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Abstract

The nonparametric estimator of the conditional survival function proposed by Beran is a useful tool to
evaluate the effects of covariates in the presence of random right censoring. However, censoring indicators of
right censored data may be missing for different reasons in many applications. We propose some estimators
of the conditional cumulative hazard and survival functions which allow to handle this situation. We also
construct the likelihood ratio confidence bands for them and obtain their asymptotic properties. Simulation
studies are used to evaluate the performances of the estimators and their confidence bands.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In survival analysis and biomedical studies, the proportional hazards model is commonly used
to examine the effects of covariates. The model assumes that the logarithm of the relative hazards
is a linear function of covariates. However, the linearity and proportionality assumptions are
often questionable in medical studies. The resulting inferences will yield biased estimators if the
model is specified incorrectly. It is well known that the issue of model validity can be effectively

∗ Corresponding author. Department of Statistics and Actuarial Science, The University of Hong Kong, Pokfulam Road,
Hong Kong, China. Fax: +852 28589041.

E-mail address: qhwang@amss.ac.cn (Q. Wang).

0047-259X/$ - see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmva.2007.06.002

http://www.elsevier.com/locate/jmva
mailto:qhwang@amss.ac.cn


Q. Wang, J. Shen / Journal of Multivariate Analysis 99 (2008) 928–948 929

addressed using nonparametric methods such as kernel smoothing techniques. Beran [2] proposed
a kernel method to estimate the conditional cumulative hazard and survival functions. In the
homogeneous case, the two kernel estimators reduce to the Aalen–Nelson and Kaplan–Meier
estimates, respectively. Under the assumption that the lifetime random variable is independent
of the random censoring variable given the covariables, the asymptotic properties of Beran’s
estimates can be found in Dabrowska [3,4], McKeague and Utikal [12], Li and Doss [9] and Li
[8] among others.

Let T be a non-negative random variable and Z a covariate. Under random right censorship,
rather than (T , Z), we only observe independent and identically distributed (i.i.d.) copies

(Xi, Zi, �i ), i = 1, . . . , n

of the variables (X, Z, �), where X = min(T , C), � = 1(T �C) is the censoring indicator function
of T �C and T and C are independent given Z.

Clearly, Beran’s estimators require that the censoring indicator is always observed. In many
applications, however, the censoring indicators may not be observed completely. For instance, in
clinical trials, individuals may fail from one of two or multiple causes, one of which is of interest.
The time to death from the cause of interest may be censored by a death from a different cause.
However, cause of death may sometimes be unavailable; for example documenting whether or
not death is attributable to the cause of interest may require information that is not collected to
save expense or lost, or it may be difficult to determine the cause for some patients. In such cases,
some censoring indicators are missing.

Let �i be a missingness indicator which is 1 if �i is observed and is 0 otherwise. Therefore, we
observe

Oi ≡ (Xi, Zi, �i , �i = 1) or (Xi, Zi, �i = 0), i = 1, . . . , n. (1.1)

In this paper, we develop approaches to estimate the conditional cumulative hazard and survival
functions and construct their empirical likelihood (EL) ratio confidence bands with observations
(1.1).We suppose that censoring indicators are missing at random (MAR), that is, � is conditionally
independent of � given X and Z:

P(� = 1|X, Z, �) = P(� = 1|X, Z).

In the absence of covariates, Dinse [5] obtained nonparametric maximum likelihood estimators of
the survival function using the EM algorithm under the assumption that the censoring indicators
are missing completely at random (MCAR), P(� = 1|X, Z, �) = P(� = 1). However, Lo [11]
proved that those estimators may be inconsistent, and he proposed two new estimates and proved
their consistency. Under the MAR assumption, van der Laan and McKeague [17] proposed a sieved
nonparametric maximum likelihood estimator and proved that it is asymptotically efficient.

Owen [13] introduced the EL method for construction of confidence regions. The method was
studied by many authors since then. See Owen [14] for a comprehensive discussion. Because
EL makes an automatic determination of the shape of confidence regions, and can incorporate
side information through constraints, it is widely viewed as a desirable and natural approach to
statistical inference in a variety of settings. The application of EL in survival analysis can be
traced back to Thomas and Grunkemeier [16] who constructed confidence intervals for survival
probabilities with censored data (see also Li [7]). EL-based confidence bands for individual
survival functions have been derived by Hollander et al. [6]. Li and van Keilegom [10] obtained
confidence bands for conditional survival function under random right censorship. In this paper,
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their method is generalized to deal with the right censored data with censoring indicators missing
at random.

The paper is organized as follows. The estimators of the conditional survival function and
the conditional cumulative hazard function are given in Section 2. Some asymptotic properties
for the proposed estimators are given in Section 3. In Section 4, some asymptotic results of
an empirical log-likelihood ratio are derived and confidence bands for the conditional survival
function are obtained. A simulation study was conducted to evaluate the finite sample properties
of the proposed estimators in Section 5. Proofs are postponed to the Appendices.

2. Estimation

Let F(t |z) = P(T � t |Z = z) be the conditional distribution function of T given Z = z. Beran
[2] proposed some estimators of the conditional survival function S(t |z) = 1 − F(t |z) and the
cumulative hazard function

�(t |z) =
∫ t

0

dF(s|z)
S(s − |z) .

To present these estimators, let K(t) be a kernel function and hn = hn(z) a smoothing bandwidth.
Define Nadaraya–Watson weights

Bni(z; hn) = Kh(Zi − z)
n∑

i=1
Kh(Zi − z)

,

where Kh(t) = h−1
n K(h−1

n t). Let F̄ = 1 − F for any distribution function F. Beran [2] defined
the estimators of �(t |z) and S(t |z) by

�̃n(t |z) =
n∑

i=1

∫ t

0

�iBni(z; hn) dHi(s)

H̄n(s − |z) (2.1)

and

S̃n(t |z) =
∏
s � t

{1 − ��̃n(s|z)}, (2.2)

respectively, where H̄n(t − |z) = 1 − Hn(t |z). Hi(t) = I (Xi � t) (i = 1, . . . , n),

Hn(t |z) =
n∑

i=1

I (Xi � t)Bni(z; hn)

is an estimator of H(t |z) ≡ P(X� t |Z = z) and ��̃n(s|z) = �̃n(s|z) − �̃n(s − |z).
Under the MAR assumption, we have

E
(
�̃n(t |z)

∣∣∣Oi, i = 1, · · · n
)

=
n∑

i=1

∫ t

0

[
�i�i + (1 − �i )E(�i |Xi, Zi)

]
Bni(z, hn) dHi(s)

H̄n(s − |z) .
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This motivates us to define an estimator of �(t |z) by replacing the censoring indicators �i in Beran
estimator (2.1) with E(�i |Xi, Zi) if m(x, z) = E(�i |Xi = x, Zi = z) were a known function.
In practice, however, m(x, z) is unknown. We need to define an estimator of m(x, z) and then
replace it. Under the MAR condition, we have

m(x, z) = E(�i�i |Xi = x, Zi = z)

E(�i |Xi = x, Zi = z)
.

Therefore the kernel smoothing approach can be used to estimate m(x, z) based on the observed
data. Let V (x) and W(x) be two kernel functions. Let an = an(z) and bn = bn(z) be smoothing
bandwidths. m(x, z) can then be consistently estimated by the Nadaraya–Watson estimator

m̂(x, z) =

n∑
i=1

�i�iVa(Xi − x)Wb(Zi − z)

n∑
i=1

�iVa(Xi − x)Wb(Zi − z)

,

where Va(·) = a−1
n V (a−1

n (·)), Wb(·) = b−1
n W(b−1

n (·)). Define

�̂i = �i�i + (1 − �i )m̂(Xi, Zi),

�(t |z) and S(t |z) can then be estimated by

�̂n(t |z) =
n∑

i=1

∫ t

0

�̂iBni(z; hn) dHi(s)

H̄n(s − |z)
and

Ŝn(t |z) =
∏
s � t

{1 − ��̂n(s|z)},

respectively. We present the uniformly strong consistency and weak convergence properties for
�̂n(t |z) and Ŝn(t |z), respectively, in the following section.

3. Asymptotic properties

We begin this section by giving some assumptions needed for the strong consistency. In what
follows, for any cumulative distribution function F, let (aF , bF ) be the range of F defined by

aF = inf{x : F(x) > 0} and bF = sup{x : F(x) < 1}.
Condition A.
(A1) Let U(z) be a neighborhood of z. For �z < bH(·|z), m(t, u) and H(t |u) are uniformly

continuous functions on [0, �z] × U(z).
(A2) Let �(x, z) = E(�|X = x, Z = z). infx ��z,u∈U(z) �(x, u) > 0.
(A3) K(u), W(u) and V (u) are density functions with compact support, and symmetric around

zero.
(A4) As n → ∞, hn → 0, an → 0, bn → 0, nhn → ∞, nan → ∞, nbn → ∞.
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Theorem 3.1. Suppose the condition A hold. For �z < bH(·|z), we have

sup
0� t ��z

∣∣�̂n(t |z) − �(t |z)∣∣ → 0 a.s., (3.1)

sup
0� t ��z

∣∣Ŝn(t |z) − S(t |z)∣∣ → 0 a.s. (3.2)

Condition B.
(B1) Let fZ(u) be the density function of Z. Functions fZ(u), m(x, u), �(x|u),�(t, u) and

H(x|u) are continuously twice differentiable at u, where u belongs to a neighborhood U(z) of z.
Moreover, for aF(·|z) ��1 < �2 < bH(·|z),

sup
u∈U(z),�1 �x ��2

|H ′′
uu(x|u)| < ∞, sup

u∈U(z)

|f ′′
Z(u)| < ∞.

(B2) �(x, u) satisfies infu∈U(z),�1 �x ��2 �(x, u) > 0.
(B3) Kernel functions K(u), W(u) and V (u) are bounded density functions with compact

support, and are symmetric around zero, respectively.
(B4)As n → ∞, an → 0, bn → 0, nh5

n → c, nhna
4
n → 0, nhnb

4
n → 0, nhn → ∞, nan → ∞,

nbn → ∞.
Let �K = ∫

x2K(x) dx, �(K) = ∫
K2(x) dx, H(t, z) = P(X� t |Z = z)fZ(z) and

�(t |z) = 1
2�K

∫ t

0
�′′

zz(ds|z) + �K

∫ t

0

H ′
z(s, z)�

′
z(ds|z)

H(s, z)
.

The following theorem states the weak convergence.

Theorem 3.2. Suppose the condition B hold. Then for aF(·|z) ��1 < �2 < bH(·|z), we have

√
nhn

(
�̂n(t |z) − �(t |z) − �(t |z)h2

n

) W→ W(t |z) in D[�1, �2], (3.3)

√
nhn

(
Ŝn(t |z) − S(t |z) + S(t |z)�(t |z)h2

n

) W→ S(t |z)W(t |z) in D[�1, �2], (3.4)

where W(t |z) is a zero mean Gaussian process with covariance function

Cov
(
W(t1|z), W(t2|z)

) = f −1
z (z)�(K)

∫ t1∧t2

0

[
d�(s|z)
H̄ (s|z)

+m(s, z)(1 − m(s, z))(1 − �(s, z)) dH(s|z)
�(s, z)H̄ 2(s|z)

]
. (3.5)

Remark. Bandwidth conditions nhna
4
n → 0 and nhnb

4
n → 0 imply that m(x, z) is oversmoothed

and the bias of m̂(x, z) is asymptotically vanishing. However, under condition nh5
n → c, the bias

from estimating the survival function itself still exists.

Theorem 3.2 implies that both �̂n(t |z) and Ŝn(t |z) are asymptotically normal with asymptotic
variances �2(t |z) and S2(t |z)�2(t |z), respectively, where �2(t |z) = Cov

(
W(t |z), W(t |z)). A

direct method to estimate the asymptotic variance is to use the “plug in” technique by replacing
H(s|z), �(t |z), �(s, z),m(s, z),fZ(z) andS(t |z) in the asymptotic variances with their estimators.
Another alternative is to use the jackknife method to estimate the asymptotic variance.



Q. Wang, J. Shen / Journal of Multivariate Analysis 99 (2008) 928–948 933

Next, we make some discussions on bandwidth selection. Suppose we define �̂n(t |z) on interval
[�1, �2], where aF(·|z) ��1 < �2 < bH(·|z). From Theorem 3.2, the asymptotic mean integrated

squared error (AMISE) of �̂n(t |z) on interval [�1, �2] is

AMISE
(
�̂n(t |z)

) =
∫ �2

�1

{
�2(t |z)h4

n + �2(t |z)(nhn)
−1

}
dt.

Minimizing AMISE(�̂n(t |z)) with respect to hn, we obtain the optimal bandwidth

h�,opt =
[ ∫ �2

�1
�2(t |z) dt

4
∫ �2
�1

�2(t |z) dt

]1/5

n−1/5.

Similarly, the optimal bandwidth minimizing the AMISE of Ŝn(t |z) on interval [�1, �2] is

hS,opt =
[ ∫ �2

�1
S2(t |z)�2(t |z) dt

4
∫ �2
�1

S2(t |z)�2(t |z) dt

]1/5

n−1/5.

Since �2(t |z) and �2(t |z) are unknown, we need to use their estimates to substitute them and obtain
estimators of h�,opt and hS,opt in practice. However, it may need another bandwidth selection.

Another way to select a bandwidth is to use the bootstrap method. We generate repeatedly B
bootstrap samples {O∗

i , i = 1, . . . , n} from the observed data Oi, i = 1, 2, . . . , n and get B

bootstrapped survival functions Ŝ∗
n,1(t |z), . . . , Ŝ∗

n,B(t |z) for a pilot bandwidth hn, then we choose
hn by minimizing the bootstrapped MISE

1

B

B∑
i=1

∫ �2

�1

(
Ŝ∗

n,i(t |z) − Ŝn(t |z)
)2

dt. (3.6)

Also, the AMISE given above indicates that a proper choice of an and bn specified in condition
(B.4) does not affect the first-order term of the mean integrated square error, though it might affect
higher order terms. This also shows that the selection of an and bn might not be so critical to
Ŝn(t |z), a result which is also verified in our simulation studies.

4. Confidence bands

In this section, we construct confidence bands for S(t |z) by using different methods. We use
an undersmoothing bandwidth hn which satisfies nh5

n → 0 so that the asymptotic bias of Ŝ(t |z)
is zero. Assume �1, �2 are two numbers such that aF(·|z) ��1 < �2 < bH(·|z). From Theorem 3.2
we get

√
nhn(Ŝn(t |z) − S(t |z))

S(t |z)
W→ W(t |z) in D[�1, �2].

Let B(t) be a Brownian bridge on [0, 1] and u = �2(t |z)/(1 + �2(t |z)). Since W(t)/�(t |z) and
B(u)/

√
u(1 − u) have the same distribution, we have

√
nhn(Ŝn(t |z) − S(t |z))

S(t |z)�(t |z)
W→ B(u)√

u(1 − u)
in D[�1, �2].
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Let e	(u1, u2)(u1 �u2) be the 	 quantile of the distribution

sup
u1 �u�u2

∣∣∣∣ B(u)√
u(1 − u)

∣∣∣∣ .
Let

�̂(t, z) =

n∑
i=1

�iVa(Xi − t)Wb(Zi − z)

n∑
i=1

Va(Xi − t)Wb(Zi − z)

,

f̂Z(z) = 1

n

n∑
i=1

Kh(Zi − z),

�̂2
(t |z) = �(K)f̂ −1

Z (z)
1

n

n∑
i=1

[∫ t

0

�̂iBni(z; hn) dHi(s)

H̄ 2
n (s − |z)

+
∫ t

0

m̂(s, z)(1 − m̂(s, z))(1 − �̂(s, z))Bni(z; hn) dHi(s)

�̂(s, z)H̄ 2
n (s − |z)

]

and ûj = �̂2
(�j |z)/(1 + �̂2

(�j |z)) for j = 1, 2. Based on the asymptotic properties of ln(− ln
Ŝn(t |z)), we define the following asymptotic 100(1 − 	)% transformed bands of S(t |z) [1] by

Ŝn(t |z)exp{±(nhn)−1/2�̂(t |z)e1−	(û1,û2)/ ln Ŝn(t |z)}, (4.1)

and for a fixed t, asymptotic 100(1 − 	)% transformed confidence interval of S(t |z) is defined by

Ŝn(t |z)exp{±(nhn)−1/2�̂(t |z)z1−	/2/ ln Ŝn(t |z)}, (4.2)

where z	 is the 	 quantile of the standard normal distribution. By using transformations, confidence
interval/band (4.1) and (4.2) may avoid upper or lower limits falling outside the [0, 1] interval,
and may improve the performance for small sample size.

Next we use EL method to obtain confidence interval/band of S(t |z). In the absence of covariate,
Lo [11] proposed the likelihood function based on data (1.1) and showed that the maximum
likelihood estimators are not unique and some of them are inconsistent. Instead using the likelihood
function based on data {Oi, i = 1, . . . , n}, we define a likelihood function based on synthetic data
{(Xi, Zi, �̂i ), i = 1, . . . , n}. Without loss of generality, we suppose that X1 �X2 � · · · �Xn are
the order statistics and (Zi, �̂i ) are the concomitant of Xi for i = 1, . . . , n. Let 
 be the space of
all survival functions defined on [0, ∞). For S(t |z) ∈ 
, we have the following local likelihood
function

L(S|z) =
n∏

i=1

{
(S(Xi − |z) − S(Xi |z)�̂i S(Xi |z)1−�̂i

}Bni(z;hn)

.

For a fixed t, an EL ratio can then be defined by

R(p, t |z) = sup{L(S|z) : S(t |z) = p, S(t |z) ∈ 
}
sup{L(S|z) : S(t |z) ∈ 
} .
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Let Ri = H̄n(Xi − |z), Bi = �̂iBni(z; hn). Similar to Li and van Keilegom [10], we get

ln R(p, t |z) =
∑

i:Xi � t

{
(Ri − Bi) ln

(
1 + �n(t |z)

Ri − Bi

)
− Ri ln

(
1 + �n(t |z)

Ri

)}
, (4.3)

where the lagrange multiplier �n(t |z) satisfies∑
i:Xi � t

ln

(
1 − Bi

Ri + �n(t |z)
)

− ln p = 0. (4.4)

Define

�̂2
0(t |z) = �(K)f̂ −1

Z (z)
∑

i:Xi � t

Bi

Ri(Ri − Bi)
.

Then we have the following theorem.

Theorem 4.1. Suppose the condition B hold and �1, �2 satisfy aF(·|z) ��1 < �2 < bH(·|z), then

−2nhn

�̂2
0(t |z)f̂Z(z)

�̂2
(t |z)�(K)

ln R(S(t |z), t |z) W→ B2(u)

u(1 − u)
in D[�1, �2],

where B(t) is a Brownian bridge on [0, 1] and u = �2(t |z)/(1 + �2(t |z)). Especially, for each
t such that aF(·|z) < t < bH(·|z), we have

−2nhn

�̂2
0(t |z)f̂Z(z)

�̂2
(t |z)�(K)

ln R(S(t |z), t |z) W→ �2
1.

Theorem 4.1 can be used to define confidence bands for S(t |z) over interval [�1, �2] by

In,	(�1, �2) =
{

(p, t) : −2nhn

�̂2
0(t |z)f̂Z(z)

�̂2
(t |z)�(K)

ln R(p, t, z)�e2
1−	(û1, û2), t ∈ [�1, �2]

}

(4.5)

and for a fixed t, an asymptotic 100(1 − 	)% confidence interval of S(t |z) is then defined by

In,	(t) =
{

p : −2nhn

�̂2
0(t |z)f̂Z(z)

�̂2
(t |z)�(K)

ln R(p, t, z)��2
1(1 − 	)

}
, (4.6)

where �2
1(	) is the 	 quantile of the �2

1 distribution.
Theoretically, the optimal bandwidth should be chosen as the value at which the coverage error

of the interval/band attains the minimum. Since the coverage error cannot be observed, Li and
van Keilegom [10] suggested using the bootstrap method to select the bandwidth. As an example,
let us consider the bandwidth selection for constructing confidence interval (4.6). For a pilot
bandwidth hn, we generate repeatedly B bootstrap samples {O∗

i , i = 1, . . . , n} from the observed
data Oi, i = 1, 2, . . . , n and construct B bootstrapped confidence band I ∗

n,	,1, . . . , I
∗
n,	,B using the

EL method aforementioned. Then we choose the bandwidth h = hopt such that the bootstrapped
coverage error

err∗(h) =
∣∣∣∣∣

#{Sn(t) ∈ I ∗
n,	,i , i = 1, . . . , n}

B
− (1 − 	)

∣∣∣∣∣
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attains the minimum, where #A denotes the number of elements of set A. Similar method can be
used to construct confidence interval/band (4.1), (4.2) and (4.5).

5. Simulation results

We conducted Monte Carlo simulations to evaluate the finite sample performances of the
estimator Ŝn(t |z). In our simulation, the conditional distribution of T given Z = z is exponential
with mean a0+a1z+a2z

2, the censoring time C has an exponential distribution with mean function
b0 + b1z + b2z

2 and the covariate Z is uniform distribution on the interval [0, 1]. The parameters
were adjusted to produce censoring rates of 33% (a0 = 0, a1 = a2 = 1, b0 = 0, b1 = b2 = 2) and
50% (a0 = b0 = 0, a1 = a2 = b1 = b2 = 1) in different simulations. The selected probability
function was taken to follow the logistic model

P(�i = 1|Xi, Zi) = 1

1 + exp(c1Xi + c2Zi)
.

The parameters c1 and c2 were adjusted to produce different missing rates with c1 = c2. Kernel
functions K, V and W were selected as the Epanechnikov kernel and the bandwidths were taken
to be an = an−1/4, bn = bn−1/4 and hn = hn−1/5. At first we consider the sensitivities of those
bandwidths. Let z = 0.5, a0 = 0, a1 = 1, a2 = 1, b0 = 0, b1 = 1, b2 = 1, c1 = c2 = 1.25 and
the sample size n = 80. For 1000 duplications, we draw the average MISE of Ŝn(t |z) (t ∈ [0, 3])
as function of h, a and b over interval [0.3, 3], respectively. The results are summarized in Fig. 1.

From Fig. 1 we see that MISE of Ŝn(t |z) are sensitive to bandwidth hn, but not sensitive to
bandwidths an and bn. In what follows, we let an = n−1/4, bn = n−1/4 and hn = hn−1/5. The
bandwidth parameter h was selected at interval [0.3, 3] such that the bootstrapped MISE (3.6)
attains the minimum. For z = 0.5, Table 1 presents the simulation results for MISE of Ŝn(t |z) over
the interval [0, 3] with different missing rates, including that of Beran estimator S̃n(t |z) without

0.5 1 1.5 2 2.5 3

0

0.005

0.01

0.015

M
IS
E

Fig. 1. Bandwidths sensitivities. The smooth solid line is MISE of Ŝn(t |z) as a function of h (a = 1, b = 1), while the
dotted line is MISE of Ŝn(t |z) as a function of a (h = 1.2, b = 1), the dashed line is MISE of Ŝn(t |z) as a function of b
(h = 1.2, a = 1).
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Table 1
MISE for Ŝn(t |z) at z = 0.5

Censoring rate n No missing E� = 0.75 E� = 0.45 E� = 0.35

0.33 40 0.0089 0.0092 0.0099 0.0110
80 0.0049 0.0051 0.0053 0.0060

120 0.0034 0.0034 0.0040 0.0043

0.50 40 0.0111 0.0117 0.0121 0.0131
80 0.0063 0.0066 0.0071 0.0083

120 0.0045 0.0046 0.0054 0.0059

0.5 1 1.5 2 2.5 3

0

0.1
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0.3
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0.5
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0.8

0.9

1
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Fig. 2. Estimated conditional survival curve and confidence bands based on empirical likelihood. The
smooth solid line is S(t |z), while the step solid line is Ŝn(t |z), the dashed lines are confidence
bands (4.5) and the dotted lines are pointwise confidence bands (4.6). The parameters were selected as
z = 0.5, a0 = 0.5, a1 = 1, a2 = 0, b0 = 2, b1 = 1, b2 = 0, c1 = c2 = 1.25 and the sample size n = 80.

missing data. The Beran estimator can serve as a gold standard, even though it is practically
unachievable because of the missingness of censoring indicators. For each sample size n (n=40,
80, 120), 1000 duplications were calculated in simulations.

From Table 1 we see that the MISE of Ŝn(t |z) is very small and is close to that of the Beran
estimator, the gold standard, especially when the missing rate is small. The MISE of Ŝn(t |z)
decreases as sample size increases and increases as missing rate or censoring rate increases. As
an example, we plotted the curves of S(t |z) and Ŝn(t |z) for z = 0.5 in Fig. 1 (also in Fig. 2) for
n = 80. It can be seen that the curve of the estimator is close to the true conditional survival
function. All in all, our estimator Ŝn(t |z) performs well in terms of the MISE.

Next, we used Monte Carlo simulation to compare the EL and the normal type confidence
intervals of S(t |z) in terms of coverage accuracy. The bandwidths an = n−1/3, bn = n−1/3
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Table 2
Confidence intervals of S(0.5|z = 0.5)

E� n EL NA

Accuracy Length Accuracy Length

	 = 0.90
0.75 40 0.887 0.396 0.920 0.435

80 0.892 0.320 0.915 0.340
120 0.897 0.295 0.902 0.310

0.45 40 0.885 0.402 0.886 0.451
80 0.891 0.346 0.894 0.371

120 0.903 0.307 0.905 0.324

0.30 40 0.882 0.413 0.884 0.462
80 0.894 0.360 0.892 0.378

120 0.895 0.311 0.895 0.327

	 = 0.95
0.75 40 0.943 0.427 0.963 0.521

80 0.949 0.393 0.956 0.415
120 0.949 0.346 0.954 0.359

0.45 40 0.943 0.444 0.945 0.545
80 0.944 0.410 0.947 0.442

120 0.952 0.361 0.953 0.386

0.30 40 0.925 0.465 0.927 0.560
80 0.945 0.407 0.941 0.432

120 0.947 0.371 0.953 0.396

and hn = an−1/3 and we selected a at interval [0.5, 2] such that the bootstrapped coverage er-
ror attains the minimum. The censoring rate is 50% (a0 = a1 = a2 = b0 = b1 = b2 = 1)
and E� were selected as 0.75, 0.45 and 0.30. For t = 0.5 and z = 0.5, simulation results
for two type confidence intervals of S(t |z) with asymptotic coverage probability 	 are summa-
rized in Table 2, where “EL” denotes confidence interval (4.6) and “NA’’ denotes confidence
interval (4.2).

We also compare the behaviors of the likelihood ratio confidence band (4.5) and the normal
approximation based band (4.1) over the interval [u1, u2] = [0.1, 0.9]. We let a0 = 0.5, b0 =
2, a1 = b1 = 1 and a2 = b2 = 0. Censoring rate was taken to be 72%. The missing indicators
� follow the same logistic model as before, and the missing rates E� were selected as 0.5 and
0.8. For each sample size n (n = 40, 80, 120), 1000 duplications were calculated in simulations.
For z = 0.5, Table 3 gives the simulation results, where “EL’’ denotes confidence band (4.5) and
“NA’’ denotes confidence band (4.1).

Comparing the coverage accuracy of the EL method and normal approximation method from
Tables 2 and 3, we can see both methods perform quite well in terms of coverage accuracy, but
confidence interval/band produced by EL method has shorter length/smaller width.

In Figs. 2 and 3, we plotted the pointwise confidence bands and uniform confidence bands
over interval [0.1, 3] with coverage level 	 = 0.90 based on EL and normal approximation,
respectively. From those figures we see both methods produce bands falling inside the [0, 1]
interval automatically.
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Table 3
Confidence bands of S(t |z = 0.5) over u ∈ [0.1, 0.9]
E� n EL NA

Accuracy Width Accuracy Width

	 = 0.90
0.8 40 0.906 0.420 0.912 0.433

80 0.908 0.329 0.913 0.337
120 0.897 0.294 0.906 0.302

0.5 40 0.898 0.435 0.912 0.447
80 0.904 0.354 0.909 0.360

120 0.894 0.305 0.907 0.312

	 = 0.95
0.8 40 0.952 0.457 0.964 0.471

80 0.952 0.362 0.955 0.371
120 0.951 0.320 0.947 0.329

0.5 40 0.951 0.479 0.961 0.497
80 0.946 0.375 0.955 0.388

120 0.949 0.337 0.951 0.346
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Fig. 3. Estimated conditional survival curve and confidence bands based on normal approximation. The
smooth solid line is S(t |z), while the step solid line is Ŝn(t |z), the dashed lines are confidence
bands (4.1) and the dotted lines are pointwise confidence bands (4.2).The parameters were selected as
z = 0.5, a0 = 0.5, a1 = 1, a2 = 0, b0 = 2, b1 = 1, b2 = 0, c1 = c2 = 1.25 and the sample size n = 80.
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Appendix A

Proof of Theorem 3.1. Since

�̂n(t |z) − �(t |z) = (
�̂n(t |z) − �(t |z)) + Jn1(t) + Jn2(t), (A.1)

where

Jn1(t) ≡
n∑

i=1

∫ t

0

(1 − �i )
(
m(s, Zi) − �i

)
Bni(z; hn) dHi(s)

H̄n(s − |z) − �(t |z),

Jn2(t) ≡
n∑

i=1

∫ t

0

(1 − �i )(m̂(s, Zi) − m(s, Zi))Bni(z; hn) dHi(s)

H̄n(s − |z) .

Since H(�z|z) > 0, we have sup0� t ��z

∣∣H̄−1
n (t |z)− H̄−1(t |z)∣∣ a.s.→ 0. This together with the fact

n−1 ∑n
i=1 Kh(Zi − z)

a.s.→ fZ(z) proves

Jn1(t) = 1

nfZ(z)

n∑
i=1

(1 − �i )
(
m(Xi, Zi) − �i

)
Kh(Zi − z)

H̄ (Xi |z)
I (Xi � t) + o(1) a.s.

uniformly for t ∈ [0, �z]. Under MAR assumption, since E|(1 − �i )H̄
−1(Xi |z)

(
m(Xi, Zi) − �i

)
Kh(Zi − z)I (Xi � t)| < ∞ and

E
(1 − �i )

(
m(Xi, Zi) − �i

)
Kh(Zi − z)

H̄ (Xi |z)
I (Xi � t) = 0,

by the strong law of large number, we get

Jn1(t) → 0 a.s. (A.2)

On the other hand, by
∣∣m̂(t, z) − m(t, z)

∣∣ → 0 a.s. and H̄n(t − |z) → H̄ (t |z) a.s., we get

∣∣Jn2(t)
∣∣� |m̂(t, z) − m(t, z)|H̄−1

n (t |z) → 0 a.s. (A.3)

By (A.1)–(A.3) and the strong consistency of �̂n(t |z) due to Dabrowska [3], it follows that �̂n(t |z)
is pointwise consistent. Since �̂n(t |z) and �(t |z) are bounded monotone functions on interval
[0, �z] and �(t |z) is continuous, (3.1) is then proved.

Since

max
1� i �n

∣∣Bni(z; hn)
∣∣ = max

1� i �n

∣∣∣∣n−1Kh(Zi − z)

f̂Z(z)

∣∣∣∣ = O((nh)−1) a.s.,
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by inequality | ln(1 − x) + x|�x2, we get

sup
0� t ��z

∣∣ ln Ŝn(t |z) + �̂n(t |z)
∣∣ � sup

0� t ��z

n∑
i=1

∫ t

0

�̂i

2
B2

ni(z; hn) dHi(s)

H̄ 2
n (s − |z)

� max
1� i �n

∣∣Bni(z; hn)
∣∣H̄−2

n (�z − |z) = O((nh)−1) a.s.

It follows by Taylor expansion that

Ŝn(t |z) − S(t |z) =
{

exp
(

ln Ŝn(t |z) + �̂n(t |z)
)

exp
( − �̂n(t |z) + �(t |z)) − 1

}
S(t |z)

=
{

exp
( − �̂n(t |z) + �(t |z)) − 1

}
S(t |z) + o(1)

= ( − �̂n(t |z) + �(t |z))S(t |z) + o(1) a.s. (A.4)

uniformly for t ∈ [0, �z]. We get (3.2) by (3.1) and (A.4). �

Appendix B

The weak convergence results need the following asymptotic representation of �̂n(t |z) and
Ŝn(t |z).

Lemma B.1. Suppose condition B hold, then for �z < bH(·|z), we have

�̂n(t |z) − �(t |z) − �(t |z)h2
n = 1

n

n∑
i=1

ICni(t |z) + rn(t |z), (B.1)

Ŝn(t |z) − S(t |z) + S(t |z)�(t |z)h2
n = 1

n

n∑
i=1

S(t |z)ICni(t |z) + r ′
n(t |z), (B.2)

where

ICni(t |z) ≡ Kh(Zi − z)

f̂Z(z)

∫ t

0

dMi(s)

H̄n(s − |z)
+Kh(Zi − z)

fZ(z)

(�i − �(Xi, Zi))
(
�i − m(Xi, Zi)

)
I (Xi � t)

�(Xi, Zi)H̄ (Xi |z)
with

Mi(t) ≡ �iHi(t) −
∫ t

0
I (Xi �s) d�(s|Zi)

and

sup
t∈[0,�z]

|rn(t |z)| = op((nhn)
−1/2), sup

t∈[0,�z]
|r ′

n(t |z)| = op((nhn)
−1/2).

Proof. At first we represent �̂n(t |z) − �(t |z) as

�̂n(t |z) − �(t |z) = In1(t) + In2(t) + In3(t), (B.3)
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where

In1(t) ≡ �̃n(t |z) − �(t |z),

In2(t) ≡
n∑

i=1

∫ t

0

(1 − �i )(m(s, Zi) − �i )Bni(z; hn) dHi(s)

H̄n(s − |z) ,

In3(t) ≡
n∑

i=1

∫ t

0

(1 − �i )(m̂(s, Zi) − m(s, Zi))Bni(z; hn) dHi(s)

H̄n(s − |z) .

Since

In1(t) − �(t |z)h2
n = 1

n

n∑
i=1

∫ t

0

Kh(Zi − z) dMi(s)

f̂Z(z)H̄n(s − |z) +
∫ t

0

dUn(s|z)
f̂Z(z)H̄n(s − |z) (B.4)

where

Mi(t) = �iHi(t) −
∫ t

0
I (Xi �s) d�(s|Zi)

is a local martingale with respect to the filtration generated by{
I (Xi �s, �i = 1), I (Xi �s, �i = 0), Zi, i = 1, . . . , n, s� t

}
and

Un(t |z) = 1

n

n∑
i=1

∫ t

0
Kh(Zi − z)I (Xi �s) d[�(s|Zi) − �(s|z)]

−
∫ t

0
f̂Z(z)H̄n(s − |z)�(ds|z)h2

n.

Since f̂Z(z)H̄n(t − |z) →p fZ(z)H̄ (t |z) uniformly in [0, �z], Lemma 2.2 of Dabrowska’s [4]
shows (nhn)

1/2Un(t |z) →p 0 uniformly in t ∈ [0, �z]. Following Dabrowska’s [4] proof of
Theorem 2.1, we have

sup
t∈[0,�z]

∣∣∣ ∫ t

0

dUn(s|z)
f̂Z(z)H̄n(s|z)

∣∣∣ = op((nhn)
−1/2). (B.5)

Combining (B.4) and (B.5), we get

In1(t) − �(t |z)h2
n = 1

n

n∑
i=1

Kh(Zi − z)

f̂Z(z)

∫ t

0

dMi(s)

H̄n(s − |z) + op((nhn)
−1/2) (B.6)

uniformly for t ∈ [0, �z]. Since

sup
t∈[0,�z]

(
Hn(t − |z)f̂Z(z) − H(t |z)fZ(z)

)2 = op((nhn)
−1/2),
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uniformly for t ∈ [0, �z], the second term in (B.3) can be represented as

In2(t) =
n∑

i=1

∫ t

0

(1 − �i )(m(s, Zi) − �i )Bni (z; hn)dHi(s)

H̄n(s − |z)

= 1

n

n∑
i=1

∫ t

0

(1 − �i )(m(s, Zi) − �i )Kh(Zi − z)dHi(s)

H̄ (s − |z)fZ(z)

+ 1

n

n∑
i=1

∫ t

0

(1 − �i )
(
m(s, Zi) − �i

)(
Hn(s − |z)f̂Z(z) − H(s|z)fZ(z)

)
Kh(Zi − z) dHi(s)

H̄ 2(s|z)f 2
Z

(z)

+op((nhn)−1/2)

≡ In21(t) + In22(t) + op((nhn)−1/2).

Notice

In22(t) = 1

n(n − 1)

∑
i 
=j

{
(1 − �i )

(
m(Xi, Zi) − �i

)
Kh(Zi − z)

H̄ 2(Xi |z)f 2
Z(z)

×(
I (Xj �Xi)Kh(Zj − z) − H(Xi |z)fZ(z)

)}
I (Xi � t) + op((nhn)

−1/2),

by condition (B4) and properties of U -statistics processes [15, Theorem 1.2], uniformly for
t ∈ [0, �z],

In22(t) = 1

n

n∑
i=1

{
(1 − �i )

(
m(Xi, Zi) − �i

)
Kh(Zi − z)

H̄ 2(Xi |z)f 2
Z(z)

×
(
E

(
I (X�Xi)Kh(Z − z)|Xi

) − H(Xi |z)fZ(z)
)}

I (Xi � t) + op((nhn)
−1/2)

= op((nhn)
−1/2). (B.7)

Thus

In2(t) = 1

n

n∑
i=1

(1 − �i )(m(Xi, Zi) − �i )Kh(Zi − z)I (Xi � t)

H̄ (Xi |z)fZ(z)
+ op((nhn)

−1/2) (B.8)

uniformly for t ∈ [0, �z]. Define

f̂1(t, z) ≡ 1

n

n∑
i=1

�i�iVa(Xi − t)Wb(Zi − z),

f̂2(t, z) ≡ 1

n

n∑
i=1

�iVa(Xi − t)Wb(Zi − z),

then m̂(t, z) = f̂1(t, z)/f̂2(t, z). Let f (t, z) be the density function of P(X� t, Z�z) and
define f1(t, z) ≡ �(t, z)m(t, z)f (t, z), f2(t, z) ≡ �(t, z)f (t, z). By MAR assumption and
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conditions B, we get

sup
t∈[0,�z]

|f̂1(t, z) − f1(t, z)| = Op((nhn)
−1/2),

sup
t∈[0,�z]

|f̂2(t, z) − f2(t, z)| = Op((nhn)
−1/2).

So uniformly for t ∈ [0, �z], the function In3(t) can be decomposed as

In3(t) = In31(t) − In32(t) + op((nhn)
−1/2), (B.9)

where

In31(t) ≡ 1

n

n∑
i=1

∫ t

0

(1 − �i )
(
f̂1(s, Zi) − f̂2(s, Zi)m(s, Zi)

)
Kh(Zi − z) dHi(s)

f2(s, Zi)H̄ (s|z)fZ(z)

and

In32(t) ≡ 1

n

n∑
i=1

∫ t

0

[
(1 − �i )

(
f̂1(s, Zi) − f̂2(s, Zi)m(s, Zi)

)
Kh(Zi − z)

f 2
2 (s, Zi)H̄ (s|z)fZ(z)

×(
f̂2(s, Zi) − f2(s, Zi)

)]
dHi(s).

Let f̃1(t, z) = Ef̂1(t, z) and f̃2(t, z) = Ef̂2(t, z). Since

In31(t) = 1

n(n − 1)

∑
i 
=j

×
[
�j (1 − �i )(�j − m(Xi, Zi))Va(Xj − Xi)Wb(Zj − Zi)Kh(Zi − z)

f2(Xi, Zi)H̄ (Xi |z)fZ(z)

]
×I (Xi � t) + op((nhn)

−1/2),

uniformly for t ∈ [0, �z], we have

In31(t) = 1

n

n∑
k=1

∫
Kh(u − z) dFZ(u)

×
∫ t

0

�k

(
1 − �(s, u)

)(
�k − m(s, u)

)
Va(Xk − s)Wb(Zk − u) dH(s|u)

f2(s, u)H̄ (s|z)fZ(z)

+1

n

n∑
k=1

∫ t

0

(1 − �k)
(
f̃1(s, Zk) − f̃2(s, Zk)m(s, Zk)

)
Kh(Zk − z) dHk(s)

f2(Xk, Zk)H̄ (Xk|z)fZ(z)

+op((nhn)
−1/2). (B.10)
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uniformly for t ∈ [0, �z], by properties of U -statistics processes [15, Theorem 1.2]. Taylor ex-
pansion of m(x, z), H̄ (x|z), fZ(x) shows

1

n

n∑
k=1

∫
Kh(u − z) dFZ(u)

×
∫ t

0

�k

(
1 − �(s, u)

)(
�k − m(s, u)

)
Va(Xk − s)Wb(Zk − u) dH(s|u)

f2(s, u)H̄ (s|z)fZ(z)

= 1

n

n∑
k=1

�k

(
1 − �(Xk, Zk)

)(
�k − m(Xk, Zk)

)
Kh(Zk − z)f (Xk, Zk)I (Xk � t)

f2(Xk, Zk)H̄ (s|z)fZ(z)

+op((nhn)
−1/2). (B.11)

By condition (B4), we get

sup
t∈[0,�z]

|f̃1(t, z) − f2(t, z)| = op((nhn)
−1/2),

sup
t∈[0,�z]

|f̃2(t, z) − f2(t, z)| = op((nhn)
−1/2).

Thus

1

n

n∑
k=1

∫ t

0

(1 − �k)
(
f̃1(s, Zk) − f̃2(s, Zk)m(s, Zk)

)
Kh(Zk − z) dHk(s)

f2(Xk, Zk)H̄ (Xk|z)fZ(z)

= op((nhn)
−1/2), (B.12)

Combining (B.10)–(B.12), we have

In31(t) = 1

n

n∑
k=1

�k

(
1 − �(Xk, Zk)

)(
�k − m(Xk, Zk)

)
Kh(Zk − z)f (Xk, Zk)I (Xk � t)

f2(Xk, Zk)H̄ (s|z)fZ(z)

+op((nhn)
−1/2) (B.13)

uniformly for t ∈ [0, �z]. Since In32(t) can be represented as

In32(t) = 1

n(n − 1)(n − 2)

∑
i 
=j 
=k

×
[

�j (1 − �i )(�j − m(Xi, Zi))Va(Xj − Xi)Wb(Zj − Zi)Kh(Zi − z)

f 2
2 (Xi, Zi)H̄ (Xi |z)fZ(z)

×
(
�kVa(Xk − Xi)Wb(Zk − Zi) − f2(Xi, Zi)

)]
I (Xi � t)

+op((nhn)
−1/2),

similar argument as used in the proof of (B.13) shows

sup
t∈[0,�z]

In32(t) = op((nhn)
−1/2). (B.14)
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Notice �(X, Z) = f2(X, Z)/f (X, Z), by (B.9)–(B.14), we get

In3(t) = 1

n

n∑
i=1

�i

(
1 − �(Xi, Zi)

)(
�i − m(Xi, Zi)

)
Kh(Zj − z)I (Xi � t)

�(Xi, Zi)H̄ (Xi |z)fZ(z)

+op((nhn)
−1/2). (B.15)

uniformly for t ∈ [0, �z]. Combining (B.3), (B.6), (B.8) and (B.15), we complete the proof of
(B.1). Under condition B, similar to (A.4), it can be proved

Ŝn(t |z) − S(t |z) = ( − �̂n(t |z) + �(t |z))S(t |z) + op((nhn)
−1/2) (B.16)

uniformly for t ∈ [0, �z]. (B.2) is then proved. �

Proof of Theorem 3.2. We only analyze �̂n(t |z). The properties of Ŝn(t |z) can be obtained by
(B.16). Using the fact EICni(t |z) = 0, 〈Mi(t), Mi(t)〉 = ∫ t

0 I (Xi �s) d�(s|Zi) and

E

{
K2

h(Zi − z)

f̂ 2
Z(z)

(�i − �(Xi, Zi))
(
�i − m(Xi, Zi)

)
I (Xi � t)

�(Xi, Zi)H̄ (Xi |z)
∫ t

0

dMi(s)

H̄n(s − |z)

}
= 0,

we have

EICni(t1|z)ICni(t2|z)
= E

{
K2

h(Zi − z)

f̂ 2(z)

∫ t1∧t2

0

I (Xi �s) d�(s|Zi)

H̄ 2
n (s − |z)

}

+E

{
Kh(Zi − z)

f (z)

(�i − �(Xi, Zi))
(
�i − m(Xi, Zi)

)
I (Xi � t1 ∧ t2)

�(Xi, Zi)H̄ (Xi |z)

}2

= f −1
z (z)�(K)

∫ t1∧t2

0

d�(s|z)
H̄ (s|z)

+f −1
z (z)�(K)

∫ t1∧t2

0

m(s, z)(1 − m(s, z))(1 − �(s, z)) dH(s|z)
�(s, z)H̄ 2(s|z) + o(1)

≡ Cov(W(t1|z), W(t2|z)) + o(1).

By the multivariate central limit theorem and Lemma B.1, the finite-dimensional distribution of
n−1/2 ∑n

i=1 ICni(t |z) converge to the finite-dimensional distribution of a mean zero Gaussian
process W(t |z) with covariance function Cov(W(t1|z), W(t2|z)). On the other hand, notice that

(�i − �(Xi, Zi))
(
�i − m(Xi, Zi)

)
I (Xi � t)

�(Xi, Zi)H̄ (Xi |z)
= (�i�i − �im(Xi, Zi) − �i�(Xi, Zi) + �(Xi, Zi)m(Xi, Zi)

)
I (Xi � t)

�(Xi, Zi)H̄ (Xi |z)
,

thus n−1/2 ∑n
i=1 ICni(t |z) can be represent as a sum of a martingale integral and some monotone

processes on [�1, �2]. Thus the tightness of n−1/2 ∑n
i=1 ICni(t |z) follows from properties of

martingale integral and Example 2.11.16 of van der Vaart and Wellner [18]. Eq. (3.3) is then
proved. �



Q. Wang, J. Shen / Journal of Multivariate Analysis 99 (2008) 928–948 947

Appendix C

Proof of Theorem 4.1. Note that

�n(t |z)
[

ln

(
1 − Bi

Ri + �n(t |z)
)

− ln

(
1 − Bi

Ri

)]
�0.

By (4.3), (4.4) and inequality | ln(1 − x) − ln(1 − y)|� |x − y| for x, y ∈ (0, 1), we get

�n(t |z)
[

ln(S(t |z)) − ln(Ŝn(t |z))
]

=
∑

i:Xi � t

�n(t |z) ln

(
1 − Bi

Ri + �n(t |z)
)

− ln

(
1 − Bi

Ri

)

=
∑

i:Xi � t

|�n(t |z)|
∣∣∣∣ln

(
1 − Bi

Ri + �n(t |z)
)

− ln

(
1 − Bi

Ri

)∣∣∣∣
�

∑
i:Xi � t

|�n(t |z)|
∣∣∣∣ Bi

Ri + �n(t |z) − Bi

Ri

∣∣∣∣
� �n(t |z)2

1 + |�n(t |z)|/ min
i:Xi � t

Ri

∑
i:Xi � t

Bi

R2
i

. (C.1)

Using similar arguments used in the proof of Theorem 3.1, we get

∑
i:Xi � t

Bi

R2
i

=
n∑

i=1

∫ t

0

�iBni(z; hn) dHi(s)

H̄ 2
n (s − |z) =

∫ t

0

d�(s|z)
H̄ (s|z) + o(1) a.s.

uniformly for t ∈ [�1, �2]. Almost surely for large n, for t ∈ [�1, �2],
min

i:Xi � t
Ri �H̄n(t − |z)�H̄ (�2|z)/2.

Thus together with the fact that supt∈[�1,�2] | ln Ŝn(t |z) − ln S(t |z)| = Op((nhn)
−1/2) proves

sup
t∈[�1,�2]

�n(t |z) = Op((nhn)
−1/2).

Repeating the proof of Lemma A.3 and Lemma A.4 of Li and van Keilegom [10], we get

�n(t |z) = �(K)
(

ln S(t |z) − ln Ŝn(t |z)
)

f̂Z(z)�̂2
0(t |z)

+ Op((nhn)
−1) (C.2)

uniformly for t ∈ [�1, �2], where

�̂2
0(t |z) =

∫
K2(u) du

f̂Z(z)

∑
i:Xi � t

Bi

Ri(Ri − Bi)

and

−2 ln R(S(t |z), t |z) = �2
n(t |z)

n∑
i=1

Bi

Ri(Ri − Bi)
+ op((nhn)

−1/2)



948 Q. Wang, J. Shen / Journal of Multivariate Analysis 99 (2008) 928–948

uniformly for t ∈ [�1, �2]. Thus

−2nhn

�̂2
0(t |z)f̂Z(z)

�̂2
(t |z)�(K)

ln R(S(t |z), t |z) = nhn(ln S(t |z) − ln Ŝn(t |z))2

�̂2
(t |z) + op((nhn)

−1/2).

Notice that

�̂2
(t |z) = �(K)f̂ −1

Z (z)

∫ t

0

d�̂n(s|z)
H̄n(s − |z)

+
∫ t

0

m̂(s, z)(1 − m̂(s, z))(1 − �̂(s, z)) dHn(s|z)
�̂(s, z)H̄ 2

n (s − |z) .

By the uniform consistencies of �̂n(t |z), Hn(t |z), m̂(t, z), �̂(t, z) for t ∈ [�1, �2], with the similar

argument to that of Theorem 3.1, we get supt∈[�1,�2] |�̂2
(t |z) − �2(t |z)| p→ 0. Thus

−2nhn

�̂2
0(t |z)f̂Z(z)

�̂2
(t |z)�(K)

ln R(S(t |z), t |z) W→ B2(u)

u(1 − u)
in D[�1, �2]. �
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