c_{v, v^{-q}}^{(2)}\right) \in H^{(1)} \cap H^{*}$.
Lemma 10.3. $f_{T_{i}}^{*} \Delta^{(2)}\left(c_{t, t^{-q}}^{(2)}\right)=f_{T_{i}}^{(1)} \Delta^{(2)}\left(c_{t, t^{-q}}^{(2)}\right)$.
Proof. This follows immediately from the comments preceding this lemma and Lemma 10.1.
Theorem 10.4. Let $b \in \mathcal{B}^{F^{*}}$ then
(i) for $b=c_{u}^{(2)}, \Delta^{*}\left(c_{u}^{(2)}\right)=\left(u^{-q+1}, u^{-q+1}\right) \Delta^{(2)}\left(c_{u}^{(2)}\right)$ and
(ii) for $b=c_{t, t^{-q}}^{(2)}, \Delta^{*}\left(c_{t, t^{-q}}^{(2)}\right)=\left(t^{-q+1}, t^{-q+1}\right) \Delta^{(2)}\left(c_{t, t^{-q}}^{(2)}\right)$.

Proof. Let $b \in \mathcal{B}^{F^{*}}$. Then $b=c_{x}^{(2)}$ for some $x \in \mathbf{F}_{q^{2}}^{*}$ such that $x^{q+1}=1$ or $b=c_{x, x^{-q}}^{(2)}$ for some $x \in \mathbf{F}_{q^{2}}^{*}$. Thus

$$
\begin{aligned}
& f_{T_{i}}^{*}\left(\left(x^{-q+1}, x^{-q+1}\right) \Delta^{(2)}(b)\right)=\left(x^{-q+1}, x^{-q+1}\right) f_{T_{i}}^{*} \Delta^{(2)}(b) \\
& \text { (by Lemma } \\
&= \\
& \text { (by Theorem) }\left(x^{-q+1}, x^{-q+1}\right) f_{T_{i}}^{(1)} \Delta^{(2)}(b) \\
&\left.x^{-q+1}, x^{-q+1}\right) N_{i}^{(2)} f_{T_{i}}^{(2)}(b) \\
& \text { (by Lemma } \\
&= \\
& \\
& N_{i}^{*} f_{T_{i}}^{(2)}(b) .
\end{aligned}
$$

Since this is true for all maximal tori T_{i}, we have $\Delta^{*}(b)=\left(x^{-q+1}, x^{-q+1}\right) \Delta^{(2)}(b)$ by uniqueness of Δ^{*} in Theorem 1.2.

Corollary 10.5. Let $t \in \mathbf{F}_{q}^{*}$ then $\Delta^{*}\left(c_{t, t^{-1}}^{(2)}\right)=\Delta^{(2)}\left(c_{t, t^{-1}}^{(2)}\right)$ and $\Delta^{*}\left(c_{ \pm 1}^{(2)}\right)=\Delta^{(2)}\left(c_{ \pm 1}^{(2)}\right)$.
Proof. This follows immediately from Theorem 10.4 since $t^{-q+1}=1$ when $t \in \mathbf{F}_{q}^{*}$ and $\pm 1^{-q+1}=1$.
Lemma 10.6. The structure constants of elements in \mathcal{C} are the same whether the elements are viewed as in H^{*} or as in $H^{(1)}$.

Proof. A comparison of Propositions 4.2 and 6.1 immediately shows this lemma is true when one (or both) of the two elements multiplied together is central. Thus we only need to compare $c_{t, t^{-1}}^{(1)} c_{u, u^{-1}}^{(1)}$ and $c_{t, t^{-1}}^{*} c_{u, u^{-1}}^{*}$ for $t, u \in \mathbf{F}_{q}^{*}$. According to Proposition 4.2

$$
c_{t, t^{-1}}^{(1)} c_{u, u^{-1}}^{(1)}=q c_{-t u^{-1}}^{(1)} \delta_{t u^{-1}, t^{-1} u}+\sum_{w \in \mathbf{F}_{q}^{*}} \chi\left(-u^{-2} w-t^{2} u^{2} w^{-1}-t^{-2} w\right) c_{t^{-1} u^{-1} w, t u w}^{(1)} .
$$

Whereas, according to Proposition 6.1

$$
c_{t, t^{-1}}^{*} c_{u, u^{-1}}^{*}=q c_{-u t^{-1}}^{*} \delta_{t^{2}, u^{2}}+\sum_{w \in \mathbf{F}_{q}^{*}} \chi\left(-u^{-2} w-t^{2} u^{2} w^{-1}-t^{-2} w\right) c_{t^{-1} u^{-1} w, t u w}^{*}
$$

This lemma then follows from the fact that $\delta_{t u^{-1}, t^{-1} u}=\delta_{t^{2}, u^{2}}$.
Theorem 10.7. For all $t \in \mathbf{F}_{q^{2}}^{*}, \Delta^{*}\left(c_{t, t^{-q}}^{(2)}\right)=P_{2}\left(c_{t, t^{-q}}^{*}, q c_{t^{-q+1}}^{*}\right)$.

Proof.

$$
\begin{aligned}
& \Delta^{*}\left(c_{t, t^{-q}}^{(2)}\right) \stackrel{(\text { by Theorem 10.4) }}{=}\left(t^{-q+1}, t^{-q+1}\right) \Delta^{(2)}\left(c_{t, t^{-q}}^{(2)}\right) \\
& \stackrel{\text { (by Proposition 9.4) }}{=}\left(t^{-q+1}, t^{-q+1}\right) c_{t^{-q-1}}^{(1)} P_{2}\left(c_{t^{q+1}, 1}^{(1)}, q c_{-t^{q+1}}^{(1)}\right) \\
&\left(\text { by definition of } P_{2}(x, y)\right) \\
&= \\
&\text { (by Proposition } \left.4.2 \text { and Lemma 10.6) }-\left(t_{t, t^{-q}}^{=}\right)^{2}+2 q c_{t^{-q+1}}^{*}, t^{-q+1}\right) c_{t^{-q-1}}^{(1)}\left(-\left(c_{t^{q+1}, 1}^{(1)}\right)^{2}+2 q c_{t^{q+1}}^{(1)}\right) \\
&=P_{2}\left(c_{t, t^{-q}}^{*}, q c_{t^{-q+1}}^{*}\right) .
\end{aligned}
$$

Acknowledgments

The results in this article were discovered while I was visiting the University of Oregon. I thank this university for their hospitality. I particularly thank Charles Curtis. Many of these results were motivated by the many interesting conversations I had with him while I was visiting the University of Oregon. I would also like to thank the referee for comments about a previous version of this article.

References

[1] R.W. Carter, Finite Groups of Lie Type: Conjugacy Classes and Complex Characters, John Wiley and Sons, 1985.
[2] B. Chang, Decomposition of Gelfand-Graev characters of $G L_{3}(q)$, Comm. Algebra 4 (1976) 375-401.
[3] C. Curtis, On the Gelfand-Graev representations of a reductive group over a finite field, J. Algebra 157 (1993) 517-533.
[4] C. Curtis, R. Reiner, Methods of Representation Theory with Applications to Finite Groups and Orders, vol. I, John Wiley and Sons, 1981.
[5] C. Curtis, K. Shinoda, Unitary Kloosterman sums and Gelfand-Graev representations of GL2, J. Algebra 216 (1999) $431-447$.
[6] C. Curtis, T. Shoji, A norm map for endomorphism algebras of Gelfand-Graev representations, in: Progr. Math., vol. 141, 1997, pp. 185-194.
[7] P. Deligne, G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math. 103 (1976) 103-161.
[8] N. Kawanaka, Generalized Gelfand-Graev representations and Ennola duality, in: Algebraic Groups and Related Topics, in: Adv. Stud. Pure Math., vol. 6, 1985, pp. 175-206.
[9] T. Shintani, Two remarks on irreducible characters of finite general linear groups, J. Math. Soc. Japan 28 (2) (1976) 396-414.

[^0]: E-mail address: rainbolt@slu.edu.
 0021-8693/\$ - see front matter © 2008 Elsevier Inc. All rights reserved.
 doi:10.1016/j.jalgebra.2008.07.025

