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Abstract

We consider a generalization of the firefighter problem where the number of firefighters available per time step t is not a constant.
We show that if the number of firefighters available is periodic in t and the average number per time period exceeds 3

2 , then a fire
starting at any finite number of vertices in the two dimensional infinite grid graph can always be contained.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Graph; Firefighter problem; Containment certificate

1. Introduction and terminology

The firefighter problem is a dynamic problem introduced by Hartnell [6], that can be described as follows: given a
connected rooted graph (G, r), r is initially set on fire. At the beginning of each discrete time period t �1, a number
of firefighters are available to be positioned at different vertices in G that are currently not on fire nor already have a
firefighter positioned. For this paper, we shall represent the number of firefighters available at each t �1 by a function
f (t). These firefighters remain on their assigned vertices and thus prevent the fire from spreading to that vertex. At the
end of each time period, all vertices that are not defended and are adjacent to at least one vertex on fire will catch the
fire and become burned. Once the vertex is burned or defended, it remains that way permanently.

If G is a finite graph, the process ends when one of the following occurs:

(i) The fire is contained, meaning the fire is unable to spread, and there are still vertices in G that are neither burned
nor defended.

(ii) The fire spreads until every vertex in G is either burned or defended.

If G is infinite, then (i) could still happen but (ii) is replaced by

(ii′) The fire cannot be contained, meaning the fire spreads indefinitely.
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The firefighter problem was considered on a variety of graphs, including finite grids [10,12], infinite grids [1,3,12]
and trees [6,11]. Other related publications [2,4,5,7–9] are listed in the reference section.

In this paper, we will consider the two dimensional infinite grid graph G = L2 defined by

V (G) = Z × Z,

E(G) = {{(m, n), (m′, n′)}||m − m′| + |n − n′| = 1}.
Suppose we are given a function f (t) representing the number of firefighters available for deployment at each time
period t, our goal is to determine if it is possible to position the firefighters on the vertices of L2 such that at some finite
time t ′, the fire is unable to spread any further. For our purposes, we shall only consider functions f (t) that are periodic
in t. Thus, we can state our problem formally as:

CONTAINMENT. Instance: A rooted graph (L2, r) and a periodic function f (t).
Question: Is there a finite t ′ such that by positioning f (t) firefighters at each time period t, the fire can be contained

after t ′ time periods.

Most of the existing literature considers f (t) to be a constant function (usually f (t)=1) independent of t. Specifically,
Wang and Moeller [12] showed that one firefighter per time period (f (t) = 1∀t) is insufficient to prevent the fire from
spreading indefinitely while f (t) = 2 for all t suffices, in which case a minimum of 8 time periods are required to
successfully contain the fire. An alternative proof (using a computer program) to the minimum number of time periods
required when f (t) = 2 for all t was provided by Develin and Hartke [1], who also established that a minimum of
18 vertices in L2 would be burnt before containment can be achieved. One way to generalize the firefighter problem
introduced by Hartnell is to allow the fire to start initially at a finite number of vertices in L2 rather than a single root
r. This was considered by Fogarty [3] when it was shown that f (t) = 2 for all t is sufficient to contain a fire that starts
at any finite number of vertices in L2. For the remainder of this paper, we shall consider the firefighter problem where
the fire could start initially at either a single vertex or a finite collection of vertices in L2.

The results by Wang and Moeller [12], Develin and Hartke [1] and Fogarty [3] described above provide the motivation
for this paper. We would like to know if f (t) is not a constant function, and the average (whose notion will be made
precise below) number of firefighters available per time period is a number between 1 and 2, is there a finite t ′ such
that by positioning f (t) firefighters at each time period t, the fire can be contained after t ′ time periods?

To make the notion of the average number of firefighters per time period precise, let f : N → N ∪ {0} be a periodic
function with period pf . Define

Nf =
pf∑
t=1

f (t) and Rf = Nf

pf

.

Thus, if the number of firefighters available for deployment at each time period is given by f, then Rf tells us the average
number of firefighters available for deployment at each time period. We will frequently identify f with a sequence of
its period. For example, we write f = [2, 1, 2, 2] to correspond to the function defined as

f (t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2 if t ≡ 1 mod 4,

1 if t ≡ 2 mod 4,

2 if t ≡ 3 mod 4,

2 if t ≡ 0 mod 4.

Observe that Rf = 1.75 in this example. For any function f : N → N ∪ {0}, define f −1 : N → N as

f −1(n) = min

⎧⎨
⎩j ∈ N

∣∣∣∣∣∣
j∑

t=1

f (t)�n

⎫⎬
⎭ .
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In other words, f −1(n) can be thought of as the time t when the nth firefighter becomes available for deployment. Note
that f −1(n) is a non-decreasing function of n. For a finite set S ⊂ Z × Z and some (x, y) ∈ Z × Z, define

d(S, (x, y)) = min{|x′ − x| + |y′ − y||(x′, y′) ∈ S}.

For any periodic function f and S ⊂ Z × Z, we say that there is a containment certificate of f for S if and only if there
exists a set CS(f ) ⊂ Z × Z × N that satisfies the following conditions:

(1) For all t ∈ N, f (t)� |{(x, y, j) ∈ CS(f )|j = t}|;
(2) For all (x, y, t) ∈ CS(f ), d(S, (x, y))� t ;
(3) The number of vertices that have at least one path in L2 to a vertex in S without passing through any vertex (x, y)

where (x, y, t) ∈ CS(f ) for some t ∈ N is finite.

Suppose that the set of vertices in S are initially set on fire and f (t) represents the number of firefighters available
for deployment at time t. A containment certificate of f for S, if it exists, contains all the information on where and
when each available firefighter is deployed such that the spread of the fire can eventually be contained at some finite
time t ′. For example, if (8, 9, 4) ∈ CS(f ), then we would place a firefighter on (8, 9) at time t = 4. Condition 1 of
the containment certificate ensures that there are at most f (t) firefighters deployed at time t. Condition 2 ensures that
(x, y) is not already on fire when a firefighter is deployed there at time t. Condition 3 guarantees that there exists some
t ′ � max{t |(x, y, t) ∈ CS(f )} such that the number of vertices on fire at times t � t ′ is a constant, meaning that the fire
is indeed contained.

Suppose CS(f ) is a containment certificate of f for S. For each n ∈ N, define

C>n
S (f ) = {(x, y, t) ∈ CS(f )|t > n};

C=n
S (f ) = {(x, y, t) ∈ CS(f )|t = n};

C<n
S (f ) = {(x, y, t) ∈ CS(f )|t < n}.

We will consider two partial orders associated with periodic functions, defined by

f 
 g ⇐⇒
k∑

t=1

f (t)�
k∑

t=1

g(t) ∀k ∈ N

and

f 
∗g ⇐⇒ ∃n ∈ N such that
k∑

t=1

f (t)�
k∑

t=1

g(t) ∀k�n.

We say that g dominates f if f 
 g and g eventually dominates f if f 
∗g. Observe the fact that g dominates f implies
g eventually dominates f. It is useful to note that to establish f 
 g for periodic f and g, it suffices to show that

k∑
t=1

f (t)�
k∑

t=1

g(t) for all 1�k� lcm(pf , pg).

Several specific periodic functions will be used frequently in this paper. Their definitions and notations are introduced
below.

For any n, k ∈ Z+, define gn,k to be the periodic function with period n by

gn,k(t) =
{0 if t /≡ 0 mod n,

k if t ≡ 0 mod n.
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In other words, gn,k = [
n−1︷ ︸︸ ︷

0, 0, . . . , 0, k]. For any integer n�2, let Zn = gn,zn where

zn =

⎧⎪⎨
⎪⎩

3n

2
+ 1 if nis even,

1

2
(3n + 1) if nis odd.

Note that for each n, zn is defined to be the smallest positive integer such that RZn > 1.5. For any integer n�1, define
Fn by

Fn(t) =
{1 if t ≡ k mod 2n + 1, where (k ∈ {1, 2, . . . , n}

2 if t ≡ k mod 2n + 1, where k ∈ {0, n + 1, n + 2, . . . , 2n}.

In other words, Fn = [
n︷ ︸︸ ︷

1, 1, . . . , 1,

n+1︷ ︸︸ ︷
2, 2, . . . , 2]. Note that pFn = 2n + 1 and RFn > 1.5 for all n�1. If f is a periodic

function and i is any non-negative integer, let f+i be the i-translate of f defined by

f+i (t) = f (t + i) for all t �1.

Note that f+0 = f . We are now ready to state the main result of this paper.

Theorem 1. Suppose a finite set S ⊂ Z × Z of vertices are initially set on fire. If the number of firefighters available
for deployment per time period is given by a periodic function f such that Rf > 1.5, then there exists a containment
certificate of f for S.

Remark. The above theorem gives no conclusion about containment of the fire if the function f is such that Rf �1.5.
We will discuss this briefly at the end of the paper.

In Section 2, we will prove several lemmas regarding some of the periodic functions defined above. The main result
is proven in Section 3 and the paper concludes in Section 4 with a brief discussion on possible future work.

2. Several lemmas

We first show that the relation 
∗ is transitive.

Lemma 2.1. If f, g and h are periodic functions such that f 
∗g and g
∗h, then f 
∗h.

Proof. Let n1, n2 ∈ N be such that

k∑
t=1

f (t)�
k∑

t=1

g(t) ∀k�n1 and
k∑

t=1

g(t)�
k∑

t=1

h(t) ∀k�n2.

Let n = max{n1, n2}. We have

k∑
t=1

f (t)�
k∑

t=1

h(t) ∀k�n

and thus f 
∗h. �

Lemma 2.2. For any periodic function f, we have gpf ,Nf

 f .
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Proof. Note that gpf ,Nf
and f have the same period. If k < pf then we have

0 =
k∑

t=1

gpf ,Nf
(t)�

k∑
t=1

f (t)

since f must take on non-negative values. If k = pf then

pf∑
t=1

gpf ,Nf
(t) =

pf∑
t=1

f (t)

and so by definition we have gpf ,Nf

 f . �

Lemma 2.3. If f is a periodic function that is non-decreasing on its period, then f 
 f+i for all i ∈ Z+.

Proof. Let i ∈ Z+. Since f and f+i have the same period, it suffices to show

n∑
t=1

f (t)�
n∑

t=1

f+i (t) for all n�pf .

Case 1. Suppose n + i�pf . In this case, as f is non-decreasing, we have f (t)�f (t + i) for all t = 1, 2, . . . , n,
implying

n∑
t=1

f (t)�
n∑

t=1

f (t + i)

and thus f 
 f+i .
Case 2. Suppose n + i > pf . Note that

n∑
t=1

f (t + i) =
n+i∑

t=i+1

f (t) =
pf∑

t=i+1

f (t) +
n+i∑

t=pf +1

f (t)

=
pf∑

t=i+1

f (t) +
n+i−pf∑

t=1

f (t).

Thus,

n∑
t=1

f (t) =
n+i−pf∑

t=1

f (t) +
n∑

t=n+i−pf +1

f (t)

�
n+i−pf∑

t=1

f (t) +
pf∑

t=i+1

f (t) (since f is non-decreasing)

=
n+i∑

t=i+1

f (t) =
n∑

t=1

f+i (t)

and we are done. �

Lemma 2.4. If f is a periodic function such that Rf > 1.5, then Zn 
 f for some n�2.

Proof. Recall that for each n ∈ N, zn was defined to be the smallest positive integer such that RZn > 1.5. Since f is a
periodic with Rf > 1.5 and Zn(t) = 0 for all t /≡ n (mod n), it is clear that Zpf


 f . �
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If we want to compare two periodic functions f and g, then as stated before we would have to compare f and g up to
lcm(pf , pg), which could be as large as pf pg . The following lemma adds a hypothesis but the end result allows us to
simply compare the two functions up to the larger of the two periods.

Lemma 2.5. Let g be a periodic function that is non-decreasing on its period and f be a periodic function such that
pf �pg and

pf∑
t=1

f (t) <

pf∑
t=1

g(t).

Then f 
∗g, meaning there exists n ∈ N such that

k∑
t=1

f (t)�
k∑

t=1

g(t) for all k�n.

Proof. We first prove the following claim.

Claim. For each k = 1, 2, 3, . . . ,

(k+1)pf∑
t=kpf +1

f (t) <

(k+1)pf∑
t=kpf +1

g(t).

Proof of Claim. Let kpf + 1 = k′pg + r , with 0 < r �pg . Then we have

(k+1)pf∑
t=kpf +1

g(t) =
r+pf −1∑

t=r

g(t)

=
pf∑
t=1

g+(r−1)(t)

�
pf∑
t=1

g(t) by Lemma 2.3

>

pf∑
t=1

f (t) =
(k+1)pf∑
t=kpf +1

f (t).

So from the above claim, the following function

h(k) =
kpf∑
t=1

g(t) −
kpf∑
t=1

f (t)

is a strictly increasing function in k. Define k∗ by

k∗ = min{k ∈ N|h(k) > Nf }.
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Now let n=k∗pf . This is the n that we require in order to prove the lemma. To see this, suppose k�n and k=akpf +bk ,
where 0�bk < pf . Then

k∑
t=1

f (t) =
akpf +bk∑

t=1

f (t)

�
akpf +pf∑

t=1

f (t)

=
(ak+1)pf∑

t=1

f (t)

=
akpf∑
t=1

f (t) +
(ak+1)pf∑
t=akpf +1

f (t)

=
akpf∑
t=1

f (t) +
pf∑
t=1

f (t)

=
(akpf∑

t=1

g(t) − h(ak)

)
+

pf∑
t=1

f (t)

�
(akpf∑

t=1

g(t) − h(k∗)
)

+
pf∑
t=1

f (t) (since ak �k∗)

<

(akpf∑
t=1

g(t) −
pf∑
t=1

f (t)

)
+

pf∑
t=1

f (t)

=
akpf∑
t=1

g(t)�
akpf +bk∑

t=1

g(t) =
k∑

t=1

g(t).

The proof of the lemma is thus complete. �

Using Lemma 2.5 we can prove the next lemma easily.

Lemma 2.6. For each n�2, Fn2
∗Zn.

Proof. Note that Fn2 is periodic, pF
n2 = 2n2 + 1�n = pZn and

2n2+1∑
t=1

Fn2(t) = n2 + 2(n2 + 1) = 3n2 + 2.

If n is even, then

2n2+1∑
t=1

Zn(t) = 2n

(
3n

2
+ 1

)
= 3n2 + 2n.
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On the other hand, if n is odd, then

2n2+1∑
t=1

Zn(t) = 2n

(
3n + 1

2

)
= 3n2 + n.

In either case, we have

2n2+1∑
t=1

Fn2(t) <

2n2+1∑
t=1

Zn(t)

and thus by Lemma 2.5, Fn2
∗Zn. �

Lemma 2.7. Given any periodic function f such that pf �2 and Rf > 1.5, there exists some n�2 such that Fn2
∗f .

Proof. Suppose f is periodic, pf �2 and Rf > 1.5. By Lemma 2.2, gpf ,Nf

∗f . Note that Rgpf ,Nf

= Rf > 1.5, so by
Lemmas 2.4 and 2.6, for some n�2,

Fn2
∗Zn
∗gpf ,Nf
.

Applying Lemma 2.1 to

Fn2
∗Zn
∗gpf ,Nf

∗f

completes the proof. �

3. Proof of main result

We first state two lemmas without proof.

Lemma 3.1. Suppose S1 and S2 are both finite subsets of Z × Z such that S1 ⊆ S2. For any function f, if CS2(f ) is a
containment certificate of f for S2, then CS2(f ) is also a containment certificate of f for S1.

Lemma 3.2. For any d ∈ N ∪ {0}, let

Sd = {(x, y) ∈ Z × Z||x| + |y|�d}.
For any (x, y) ∈ Z × Z such that (x, y) /∈ Sd ,

d(Sd, (x, y)) = |x| + |y| − d .

Now for any n ∈ N, recall that Fn = [
n︷ ︸︸ ︷

1, 1, . . . , 1,

n+1︷ ︸︸ ︷
2, 2, . . . , 2] is a periodic function with period 2n + 1. Let

F 2
n = [

n︷ ︸︸ ︷
1, 1, . . . , 1,

n+1︷ ︸︸ ︷
2, 2, . . . , 2,

n︷ ︸︸ ︷
1, 1, . . . , 1,

n+1︷ ︸︸ ︷
2, 2, . . . , 2].

Note that F 2
n is periodic with period 2(2n + 1) and F 2

n 
 Fn. Let p = 2(2n + 1) and define the function Gp of period
p by

Gp = [
p−1︷ ︸︸ ︷

1, 0, 1, 0, . . . , 1, p + 1].
It is easy to see that Gp 
 F 2

n .

Lemma 3.3. For any n, d ∈ N, let p = 2(2n + 1). There exists a containment certificate of Gp for Sd .
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Proof. Consider the following eight sets:

A0 =
2(p+1)3(d+p)−1⋃

i=1, i odd

{(
i − 1

2
, −

(
d + p + i − 1

2

)
, i

)}
,

A1 =
d+p⋃
i=1

⋃p

k=1
{(−(i − 1)p − k, −(d + p), ip)},

A2 =
d+p⋃
i=1

{(−p(d + p) − i, −(d + p) + i, ip)},

A3 =
(p+1)(d+p)⋃

i=1

p⋃
k=1

{(−(p + 1)(d + p), (i − 1)p + k, (d + p + i)p)},

A4 =
(p+1)(d+p)⋃

i=1

{(−(p + 1)(d + p) + i, p(p + 1)(d + p) + i, (d + p + i)p)},

A5 =
(p+1)2(d+p)⋃

i=1

p⋃
k=1

{((i − 1)p + k, (p + 1)2(d + p), ((p + 2)(d + p) + i)p)},

A6 =
(p+1)2(d+p)⋃

i=1

{(p(p + 1)2(d + p) + i, (p + 1)2(d + p) − i, ((p + 2)(d + p) + i)p)},

A7 =
N⋃

i=1

{
((p + 1)3(d + p), −(i − 1)p − k, ((d + p)(p + 2 + (p + 1)2) + i)p)|
1�k�p and (i − 1)p + k�((p + 1)3 + 1)(d + p) + 2

}
,

where

N =
⌈

((p + 1)3 + 1)(d + p) + 2

p

⌉
.

We claim that A =⋃7
i=0Ai is a containment certificate of Gp for Sd .

Fig. 1illustrates the positions corresponding to the set A=⋃7
i=0Ai . Recall that an element (x, y, t) in a containment

certificate can be thought of as the time t where a firefighter is positioned at (x, y). To show that the first condition in
the definition of a containment certificate is satisfied, it is easier to describe the elements of the eight sets in terms on
their positions on Z × Z and when these positions are taken up by the firefighters. Note that Gp(t) = 1 for all odd t,
Gp(t) = p + 1 if t = kp for some k ∈ N and Gp(t) = 0 otherwise.

(1) At each odd t = 1, 3, . . . , 2(p + 1)3(d + p) − 1, a firefighter is positioned at ((t − 1)/2, −(d + p + (t − 1)/2)).
This corresponds to the set A0.

(2) At each t = ip, i = 1, 2, . . . , d + p, we have p + 1 firefighters available, p of which have positions given by A1
(forming a horizontal line) and the remaining one has position given by A2 (forming a diagonal line).

(3) At each t=(d+p+i)p, i=1, . . . , (p+1)(d+p)p, we have p+1 firefighters available, p of which have positions
given by A3 (forming a vertical line) and the remaining one has position given by A4 (forming a diagonal line).

(4) At each t = ((p + 2)(d + p) + i)p, i = 1, . . . , (p + 1)2(d + p), we have p + 1 firefighters available, p of which
have positions given by A5 (forming a horizontal line) and the remaining one has position given by A6 (forming
a diagonal line).
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Fig. 1. A global view of the containment certificate.

(5) At each t = ((d + p)(p + 2 + (p + 1)2) + i)p, i = 1, . . . , N , we place p firefighters at positions given by A7.
This forms a vertical line and the positioning ends when this vertical line meets with the diagonal line formed by
firefighters whose positions corresponds to the set A0.

We next check the second condition in the definition of a containment certificate.
Case 1. Suppose ((i − 1)/2, −(d + p + (i − 1)/2), i) ∈ A0 for some i ∈ {1, 3, . . . , 2(p + 1)3(d + p) − 1}. By

Lemma 3.2,

d

(
Sd,

(
i − 1

2
, −

(
d + p + i − 1

2

)))
=
∣∣∣∣ i − 1

2

∣∣∣∣+
∣∣∣∣−
(

d + p + i − 1

2

)∣∣∣∣− d

= i − 1

2
+
(

d + p + i − 1

2

)
− d

= p + i − 1� i (since p�6).
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Case 2. Suppose (−(i − 1)p − k, −(d + p), ip) ∈ A1 for some i ∈ {1, 2, . . . , d + p} and some k ∈ {1, . . . , p}. By
Lemma 3.2,

d(Sd, (−(i − 1)p − k, −(d + p))) = | − (i − 1)p − k| + | − (d + p)| − d

= (i − 1)p + k + (d + p) − d

= ip + k� ip.

Case 3. Suppose (−p(d + p) − i, −(d + p) + i, ip) ∈ A2 for some i ∈ {1, 2, . . . , d + p}. By Lemma 3.2,

d(Sd, (−p(d + p) − i, −(d + p) + i)) = | − p(d + p) − i| + | − (d + p) + i| − d

= p(d + p) + i + (d + p) − i − d

= p(d + p + 1)� ip.

Case 4. Suppose (−(p + 1)(d + p), (i − 1)p + k, (d + p + i)p) ∈ A3 for some i ∈ {1, 2, . . . , (p + 1)(d + p)} and
k ∈ {1, . . . , p}. By Lemma 3.2,

d(Sd, (−(p + 1)(d + p), (i − 1)p + k)) = | − (p + 1)(d + p)| + |(i − 1)p + k| − d

= (p + 1)(d + p) + (i − 1)p + k − d

= pd + p2 + d + p + ip − p + k − d

= pd + p2 + ip + k�(d + p + i)p.

Case 5. Suppose (−(p+1)(d+p)+i, p(p+1)(d+p)+i, (d+p+i)p) ∈ A4 for some i ∈ {1, 2, . . . , (p+1)(d+p)}.
By Lemma 3.2,

d(Sd, (−(p + 1)(d + p) + i, p(p + 1)(d + p) + i))

= | − (p + 1)(d + p) + i| + |p(p + 1)(d + p) + i| − d

= (p + 1)(d + p) − i + p(p + 1)(d + p) + i − d

= (p + 1)2(d + p) − d

= p2d + p3 + 2pd + 2p2 + p

�p2d + p3 + 2pd + 2p2

= (p + 2)(d + p)p

= (d + p + (p + 1)(d + p))p

�(d + p + i)p.

Case 6. Suppose ((i −1)p+k, (p+1)2(d +p), ((p+2)(d +p)+ i)p) ∈ A5 for some i ∈ {1, . . . , (p+1)2(d +p)}
and k ∈ {1, . . . , p}. By Lemma 3.2,

d(Sd, ((i − 1)p + k, (p + 1)2(d + p)) = |(i − 1)p + k| + |(p + 1)2(d + p)| − d

= ip − p + k + (p2 + 2p + 1)(d + p) − d

= ip + k + p2d + p3 + 2pd + 2p2

� ip + p(pd + p2 + 2d + 2p)

= ((p + 2)(d + p) + i)p.
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Case 7. Suppose (p(p + 1)2(d + p) + i, (p + 1)2(d + p) − i, ((p + 2)(d + p) + i)p) ∈ A6 for some i ∈
{1, . . . , (p + 1)2(d + p)}. By Lemma 3.2,

d(Sd, (p(p + 1)2(d + p) + i, (p + 1)2(d + p) − i))

= |p(p + 1)2(d + p) + i| + |(p + 1)2(d + p) − i| − d

= (p + 1)3(d + p) − d

= p3d + p4 + 3p2d + 3p3 + 3pd + 3p2 + p

�p3d + p4 + 3p2d + 3p3 + 3pd + 3p2

= (p2d + p3 + 3pd + 3p2 + 3d + 3p)p

= ((p + 1)2 + p + 2)(d + p)p

= ((p + 2)(d + p) + (p + 1)2(d + p))p

�((p + 2)(d + p) + i)p.

Case 8. Suppose ((p+1)3(d +p), −((i−1)p+k), ((d +p)(p+2+(p+1)2)+ i)p) ∈ A7 for some i ∈ {1, . . . , N}
and k ∈ {1, . . . , p}. By Lemma 3.2,

d(Sd, ((p + 1)3(d + p), −((i − 1)p + k)))

= |(p + 1)3(d + p)| + | − ((i − 1)p + k)| − d

= (p + 1)3(d + p) + (i − 1)p + k − d

�(p3 + 3p2 + 3p + 1)(d + p) − p − d + ip

= (p + d)(p3 + 3p2 + 3p) + ip

= (p + d)p(p + 2 + (p + 1)2) + ip

= ((d + p)(p + 2 + (p + 1)2) + i)p.

Thus, the second condition in the definition of a containment certificate is satisfied. To see that A satisfies the third
condition, let us consider the closed curve (in R2) determined by A by “connecting the dots”, meaning we draw a line
segment between two adjacent points (x, y, t) and (x′, y′, t ′) ∈ A that satisfy

max{|x − x′|, |y − y′|} = 1.

Note that this produces a polygon P with nine sides. P separates R2 into an interior and an exterior. Since the interior
has finite area as a subset of R2, there are only a finite number of lattice points in the interior. Also, note that Sd is a
subset of the interior, thus any point on the exterior must cross P in order to reach any point is Sd . This implies that
the only vertices that have at least one path to a vertex in Sd without passing through any vertex in A are precisely the
lattice points in the interior of P, which is finite. �

Lemma 3.4. Suppose f and g are two periodic functions such that f 
∗g. If there is a containment certificate of f
for Sd for all d �0, then there is a containment certificate of g for Sd for all d �0.

Proof. Since f 
∗g, there exists n ∈ N such that

k∑
t=1

f (t)�
k∑

t=1

g(t)
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for all k�n. Since there is a containment certificate of f for Sd for all d �0, let CSn+d+1(f ) be a containment certificate
of f for Sn+d+1. We will use CSn+d+1(f ) to construct a containment certificate of g for Sd . We order the elements in
CSn+d+1(f ) on the third coordinate such that

CSn+d+1(f ) = {(x1, y1, t1), (x2, y2, t2), . . . , (xr , yr , tr )},
where t1 � t2 � · · · � tr . It is now easy to see that for all j �1,

tj∑
t=1

f (t)�j .

Now define CSd
(g) to be

CSd
(g) = {(xj , yj , g

−1(j))|1�j �r}.
Note that elements in CSn+d+1(f ) and CSd

(g) differ only the third coordinate. To prove that CSd
(g) is indeed a

containment certificate of g for Sd , we check the three conditions in the definition of a containment certificate.

Condition 1. Note that

|{j ∈ N|g−1(j) = i}| = number of j such that min

{
k|

k∑
t=1

g(t)�j

}
= i

= g(i).

Thus CSd
(g) satisfies the first condition since there are exactly g(i) elements in CSd

(g) where that the third coordinate
is i.

Condition 2. For the second condition, first consider the case where (xj , yj , tj ) ∈ C
�n
Sn+d+1

(f ). This implies tj �n. We

want to show that d(Sd, (xj , yj ))�g−1(j). We claim that g−1(j)�n. Suppose, for a contradiction that g−1(j) > n.
By the definition of g−1, this implies that

n∑
t=1

g(t) < j .

However,

n∑
t=1

f (t)�
tj∑

t=1

f (t)�j ⇒
n∑

t=1

g(t) < j �
n∑

t=1

f (t),

which contradicts f 
∗g. So g−1(j)�n. Since (xj , yj , tj ) ∈ CSn+d+1(f ),

d(Sn+d+1, (xj , yj ))�1 ⇒ d(Sd, (xj , yj )) > n�g−1(j)

and we are done. Next consider the case where (xj , yj , tj ) ∈ C>n
Sn+d+1

(f ). We claim that g−1(j)� tj . Suppose, for a

contradiction that g−1(j) > tj . By the definition of g−1, this implies that

tj∑
t=1

g(t) < j .

However,

tj∑
t=1

f (t)�j ⇒
tj∑

t=1

g(t) < j �
tj∑

t=1

f (t),
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which contradicts f 
∗g since tj > n. So g−1(j)� tj . Since (xj , yj , tj ) ∈ CSn+d+1(f ),

d(Sd, (xj , yj )) > d(Sn+d+1, (xj , yj ))� tj ⇒ d(Sd, (xj , yj )) > g−1(j)

and we are done. Thus CSd
(g) satisfies the second condition in the definition of a containment certificate.

Condition 3. The third condition follows naturally because CSn+d−1(f ) is a containment certificate and the positions
(xj , yj ) determined by CSd

(g) and those determined by CSn+d+1(f ) are exactly identical. �

We are now ready to prove our main result.

Theorem 2. Suppose a finite set S ⊂ Z × Z of vertices are initially set on fire. If the number of firefighters available
for deployment per time period is given by a periodic function f such that Rf > 1.5, then there exists a containment
certificate of f for S.

Proof. Suppose f is a periodic function such that Rf > 1.5. If pf = 1, this means that f (t)�2 for all t. Fogarty [3]
has shown that this is sufficient to contain the fire that starts at any finite set S. Suppose pf �2. By Lemma 2.7, there
exists some n�2 such that Fn2
∗f . Since F 2

n2
∗Fn2 and Gp
∗F 2
n2 where p = 2(2n2 + 1), we have Gp
∗f .

Now let

d = max{|x| + |y||(x, y) ∈ S}.
By Lemma 3.3, there exists a containment certificate of Gp for Sd . By Lemma 3.4, since Gp
∗f , there also exists a
containment certificate of f for Sd , CSd

(f ). Since S ⊆ Sd , by Lemma 3.1, CSd
(f ) is also a containment certificate of f

for S. �

4. Discussion and conclusion

For a given periodic function f and set S ⊂ Z × Z, if a containment certificate of f for S exists, it is not necessarily
unique. In fact, our initial efforts to prove Theorem 1 resulted in the construction of a containment certificate of the

function Fn = [
n︷ ︸︸ ︷

1, 1, . . . , 1,

n+1︷ ︸︸ ︷
2, 2, . . . , 2] for the set Sd , for every n�1 and d �0. Of course, with Lemmas 2.7 and 3.4,

we are still able to arrive at Theorem 1. The containment certificate of Fn differs significantly from the containment
certificate of Gp for Sd presented in Lemma 3.3. Our decision to present the containment certificate of Gp for Sd in
this paper is based on its relative simpler form and ease of checking the three conditions of a containment certificate.

In this paper, we have established that if f is a periodic function with Rf > 1.5, then for any d �0, there always exists
a containment certificate of f for Sd . But what about periodic functions f with Rf �1.5? Attempts have been made, for
example, with the function f = [2, 1] but with no success. Even in the simplest case when the fire breaks out at just a
single vertex of L2, we were unable to determine if there is a containment certificate of f = [2, 1] for S0. Through our
many attempts, however, we believe that such a containment certificate does not exist.

Conjecture 1. There is no containment certificate of f = [2, 1] for S0.

In this light, if we define the following number:

R : = inf{k ∈ R|∀f with Rf = k there exists a CS(f ) for any finiteS}
then the research mentioned in Section 1 showed that 1�R�2, and this paper has shown that 1�R�1.5. So, it leads
to the following question:

Question 1. What is R, exactly?

Note that if Conjecture 1 holds, then it would answer Question 1, and the answer would be 1.5. It is clear, however,
that new machinery beyond what is covered in this paper will be necessary to answer this question.
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Fig. 2. A not-so-nice containment certificate.

We wish to note, however, that containment certificates exist for “periodic” functions with ratios less than 1.5. The
reason for the quotation marks will become clear soon. Consider first the function

g = [4, 0, 0, 0, 0, 0, 0, 0].
Clearly there is a containment certificate of g for S0. However, by the way we defined g we would have Rg =0.5, which
is much less than 1.5. We can extend this example further to obtain ratios as close to 0 as possible where containment
certificates still exist.

For a more subtle second example, consider the function

f = [2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2].
This function has a containment certificate for S0, as shown in Fig. 2. With the above example, we have reached a point
at turn 8 where we swere able to just hold off the fire indefinitely. Hence we could place one fighter per turn at this
stage indefinitely without increasing the number of “exposed” vertices that could catch on fire the next turn. Although
the two examples above are valid examples in the context of the paper, they do not contain the spirit of our paper.
Rather than finding functions with a certain ratio where containment certificates exist, we are interested in the question
of whether all functions with a given ratio admit containment certificates.

One final thing to notice is that the restriction on the periodicity of the function can probably be relaxed. For any
arbitrary function f : N → N, it will still be true that there exists a containment certificate of f for any finite S if f
eventually dominates a Fn for some n. Given f : N → N and n ∈ N, we define the running ratio of f at n to be

Rf (n) : =
∑n

t=1f (t)

n
.

The authors believe that the following conjecture is true.

Conjecture 2. If Rf (n) > 1.5 for all n and

lim inf
n→∞ Rf (n) > 1.5,

then there is a containment certificate of f for any finite S.

Finally, the authors wish to note that this paper stemmed from questions arising from epidemiology and that many
extensions to this problem can be thought of by thinking of the problem in this manner. In this simplified model of
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disease spread, the nodes of the graph represent individuals in the population, and the edges represent relations that may
allow for disease spread. Therefore, the results in this paper could be translated into disease control for a population
whose social structure is a grid and for a disease that strikes neighbors the next time period after a person is infected.
While this is a very simplistic and unlikely setting for population structure and disease spread, we invite readers to
extend these results to more general types of graphs and more interesting fire/disease behaviors that more accurate. For
example, the first modification that could be made to this problem is to add a probability parameter p to the scenario,
which would be the probability that a unprotected node would catch fire given that a neighbor is on fire. Another
possible modification would be to modify the graph as t increases, presumably to represent the changes in inter-person
behavior as a day goes by: one is rarely likely to catch a disease from a co-worker at four in the morning!
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