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TO THE EDITOR
Cutaneous leishmaniasis is a parasitic
disease caused by dermatotropic sub-
species of Leishmania. The disease
is endemic in several parts of the
world with approximately 12 million
people infected worldwide. In mice
and man, healing and lifelong protection
is mediated by IFNg-producing CD4þ

Th1 and CD8þ Tc1 cells, whereas Th2-
and regulatory T-cell (Treg)–associated
immune responses with high levels of
IL-4 and IL-10 are associated with a
non-healer phenotype (Sacks and Noben-
Trauth, 2002; Kautz-Neu et al., 2011).
Recently, we and others showed that

IL-17A contributes significantly to geneti-
cally determined disease susceptibility in
BALB/c mice, whereas lower levels of
IL-17A are detected in resistant C57BL/6
mice (Lopez Kostka et al., 2009;
Gonzalez-Lombana et al., 2013). As a
result, IL-17A-deficient BALB/c mice
were protected from progressive disease,
because, in wild types, IL-17A is respon-
sible for maintaining persisting neutrophil
infiltrates in BALB/c lesions associated
with impaired wound repair and parasite
killing, ultimately leading to parasite
visceralization. In humans, IL-17A and
nitric oxide release were negatively corre-
lated in self-healing lesions exhibiting high

nitric oxide and low IL-17A levels in
L. braziliensis infections (de Assis Souza
et al., 2013). In addition, IL-17A was
strongly associated with protection
against Kala Azar (Pitta et al., 2009).
Overall, these first results demonstrated
that, in addition to Th1/Th2 cells and Treg,
Th17 cells are also relevant for protection
against this important human pathogen.

Among the cytokines produced by
Th17 cells, IL-22 is most prominent.
Receptors to IL-22 are specifically
expressed by epithelial cells. Also, over-
expression of IL-22 has been demon-
strated to initiate skin inflammation. In
the present study, we addressed the role
of IL-22 in experimental cutaneous
leishmaniasis. First, murine experimen-
tal leishmaniasis was induced in resis-
tant C57BL/6 mice and susceptible
BALB/c mice using physiological low-Accepted article preview online 7 July 2014; published online 14 August 2014

Abbreviations: DC, dendritic cell; LACK, Leishmania homolog of receptors for activated C kinase;
LN, lymph node; Treg, regulatory T cell
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dose inocula with metacyclic promasti-
gotes of L. major (103 parasite i.d.)
mimicking natural parasite transmission
by sand flies (Belkaid et al., 2000). In
weeks 1, 3, and 6 post infection,
draining lymph node (LN) cells were
restimulated with soluble Leishmania
lysate, and cytokine responses were
determined in 48 hour supernatants.
As expected, IFNg levels were high
in C57BL/6 supernatants, whereas an
early IL-4 release from pre-primed,
Leishmania homolog of receptors for
activated C kinase (LACK)-reactive
CD4þ T cells together with high
IL-17A production was detectable from
BALB/c cells (data not shown and Sacks
and Noben-Trauth, 2002; Lopez Kostka

et al., 2009). Interestingly, however, IL-
22 release was significantly increased in
supernatants of C57BL/6 cells restimu-
lated with antigen, reaching highest
levels at peak of lesion evolution
(Figure 1a). Using C57BL/6 mice defi-
cient for bg T-cell receptors (TCRs), we
identified ab T cells as the main source
for IL-22, whereas in mice lacking only
gd T cells (gTCR� /� ) IL-22 levels were
unaffected (Supplementary Figure S1a
online, and data not shown). In addi-
tion, isolated C57BL/6 CD4þ T cells,
but not CD8þ T cells, produced high
levels of IL-22 upon restimulation with
L. major-infected DCs (Supplementary
Figure S1b online). Induction of IL-22
production was not observed in BALB/c

draining LN cells. Thus, IL-22 was pre-
dominantly detected in Leishmania-
resistant mice suggesting differences
in the Th17 compartment in these as
compared with susceptible BALB/c
mice.

To further address the physiological
relevance of IL-22 in cutaneous leish-
maniasis, low-dose infections with
L. major were initiated in wild-type
and IL-22-deficient C57BL/6 mice
(Figure 1b–d). Lesion sizes were mon-
itored over the course of 4 months.
Interestingly, no obvious alteration
of disease outcome was observed in
IL-22� /� mice with regard to both
lesion sizes and lesion evolution. Similar
to wild-type C57BL/6 mice, lesions of
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Figure 1. Antigen-dependent IL-22 production by T cells is not relevant for disease outcome in cutaneous leishmaniasis. Groups of five wild-type

C57BL/6, C57BL/6 IL-22� /� , or BALB/c mice were infected with 103 metacyclic promastigotes of L. major. (a) At weeks 0, 1, 3, and 6, draining

lymph node cells were collected and restimulated at 1�106 cells ml�1 in the presence of soluble Leishmania antigen (SLA, 25mg ml�1). Data are

presented as mean±SEM (n¼3 independent experiments, X10 mice per group, **Pp0.05, ***Pp0.002). (b) Lesion development was monitored weekly

and lesion sizes calculated in three dimensions as ellipsoid (mean±SEM, nX13 mice per group). (c) Parasite burdens of ear lesions and spleens were

determined by the limiting dilution assay. One ear is represented by a dot; means are indicated as bars. (d) Draining lymph node cells of IL-22� /� and C57BL/6

control mice were collected at week 6 and week 9 post infection (p.i.) and restimulated as indicated in a. Data are presented as mean±SEM.
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IL-22� /� mice healed within 4 months
(Figure 1b); in addition, similar to wild
types, IL-22-deficient mice were pro-
tected from lesion formation upon rein-
fection (data not shown), indicating
no overt defects in the acute immune
response as well as in the development
of efficient memory responses against
L. major.

Prior studies in other infectious set-
tings observed a role for IL-22 in anti-
microbial peptide induction in barrier
organs (Sonnenberg et al., 2010; Wolk
et al., 2010; Rubino et al., 2012). We
assessed parasite clearance at week 6
(peak disease) and week 9 (lesion
resolution) post infection by measuring
parasite burdens using limiting dilution
assays. As shown in Figure 1c and in
line with the lesion sizes measured, no
alteration in parasite killing was detect-
able both for the number of lesional
parasites in infected skin (left panel) and
for the degree of parasitic dissemination
into the spleen, which is a prominent
feature of visceral leishmaniasis (right
panel). Even though IL-22 does not
directly signal to immune cells, it can
initiate skin inflammation (Wolk et al.,
2011). We thus studied inflammatory
cell infiltrates into lesions at week 6
and week 9 post infection using flow
cytometry (data not shown). Lesions of
IL-22-deficient mice harbored similar
numbers of CD4þ and CD8þ T cells,
neutrophils, macrophages, and antigen-
presenting dendritic cells (DCs) as wild-
type control mice.

Finally, antigen-specific cytokine
responses in IL-22� /� mice were
assessed at weeks 6 and 9 as shown in
Figure 1d. As expected from lesion sizes
and parasite burdens, high levels of IFNg
and low levels of IL-4 and IL-10 were
found in supernatants from IL-22� /�

and wild-type mice, indicating efficient
priming of Th1/Tc1 cells capable of
mediating protection. This was further
substantiated by equivalent amounts of
DC-derived IL-12p40 responsible for
Th1/Tc1 priming (Wölbing et al.,
2006). Interestingly, however, elevated
levels of IL-17A were found in IL-22� /�

LN cultures, suggesting that, in the
absence of IL-22, IL-17A is upregulated.

In summary, we observed that, in
contrast to BALB/c mice, in which IL-
17A is, at least to a substantial degree,

responsible for susceptibility, resis-
tant C57BL/6 mice harbor CD4þ T cells
capable of releasing IL-22, instead of
IL-17A, upon antigen-specific restimula-
tion. Our data suggest that cells of the
adaptive immune system (ab or gd
T cells) capable of responding to anti-
gen-specific restimulation, instead of
NK cells, innate lymphoid cells, or even
other cells, are the primary producers
of IL-22 in leishmaniasis (Zenewicz
and Flavell, 2011). In line, in BALB/c
mice, IL-17A and IL-22 production
was downmodulated by anti-IL-23
(Ghosh et al., 2013). Another study
using BALB/c mice revealed that a
plasmid-based vaccine comprising LACK
and IL-22 was superior to plasmid
alone by preferential induction of IFNg
(Hezarjaribi et al., 2013). Thus, in BALB/c
mice, the lack of relevant amounts of IL-
22 may contribute to disease susceptibility
via cytokine modulation. However, on
a genetically resistant background best
mimicking the situation in humans
(Sacks and Noben-Trauth, 2002) using
physiologically relevant experimental
infections, IL-22 production does not
appear to contribute to immunological
parasite growth control or disease
resistance against L. major despite its
known function as a key player in
antimicrobial defense, regeneration, and
protection against damage (Wolk et al.,
2010). Our results add to those of Wilson
et al. (2010), who showed that neutrali-
zation of IL-22 in a murine model of
M. tuberculosis infection did not affect
bacterial burdens of lungs, suggesting
that control of intracellular pathogens is
independent from IL-22.

In the future, additional studies on the
role of other Th17 cell–derived IL-17
family members (e.g., IL-17F) for disease
outcome in infections caused by the
important human pathogen Leishmania
need to be performed to fully clarify the
contribution of this Th subset in infec-
tion control and its potential as a vac-
cine target.
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IL-17A Production in Human Psoriatic Blood and Lesions by
CD146þ T Cells
Journal of Investigative Dermatology (2015) 135, 311–314; doi:10.1038/jid.2014.317; published online 21 August 2014

TO THE EDITOR
CD146, also called melanoma cell
adhesion molecule, is a cell surface
adhesion molecule on endothelial cells
involved in homotypic and heterotypic
cell interactions (Bardin et al., 2001).
CD146 binding in endothelial cells
leads to a change in cellular permeabi-
lity, actin distribution, and redistribution
of NF-kB p50 to the nucleus. CD146
has been shown to be present on 1–3%
of circulating peripheral blood T cells in
healthy humans (Elshal et al., 2005).
CD146þ T cells have an effector
memory phenotype, demonstrate upregu-
lation of a cluster of genes involved with
adhesion, migration, homing, and inflam-
mation, and have enhanced binding to
endothelial monolayers in vitro (Elshal
et al., 2007). These features of the
CD146þ T cells in the peripheral circu-
lation have led to the speculation that
they represent a small pool of cells
primed for extravasation and/or homing
of activated T cells (Elshal et al., 2007;
Guezguez et al., 2007) in response
to inflammatory stimuli. Circulating
CD146þ T cells are elevated in
several inflammatory autoimmune
diseases, such as sarcoidosis,
inflammatory bowel disease, multiple
sclerosis, connective tissue disease,
and Behcet’s disease, and produce IL-
17 (Dagur et al., 2010, 2011; Larochelle
et al., 2012). Whether these cells have a
role at the site of active inflammation in
these diseases remains unknown.
Psoriasis, which is associated with
increased vascular inflammation
(Mehta et al., 2011) and access to both

peripheral blood and the disease target
tissue (e.g., skin), is ideal to study
CD146þ T cell phenotype and
function in an inflammatory condition.
Here we present findings from a well-
characterized patient population with
psoriasis using peripheral blood
samples and skin biopsies from
psoriatic lesions and uninvolved skin.

Forty-seven patients with psoriasis
and sixty-seven healthy controls were
included in this study. Diagnosis of
psoriasis was confirmed by a dermatol-
ogist, and severity was measured by the
percentage of body surface area invol-
ved and the validated Psoriasis Area and
Severity Index. Donor demographics
and characteristics are presented in
Supplementary Table S1 online. Skin
biopsies were isolated from a represen-
tative psoriatic target lesion (6 mm) and
are identified as lesional psoriatic skin.
Nonlesional skin biopsies were obtained
from a similar body area at least 10 cm
away from the nearest psoriasis skin
lesion. Frozen sections were obtained
from skin lesions for immunofluores-
cence studies, and all patients provided
written consent as part of an IRB-
approved study (NCT01778569).

Venous blood was collected in sodium
heparin vacutainers (Becton Dickinson
(BD), San Jose, CA). Cells were stained,
and flow cytometric analysis was
performed as previously described
(Guezguez et al., 2007). Skin biopsies
were digested in Collagenase IV (GIBCO
BRL no. 17104-019, Grand Island, NY) at
5mgml–1 in RPMI 1640 for 45 minutes,
stained, and then sorted in the same

manner as peripheral blood. The follow-
ing antibodies used for staining were
obtained from BD: CD3, CD4, CD8,
CD33, CD14, CD19, CD45, CD45-RO,
and CD146 (Clone P1H12). Anti-IL-17A
(clone ebio64DEC17) was purchased
from eBiosciences (Grand Island, NY).
Immunophenotyping results are expre-
ssed as means and standard errors of the
mean. RNA was isolated from sorted
CD146þ or CD146� T cell subpopu-
lations using RNAquos Micro kits
(Ambion, Grand Island, NY), and
quantitative real-time reverse-transcrip-
tase–PCR was performed using a
7900-sequence detector (PE-Applied
Biosystems, Norwalk, CT).

Data from a single specimen were
considered for one experiment (n). A P-
value o0.05 was considered statisti-
cally significant. Statistical analysis was
performed using STATA version 12.0
(Stata, College Station, TX).

To determine whether CD146þ
T cells are prevalent in patients with a
Th17 disorder, immunophenotyping was
performed on fresh peripheral blood
from patients with psoriasis. Psoriasis
patients showed a significant elevation
of circulating CD3þCD146þ T cells
compared with healthy adults (3.91±
0.37% vs. 2.96±0.19%, respectively,
P¼0.03; Figure 1a). Increased CD146
expression reached statistical signifi-
cance with the circulating CD4þ
T cells (5.50±0.413% in psoriasis vs.
3.55±0.213%, respectively, Po0.0001;
Figure 1b) but not the CD3þCD8þ
CD146þ T cells (2.75±0.373% in
psoriasis vs. 2.30±0.216%, respec-
tively; Figure 1c). CD146þ T cells were
abundant within lesional skin biopsies,Accepted article preview online 24 July 2014; published online 21 August 2014
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