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Osteoarthritis (OA) is a degenerative joint disease and the most

common form of arthritis. Characterised by articular cartilage

loss, subchondral bone thickening and osteophyte formation,

the OA joint afflicts much pain and disability. Whilst OA has been

associated with many contributing factors, its underpinning

molecular mechanisms are, nevertheless, not fully understood.

Clinical management of OA is largely palliative and there is an

ever growing need for an effective disease modifying treatment.

This review discusses some of the recent progress in OA

therapies in the different joint tissues affected by OA pathology.
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Introduction
With our ever ageing population comes a significant

increase in the incidence of musculoskeletal disease

and an acute need for effective therapeutic interventions.

Osteoarthritis (OA) is a degenerative joint disease and the

most common form of arthritis with 33% of people aged

45 years and over seeking treatment for OA in the UK. It

is therefore a massive world-wide healthcare and financial

burden. Characterised by articular cartilage (AC) loss,

subchondral bone thickening and osteophyte formation,

the OA joint afflicts much pain and disability [1].

Whilst OA has been associated with many contributing

factors including ageing, obesity, trauma, genetics,

amongst others, its underpinning molecular mechanisms

are, nevertheless, not fully understood; indeed it is even

still a matter of debate as to which is the precipitating

pathology. Now regarded as a disease of the whole joint,

clinical management of OA is largely palliative with the

use of opioids, non-steroidal anti-inflammatory drugs
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(NSAIDs) and steroid injections. In some individuals,

only prostheses can offer long-term aid.

Clinical trials to date have included glucosamine sulfate,

chondroitin sulfate, sodium hyaluronan, doxycycline, and

matrix metalloproteinases (MMP) inhibitors; all of which

have varying levels of efficacy and none of which have

successfully and reproducibly prevented OA disease de-

velopment or progression. As such, there is an ever

growing need for an effective disease modifying treat-

ment. Whilst our understanding of the aetiopathology of

OA is dramatically advancing, few advances have been

made in the pharmacological intervention of disease

progression. This review discusses some of the most

recent progress in OA therapies in the different joint

tissues affected by OA pathology that were not already

discussed by the recent review published in this journal in

2015 [2��].

Targeting AC maintenance
AC degradation is one of the main hallmarks of OA

development and to date, research has largely sought

to identify those factors that target the AC to produce

its disease-defining deterioration. However, the lack of

blood vessels and the high ratio of extracellular matrix to

cell area make this tissue difficult to target for repair;

indeed pharmaceutical interventions are usually reliant

on blood circulation of compounds through the body and

to the cells through the matrix. An elegant and compre-

hensive review in this journal has recently summarised

the most recent advances in finding new targets for

reducing AC degradation, including cartilage degrada-

tion, autophagy, circadian clock, mechanical, inflamma-

tory, oxidative stress, innate immunity, chondrocyte

hypertrophy, pain [2��]. In addition to those mentioned

by Goldring and Berenbaum [2��], further targets have

recently been examined and are discussed herein.

Oxidative stress is emerging as a main contributor to OA

severity. Recently, pathways centred around Heme Oxy-

genase 1 (HO-1), a major anti-oxidant, have been shown

to play a major role in the oxidative stress response in

chondrocytes. Indeed, Bach-1 (BTB and CNC homology)

is a negative regulator of HO-1, and its deletion in mouse

chondrocytes in vivo was shown to protect from OA

development, via the promotion of HO-1 and autophagy

[3�]. In addition, Nrf2 (nuclear factor (erythroid-derived

2)-like 2) is a promotor of HO-1 expression, and its

deficiency in mice lead to more severe OA development

[4]. This effect was reduced with a histone deacetylase
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inhibitor (trichostatin A) following Nrf2 activation and

HO-1 expression. Sulfuraphane was used a potent acti-

vator of Nrf2, inducing HO-1 expression, and decreased

cartilage degradation in a murine post-traumatic model of

OA [5]. These studies support HO-1 as a potent new

target for cartilage degradation in OA.

TGFa (Transforming Growth Factor-a) is a member of

the epidermal growth factor (EGF) family and has been

shown to be increased by 4 fold in the AC of OA rats [6]. It

was subsequently found that TGFa can reduce chondro-

cyte anabolism while increasing catabolic processes and

thus was proposed to be a potential target for therapy for

AC degradation in OA development [7��]. Recently,

Appleton et al. (2015) used pharmacological tools, namely

AG1478, to inhibit TGFa in vivo in a rat OA model [8].

AG1478 was able to reduce cartilage degradation and OA

severity, as well as increasing the levels of CPII (C-

propeptide of collagen type II) in the serum while de-

creasing C2C (collagen type II breakdown product)

levels, markers of cartilage anabolism and catabolism

respectively. This study is one of the first to show phar-

macologic efficacy in blocking post-traumatic OA devel-

opment in vivo.

AC matrix degradation products have been shown to

promote further joint degeneration. Indeed, fragments

of collagen type II, aggrecan and fibronectin can induce

further degradation through upregulation of MMP activ-

ity [9–11]. However, a complex interaction between

specific fragments and concentration and mechanical

stress may result in anabolic responses as well [12].

The signalling involved in these responses seems to be

similar between cell types: indeed, Lees et al. [13] re-

cently described the effect of an aggrecan 32-mer frag-

ment derived from ADAMTS (A Disintegrin And

Metalloproteinase with Thrombospondin Motifs)and

MMP cleavage of aggrecan on chondrocytes, synovial

fibroblasts and macrophages [13]. Treatment with this

aggrecan 32-mer fragment resulted in pro-catabolic, anti-

anabolic and pro-inflammatory activities, which were all

abrogated in the absence of MyD88 (myeloid differenti-

ation primary response gene 88), and was achieved via

Toll-Like Receptor 2-dependent activation of the signal-

ling pathway NFkB (nuclear factor kappa-light-chain-

enhancer of activated B cells). This same pathway was

also shown to be responsible for Fibronectin fragment

catabolic responses from chondrocytes, suggesting poten-

tial targets for slowing the progressive degeneration of the

AC in OA [14].

Although very informative, these studies have been per-

formed in animal models, and thus further trials into

human tissues and patients will be required to truly

understand the potential of these targets for therapy.

Targeting the subchondral bone
www.sciencedirect.com 
Subchondral bone pathologies in OA joints, although

often considered secondary, are one of the earliest de-

tectable changes and are now considered to be a potential

trigger for subsequent OA progression [15,16]. These

pathologies include sclerosis leading to joint space nar-

rowing, with associated hypomineralisation and inferior

bone quality due to abnormal local bone remodelling. It is

therefore unsurprising that pharmacological interventions

for the subchondral bone in OA have focussed on target-

ing regulation of osteoclast/osteoblast activity and as such,

the bone remodelling process.

Inhibition of osteoclast activity

Bisphosphonates are potent inhibitors of osteoclast activ-

ity, and are widely used in clinical practice to prevent the

bone loss associated with conditions such as Paget’s

disease, metastatic bone disease and osteoporosis [17].

The use of bisphosphonates as means of OA therapies has

been well investigated over the past decade with varying

efficacy, and as such, more recent pharmacological studies

have focussed upon the timing at which treatment with

anti-resorptive agents should be used for disease modifi-

cation [18��]. Pamidronate disodium (PAM) is a bispho-

sphate which completely prevents OA pathology in

rabbits undergoing early anterior cruciate ligament

transection (ACLT)-induced OA when administered

short-term post ACLT. Similarly, long-term PAM admin-

istration reverses OA pathology in this model. This is

therefore suggestive that PAM can significantly inhibit

and even reverse early OA subchondral bone pathology,

thought to be through OPG:RANKL (Osteoprote-

gerin — Receptor Activator of NFkB Ligand) mediated

regulation of osteoclastogenesis [19]. Similarly, the pre-

emptive use of another bisphosphonate, Alendronate, in a

rat model for severe OA prevents OA bone pathologies

including reduced subchondral bone loss and reduced

osteophyte formation when compared to non-alendronate

treated rats. Alendronate treatment also reduced AC

degeneration, suggesting that osteoclastic activity drives

AC degeneration [20]. Similar chondroprotective effects

of the bisphosphonates clodronate and zoledronic acid

have been reported on bovine chondrocyte cultures and

ACLT in rabbits, respectively [21,22].

Whilst animal studies are informative, clinical trials are

required to investigate the true therapeutic value of

bisphosphonates in human OA. In the past two years

there have been four clinical trials detailing the effects of

bisphosphonates on human OA, with varying results.

Nishii et al. found that 2 years alendronate treatment

in patients with symptomatic hip OA revealed clinical

efficacy for decreasing pain. Despite this, no differences

were observed in OA disease pathology, as determined by

radiographic measurements of Kellgren-Lawrence score,

joint space narrowing and centre-edge angle [23]. Similar

advantages for bisphosphonate use in improving pain

symptoms were reported in patients undergoing 4 weeks

clodronate treatment for symptomatic knee OA [24]. A
Current Opinion in Pharmacology 2016, 28:8–13
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more recent randomised controlled trial investigating

patients for 7 years following total knee replacement

did however find that a year post-operative alendronate

treatment significantly changed the mean bone mineral

density of the femoral metaphysis up to four years fol-

lowing surgery, suggestive that alendronate treatment

may be of benefit to patients following total knee replace-

ment surgery [25��]. Similarly, another study examining

the progression of OA found a trend to less joint space

narrowing over time in bisphosphonate users in compari-

son to non-users [18��].

Together this suggests that bisphosphonates may have

beneficial symptomatic and structural benefits for

patients with OA, however many larger clinical studies

are required to evaluate their true potential.

Modifications of osteoblasts activities

As well as targeting osteoclasts in bone remodelling,

studies have sought to identify whether the osteoblast

is key to OA therapies. In the natural occurring OA guinea

pig model, subcutaneous injections of Parathyroid Hor-

mone (PTH) at a dosage of 15 mg/kg/day for five days/

week for 3 and 6 months has advantageous effects on OA

progression through decreasing the deterioration of the

subchondral bone trabeculae and ultimately preventing

AC degradation [26]. Similarly, in a rabbit model in which

cylindrical osteochondral defects were created in the

femoral trochlea, PTH treatment stimulated both sub-

chondral bone and AC repair [27�]. Consistent with this,

2 year treatment with calcitonin which reverses the

effects of PTH had no structural effects on joint space

narrowing and although an improvement in pain and

functionality, this was not deemed significant in patients

with symptomatic knee OA [28]. PTH stimulates the

activation of Vitamin D. Vitamin D deficiency itself has

been associated with the development and worsening of

knee OA [29]. Indeed supplementation of vitamin D in

patients with vitamin D deficiency significantly improves

knee pain and function in patients with symptomatic

knee OA in comparison to placebo, although no structural

changes were observed, suggesting that vitamin D may be

having cellular effects that improve pain but do not yet

influence bone microarchitecture [30]. Indeed it is possi-

ble that vitamin D in this study is influencing angiogene-

sis, as has been previously reported, to influence pain [31].

Similar results were observed in a 2 year vitamin D

supplementation study in which supplementation had

no effect on OA progression in patients with symptomatic

OA but did however have greater effects overall on

patients with lower basal levels of vitamin D [32]. This

highlights the need for a larger study with a longer follow-

up period, and in particular, the need to distinguish

between the different subtypes of OA when in pursuit

of a disease modifying treatment.

Bone cell signalling in OA
Current Opinion in Pharmacology 2016, 28:8–13 
Canonical Wnt signalling plays critical roles in a number

of biological processes during development and tissue

homeostasis, with pathway activation leading to in-

creased bone formation [33]. Numerous inhibitors of this

pathway have been identified including Dkk1 (Dickkopf

WNT signalling pathway inhibitor 1), sclerostin, and

sFRP3 (secreted Frizzled-Related Protein 3), all of

which have altered expression patterns during OA de-

velopment, with sFRP3 being identified as having ge-

netic polymorphisms associated with OA development

[34–36]. In humans, sclerostin mutations present as Van

Buchem’s disease and sclerosteosis, both of which pres-

ent as a high bone mass phenotype, as does the sclerostin

knockout mouse [37–39]. It is therefore unsurprising that

numerous sclerostin neutralising antibodies have been

developed and investigated for therapeutic intervention

against osteoporosis [40–42]. However, whether such

antibodies could be pursued as a target for OA treatment

is somewhat a matter of contention. Studies by Roudier

et al. have shown that sclerostin neutralising antibodies

have no benefit on OA development in aged mice or in

mice having undergone mechanical and surgical OA

models [43]. However, it is of some concern that other

studies have shown that increased Wnt signalling activa-

tion induces an OA phenotype [44]; indeed mice defi-

cient in sclerostin have an attenuated OA pathology in

response to DMM (Destabilisation of the Medial Menis-

cus) [45]. Similarly, overexpression of Dkk1 by intra-

articular injection of Dkk1 adenoviruses significantly

inhibits DMM-induced OA pathology [46]. Knowing

the complexities of the Wnt signalling pathway, it is

therefore unsurprising that such controversies exist

and future work should perhaps focus on deciphering

the precise role of Wnt activation on subchondral bone

phenotype so as to avoid any off target effects through

which the inhibitors of Wnt signalling may be working

through.

The Wnt pathway works co-operatively with Bone Mor-

phogenetic Proteins (BMP) which are members of the

Transforming Growth Factor-b (TGF-b) superfamily

unique in regulating the differentiation and function of

both osteoblasts and osteoclasts to mediate bone remo-

delling and maintain bone homeostasis. With significant

roles in AC homeostasis as well, it is therefore unsurpris-

ing that there is increasing evidence implicating both

BMP and TGF-b signalling in the pathogenesis of OA.

Halofuginone is a derivative of febrifugine, an ancient

Chinese herbal medicine that inhibits TGF-b signalling.

In mice undergoing ACLT, halofuginone accelerated

subchondral bone deterioration through attenuating

uncoupled subchondral bone remodelling and excessive

subchondral bone angiogenesis. This was associated with

the inhibition of T-helper-17-induced osteoclastogenesis

and excessive TGF-b activity [47��]. Contradictory to

this, inhibition of TGF-b signalling through injection of a

TGF-b type II receptor inhibitor into the joints of ACLT

mice rescued the OA phenotype [48]. It is likely that any
www.sciencedirect.com
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changes in TGF-b signalling in the subchondral bone will

lead to articular cartilage degeneration as shown in TGF-

b overexpressing mice [49].

Angiogenesis

Increased angiogenic activity leading to increased vascu-

lar invasion of the subchondral bone has been reported in

the early stages of OA in both animal models and in

human patients [50–53]. As such, osteochondral angio-

genesis is thought to contribute to the aetiopathogenesis

of OA and pharmacological agents which act to inhibit

such processes are being targeted in pursuit of an OA

therapy. Halofuginone, as discussed previously, acts via

TGF-b to inhibit angiogenesis through the direct inhibi-

tion of MMP2-dependent vessel formation. It is known

that TGF-b inhibition can reduce angiogenesis in sub-

chondral bone in ACLT OA mice [48] and these results

have also been observed upon administration of halofu-

ginone [47��]. Similarly, local intra-articular administra-

tion of Bevacizumab, an anti-vascular endothelial growth

factor (VEGF) antibody, has beneficial results on OA

development in a rabbit model of ACLT [54��], whilst

the injection of VEGF in to the temporomandibular joint

of mice over a period of 4 weeks induces an OA pheno-

type with both subchondral bone and AC pathologies

[55]. This therefore implicates targeting of angiogenesis

in subchondral bone as an exciting new approach for

future endeavours to find a disease modifying treatment

for OA.

Together, this body of work highlights the potent role

that the subchondral bone plays in OA aetiology. It also

highlights the therapeutic potential that the subchondral

bone offers when approaching targets for investigation

and is in concordance with the notion that OA should be

categorised into subtypes of disease.

Targeting the synovial membrane
Synovial fibrosis is a major hallmark of OA pathogenesis,

contributing to joint pain and stiffness. Various compo-

nent of the synovial fibrotic cascade have been examined,

including TGF-b, Connective Tissue Growth Factor and

TIMP1 (Tissue Inhibitor of MMP-1), however these

were also suggested as not being attractive targets for

OA therapy since these factors are known to promote

anabolic responses from chondrocytes and inhibit carti-

lage matrix degradation; hence their inhibition might in

fact accelerate AC degradation [56�]. A better target was

proposed such as PLOD2 (Procollagen-Lysine, 2-Oxo-

glutarate 5-Dioxygenase 2). Indeed, PLOD2 is a collagen

cross-linking enzyme, which is increased during fibrosis

and OA, and makes the collagen less susceptible to

degradation [57,58]. Studies are yet to establish however,

whether the pharmacological targeting of PLOD2 is

beneficial to OA progression.
www.sciencedirect.com 
MicroRNAs are novel molecular regulators of gene expres-

sion and contribute to disease pathogenesis. These small

coding RNAs represent a new class of therapeutic targets

for many diseases. Some studies have used miRNA as a

therapeutic agent; indeed, large quantities of miR-34a was

successfully bioengineered and injected intravenously in

combination with another drug against tumour growth in

mice, confirming the possibility of using miRNAs as ther-

apeutic agents [59]. Only one study to date has used intra-

articular injection of miRNA [60��]. Their aim was to

investigate whether double-stranded miR-15a could be

taken up by cells. MiR-15a was detected in the synovium,

but not in the AC, suggesting miRNA may be used as

therapeutic agents to treat non-cartilage tissues in OA

pathogenesis such as synovial fibrosis, and might even

be beneficial in avoiding negative effects on the AC. This

method was subsequently used in other studies in rheu-

matoid arthritis studies in mice [61–63].

Conclusions
OA is a complex multifactorial disease, which affects

different tissues in the joint. To date, clinical manage-

ment of OA is largely palliative with the use of opioids,

Non-steroidal anti-inflammatory drugs and steroid injec-

tions with only prostheses can offer long-term aid in some

individuals. Whilst numerous clinical trials have investi-

gated various pharmacological targets, there have been

varying efficacies reported and with our ever ageing

population, the need for an effective disease modifying

treatment is paramount. Possible avenues reside in block-

ing further deterioration of the AC but also on the

prevention of subchondral bone thickening or treating

synovial changes, with numerous targets discussed within

this review. Whilst animal studies are informative, larger

and more diverse clinical trials are required to investigate

the true efficacy of such targets in preventing OA onset

and progression.
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