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The antianginal drug ranolazine, which combines inhibitory actions on rapid and sustained sodium currents with
inhibition of the hERG/IKr potassium channel, shows promise as an antiarrhythmic agent. This study investigated
the structural basis of hERG block by ranolazine, with lidocaine used as a low potency, structurally similar compar-
ator. Recordings of hERG current (IhERG) were made from cell lines expressing wild-type (WT) or mutant hERG
channels. Docking simulations were performed using homology models built on MthK and KvAP templates. In
conventional voltage clamp, ranolazine inhibited IhERG with an IC50 of 8.03 μM; peak IhERG during ventricular action
potential clamp was inhibited ~62% at 10 μM. The IC50 values for ranolazine inhibition of the S620T inactivation
deficient and N588K attenuated inactivation mutants were respectively ~73-fold and ~15-fold that for WT IhERG.
Mutations near the bottom of the selectivity filter (V625A, S624A, T623A) exhibited IC50s between ~8 and 19-fold
that for WT IhERG, whilst the Y652A and F656A S6 mutations had IC50s ~22-fold and 53-fold WT controls. Low
potency lidocaine was comparatively insensitive to both pore helix and S6mutations, but was sensitive to direction
of K+

flux and particularly to loss of inactivation, with an IC50 for S620T-hERG ~49-fold that for WT IhERG. Docking
simulations indicated that the larger size of ranolazine gives it potential for a greater range of interactions with
hERG pore side chains compared to lidocaine, in particular enabling interaction of its two aromatic groups with
side chains of both Y652 and F656. The N588K mutation is responsible for the SQT1 variant of short QT syndrome
and our data suggest that ranolazine is unlikely to be effective against IKr/hERG in SQT1 patients.

© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Class III antiarrhythmic agents prolong refractoriness and can be
effective in treating atrial and ventricular re-entrant arrhythmias
[1,2]. A number of ‘pure’ Class III compounds, including D-sotalol
and dofetilide exert their effects through inhibition of the rapid delayed
rectifier K+ current, IKr and its recombinant equivalent hERG [3,4]. IKr/
hERG blockade additionally contributes to the actions of the Class Ia
antiarrhythmics quinidine and disopyramide and has also been report-
ed for Class Ic drugs such as propafenone and flecainide (e.g. [5–8]). By
contrast, the Class Ib antiarrhythmic agents mexiletine and lidocaine
have comparatively low affinity for IKr/hERG channels [9–11]. Deleteri-
ous as well as beneficial effects of Class Ia and III drugs are associated
with their IKr/hERG blocking propensity, as they carry some risk of
acquired long QT syndrome and associated Torsades de Pointes (TdP)
arrhythmia [12,13].
x).
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The antianginal agent ranolazine is receiving increasing interest as a
potential antiarrhythmic agent [14,15]. In a pre-clinical experimental
setting ranolazine can produce modest prolongation of action potential
duration (APD;without reverse-rate dependence), without augmenting
transmural dispersion of repolarization and it can suppress early after-
depolarizations in Purkinje fibres and ventricular ‘M’ cells; thus
ranolazine appears to be without the potential to produce TdP of pure
Class III drugs (reviewed in [16, 17]). Patients with angina receiving
ranolazine exhibit concentration-dependent QT interval prolongation
that is only modest at high doses (QTc increase of b10 ms with
1000 mg twice daily; [18]). In humans, continuous ECG monitoring of
6351 patients over 7 days following admission for acute coronary syn-
drome (MERLIN-TIMI 36) showed that fewer patients on ranolazine
had episodes of ventricular or supraventricular tachycardia, with a
trend also towards a lower incidence of new onset atrial fibrillation
(AF) [19]. A small-scale study of patients with new onset or paroxysmal
atrial fibrillation (AF; most of whom had some structural heart disease)
showed 72% (13/18 patients) conversion to sinus rhythm with high
dose (2000 mg) ranolazine, suggesting that further evaluation of
ranolazine for AF conversion is warranted [20]. A study of 25 patients
with AF resistant to electrical cardioversion, found that 19 patients
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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were successfully cardioverted within two attempts, following oral
ranolazine administration [21].

Ranolazine exerts a use-dependent block of both rapid and sustained
Na+ currents (INa and INa,Late respectively) [17,22,23] and due to differ-
ences between atrial and ventricular INa, the drug is considered to exhibit
atrioselectivity of rapid INa blockade [24]. At clinically relevant concentra-
tions, ranolazine also inhibits IKr and its recombinant equivalent ‘hERG’
[23,25,26]. Consequently, ranolazine combines clinically relevant actions
against INa and IKr and this appears to lead to amore favourable frequency
dependence of its effects on cardiac repolarization than seenwith pure IKr
blockade [27]. Indeed, ranolazine has a more favourable action on atrial
effective refractory period than expected for pure IKr blockers such as
dofetilide [28]. Ranolazine has been reported to produce IhERG block
that is rapid in its onset and reversibility and that depends on drug-
access to the channel from the cell interior [26]. Additionally, whilst
ranolazine does not impair trafficking of wild-type (WT) hERG channels
to the cell membrane [26], a recent study suggests that it can promote
trafficking of long QT syndrome (LQTS) mutant channels and thus
ranolazine may have potential to act as a pharmacological chaperone
for LQTS mutant hERG channels [29]. However, although there is evi-
dence that ranolazine binds to hERG within the channel's inner cavity
[23], the nature of the underlying drug–channel interactions is incom-
pletely understood and the role of channel inactivation (which is critical
for hERG inhibition by some, but not all, drugs [8,30]) in the drug's hERG
blocking action has not been studied. Accordingly, the present investiga-
tionwas undertaken to elucidate the nature andmolecular determinants
of the drug's inhibition of hERG, through a combination of electrophysiol-
ogy andmutagenesis, togetherwith drug docking to homologymodels of
the hERG channel. As noted by others [31], ranolazine shares chemical
structure with lidocaine (see Fig. S1 in the online supplement): both
compounds exhibit a tertiary amine local anaesthetic (LA) structure con-
taining hydrophobic (aromatic ring) and hydrophilic (tertiary amine)
groups [31]. Lidocaine was therefore used as a low affinity [11], structur-
ally similar comparator for experiments with hERG mutants and for
docking.

2. Materials and methods

2.1. Maintenance of mammalian cell lines and cell transfection

HEK 293 cells stably expressing WT hERG (provided by Professor
Craig January [32]) or the Y652A and F656A mutants [33] were main-
tained as described previously (e.g. [33,34]). For transient transfection,
cells were maintained as previously described [35] and transfected
with cDNA plasmids (T623A, S624A, V625A, N588K, S620T hERG)
using either Lipofectamine 2000 or LTX (Invitrogen, Paisley, UK).
Green Fluorescent Protein or CD8 was used as markers of successful
transfection. Further details are available in the online supplementary
information.

2.2. Electrophysiological recordings

Recordings were made at 37 ± 1 °C with a standard Tyrode's solu-
tion containing (in mM): 140 NaCl, 4 KCl, 2 CaCl2, 1 MgCl2, 10 Glucose,
5 HEPES (titrated to pH 7.4 with NaOH). For experiments with mutants
T623A and F656A and their WT controls, the superfusate contained
94 mM KCl (with NaCl concentration correspondingly reduced) [34].
Patch-pipettes (Glass 8250, AM Systems Inc.) had a final resistance
of 2–4 MΩ. The pipette dialysis solution contained (in mM): 130 KCl,
1 MgCl2, 5 EGTA, 5 MgATP; pipette pH was buffered to pH 7.2 with
10 mM HEPES (titrated with KOH). Series resistance values typically
lay between 3 and 7 MΩ and were compensated by ~60–80%. The
data digitization rate was 10 kHz during all protocols and a bandwidth
of 2 kHzwas set on the amplifier. Further information, including specific
equations used for data analysis, is available in the online supple-
mentary information.
2.3. Ranolazine and lidocaine

Ranolazine di-HCl powder (Sequoia Research Products Ltd. UK) was
dissolved in deionized water (Milli-Q,Millipore) to give a stock concen-
tration of 10mM. Lidocaine was dissolved in deionized water at a stock
concentration of 10–20 mM. Both stock solutions were diluted with
appropriate superfusion solutions to achieve series of concentration
in the Results section. For higher final concentrations, lidocaine was
dissolved directly in Tyrode's solution. All experimental superfusates
during recording were delivered by a home-built rapid solution ex-
change device [36].

2.4. Molecular modelling

Docking of ranolazine and lidocaine to hERG was conducted using
homologymodels of the hERG pore encompassing the pore helix, selec-
tivity filter and S6 helices. As with previous studies we found that an
open channel model built onto the crystal structure of the bacterial K+

channel MthK (PDB: 1LNQ [37]) gave docking data broadly consistent
with experimentalmutagenesis data. Thismodel is described elsewhere
[34,38,39]. We have recently compared our MthK-based model with
models based on putative C-type inactivated state structures of the
KcsA bacterial channel and found that the MthK-based model accords
more closely with experimental data on drug-binding for a range of
structurally-diverse hERG blockers [39]. For other drugs that bind with
moderate or weak affinity, binding modes obtained with a modified
KvAP model (“Farid model”) [40] were similar to those described for
the MthK model [34]. Here docking was performed with both the
MthK and Farid models using the Flexidock module of Sybylx2.0,
which allows free sampling of protein side chain rotamers. Definition
of the drug-binding pocket, selection of rotatable bonds, construction
of starting configurations and choice of Genetic Algorithm parameters
were performed as described previously [34,39]. Further information
is available in the online supplementary information.

3. Results

3.1. Pharmacological sensitivity of WT IhERG

The response of WT IhERG to ranolazine was first determined using a
ventricular action potential (AP) voltage command (AP clamp; Fig. 1Ai
for representative traces and Fig. 1Aii for mean data). Application of
10 μM ranolazine produced IhERG suppression that was rapid in both
onset and reversibility (Fig. 1Aii). Peak IhERG during the repolarizing
phase of the AP was inhibited by 62.42 ± 2.03% (n = 6 cells). The
rapid onset and washout of the effects of ranolazine are consistent
with prior observations under conventional voltage clamp [26], in
demonstrating that ranolazine inhibition both developed and washed
out rapidly. We then used a conventional voltage step protocol, com-
prised of a 2-second depolarization to +20mV followed by repolariza-
tion to −40 mV to elicit IhERG tails. Tail current (Itail) amplitude was
measured relative to current elicited by a brief (50 ms) pre-pulse prior
to the +20 mV test command [8,34,35,41]. Fig. 1B shows example
records of IhERG in control and in the presence of 10 μM ranolazine
(with 58% blockade of the IhERG tail in this example; (57.90 ± 1.29%,
n = 6 cells; t-test, p N 0.05 compared to effects of this drug concen-
tration under AP clamp)). The concentration–response relation for
ranolazine inhibition of IhERG elicited by this protocol is shown in
Fig. 1D (filled squares), yielding an IC50 value of 8.03 ± 0.95 μM (h =
0.81± 0.07). Ranolazine thus produced IhERG block at clinically relevant
concentrations (2–6 μM[25]). For somedrugs, reversal of the direction of
K+ ion flux can reduce IhERG block, due to electrostatic repulsion or
‘knock-off’ (e.g.[30,34,42,43]). Therefore, we also sought concentration–
response data for ranolazine for inward IhERG currents at −120 mV,
with a high (94 mM) extracellular K+ concentration ([K+]e), using the
protocol shown in Fig. 1C (lower panel). Representative current records



Fig. 1.Wild-type IhERG block by ranolazine and lidocaine. Ai. Representative current traces in control (normal Tyrode's) solution and in 10 μM ranolazine, overlying the applied AP voltage
command. Aii. Time-course of inhibition of peak IhERG during the repolarization phase of the AP. Peak IhERG in control was normalized to a value of 1 and then current magnitudes in
ranolazine were expressed as a proportion of this (I/Imax; n = 6 cells). B. Upper panel shows representative IhERG traces in the absence (black line) and presence (grey line) of 10 μM
ranolazine in normal Tyrode's solution (4 mM [K+]e), elicited by the protocol shown in the lower panel. Horizontal arrows denote zero current. C. Upper panel shows inward IhERG tail
records in the absence (black line) and presence (grey line) of 10 μM ranolazine (~58% inhibition) in high K+ Tyrode's solution (94 mM [K+]e). The current was evoked by the protocol
shown in the lower panel and is shown on an expanded time-scale (denoted by the boxed area in the voltage protocol). D. Concentration–response relations for inhibition of IhERG by
ranolazine in normal K+ (filled square) and high K+ (open circle) Tyrode's solution. Data were fittedwith a Hill-equation. Note that error bars for some points are small and are obscured
by the symbols (n ≥ 5 cells per data-point). The data-points for 4 mM [K+]e and 94 mM [K+]e are closely overlain at 1 and 10 μM ranolazine.
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are shown in Fig. 1C (upper panel), with concentration–response data
plotted in Fig. 1D (open circles). The sensitivity of inward IhERG to
ranolazine in 94 mM [K+]e (an IC50 value of 8.47 ± 2.63 μM; h =
0.58 ± 0.10) was similar to that for outward IhERG. Parallel experiments
were performed on lidocaine (see online supplemental Fig. S2 and
Table S2). The IC50 for outward IhERG tail inhibition by lidocaine in 4 mM
[K+]e was 141.77 ± 9.81 μM (h= 0.98 ± 0.07), with an IC50 for inward
IhERG in high [K+]e increased to 735.32 ± 54.03 μM (h = 0.82 ± 0.05).
Thus lidocaine differed from ranolazine both in its hERG blocking potency
and sensitivity of inhibition to [K+]e and to the direction of K+

flux.
Further experiments were conducted under conventional voltage

clamp in order to determine voltage dependence of WT IhERG inhibition
by ranolazine under our conditions (see supplemental Fig. S3 for
details). Similar to a previous study [26], we observed ranolazine's
inhibitory action to show a degree of voltage dependence and to be ac-
companied by a modest left-ward shift in voltage-dependent activation
of IhERG (by ~4 mV at 10 μM; see supplementary Fig. S3).

3.2. The effect of inactivation attenuation on IhERG inhibition

Intact hERG channel inactivation is important to the development of
IhERG inhibition by some (typically, though not exclusively, high affinity)
drugs [8,30,44], although some agents with sub-μM and μM IC50 values
do not depend critically on inactivation gating for inhibition to occur
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(e.g. [5,8,45]). To our knowledge, no previous study has investigated
the extent to which channel inactivation is required for IhERG inhibition
by ranolazine. S620T hERG channels lack inactivation and have been
suggested to be useful for determination of true drug affinity for
the open/activated channel [30]. Fig. 2A shows the effects of S620T on
IhERG block by ranolazine (Fig. 2Ai (representative traces) and Aii
(concentration–response relations)). The drug's inhibitory potency
was markedly reduced for S620T hERG compared to the WT channel,
with an IC50 value of 582.65 ± 23.36 μM (h = 0.89 ± 0.05), ~73-fold
the WT IC50. This mutation also had a marked effect on IhERG block by
lidocaine (see supplementary Fig. S4).

As ranolazine block of WT IhERG occurs at clinically relevant concen-
trations, we further pursued the effect of inactivation attenuation by
studying an additional, clinically relevant attenuated inactivation
hERG mutant (N588K). Residue 588 lies in the S5-pore helix linker,
which is distant from the hERG channel's inner cavity. In contrast to
the S620T mutation [30,44], the N588K mutation does not eliminate
IhERG inactivation completely, but results in positively shifted voltage-
dependent inactivation of IhERG by ~+60 to +90 mV [46,47]. This
Fig. 2. Ranolazine block of S620T and N588K IhERG. Ai, Bi. Representative S620T (Ai) and N588K
elicited by the protocol shown in the lower panels. Aii, Bii. Concentration–response plots (mean
In each case the relation forWT IhERG during the same protocol is reproduced for comparison. Da
the symbols. (n ≥ 5 cells per data-point.)
mutation is responsible for one form (SQT1) of the genetic short QT
syndrome. It markedly attenuates the action of Class III agents such as
sotalol, dofetilide and E-4031, but produces relatively small effects on
inhibition by Class Ia drugs [30,48]. Fig. 2Bi shows representative
N588K IhERG traces in control and in 10 μM ranolazine. IhERG block was
attenuated compared to that of WT IhERG, but not as extensively as for
the S620T mutation. Fig. 2Bii shows the concentration–response rela-
tion for inhibition of N588K IhERG superimposed on that for WT IhERG.
The derived IC50 value was 124.08 ± 7.39 μM (h = 0.81 ± 0.05) for
N588K hERG, ~15-fold the corresponding value forWT IhERG. The reduc-
tion in ranolazine potency with this mutation is significantly greater
than that reported for Class Ia or Class Ic drugs that have been studied
previously [8,41,49,50].

3.3. Molecular determinants of ranolazine and lidocaine binding

The majority of hERG channel blockers studied bind within the
channel's inner cavity, interacting with one or both of two S6 aromatic
residues (Y652, F656) [3]. There is some evidence that ranolazine
(Bi) IhERG traces in the absence (black line) and presence (grey line) of 10 μM ranolazine,
± SEM) for S620T IhERG block by ranolazine (Aii) andN588K IhERG block by ranolazine (Bii).
tawerefittedwith aHill-equation. Error bars for some points are small and are obscured by

image of Fig.�2
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interactswith these aromatic residues [23].We pursued this bymeasur-
ing concentration–response data for Y652A and F656A hERG mutants
with ranolazine and the structurally related lidocaine. Due to the
known low expression and negatively shifted inactivation kinetics
of F656A hERG [51], F656A IhERG was evaluated by measuring inward
tail current in high [K+]e Tyrode (conditions comparable to those for
WT IhERG in Fig. 1C). Figs. 3 Ai and Aii show respectively the effects of
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ranolazine (10 μM) and lidocaine (300 μM) on F656A inward IhERG
tails compared with WT IhERG controls. 10 μM ranolazine produced
substantial inhibition of WT hERG tail current by 58.32 ± 3.87% (n =
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5 cells). Fig. 3Bi shows concentration–response relations for WT and
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0.68 ± 0.02), ~53-fold that of WT IhERG. Fig. 3Aii shows that 300 μM
lidocaine inhibited F656A inward IhERG tails by 28.85 ± 1.80% (n =
8 cells) and WT IhERG tails by 30.19 ± 2.09% (n = 6 cells). Fig. 3Bii
shows concentration–response data for lidocaine against F656A IhERG,
which was closely superimposed over its WT control, with an IC50

value of 848.12 ± 65.54 μM (h = 0.85 ± 0.06), ~1.15-fold the value
for WT. Thus, the F656 residue appeared to be a key binding determi-
nant for ranolazine, but not for lidocaine.

The effect of Y652A on IhERG inhibition by ranolazine and lidocaine
is shown in Figs. 3C and D (with the standard voltage protocol used
for WT IhERG). Compared with the effect on WT IhERG (Fig. 3Ci), inhibi-
tion of Y652A IhERG by 10 μM ranolazine was significantly reduced (Itail
inhibition of ~19%). The concentration-dependence of mean fractional
block is plotted in Fig. 3Di. The IC50 for inhibition of Y652A IhERG by
Fig. 4. Effect of pore helix mutations on ranolazine and lidocaine block of IhERG. A. Fitted concent
by ranolazine (Ai) and lidocaine (Aii). Panels B, and C show equivalent data for T624A, andV625
plots n ≥ 5 cells per data-point.
ranolazine was 173.62 ± 39.73 μM (h = 0.64 ± 0.14), ~22-fold the
corresponding value for WT hERG. Figs. 3Cii and Dii show the effect of
300 μM lidocaine, with a reduction of the Y652A Itail by ~36.64% com-
pared to ~70.11% for the WT Itail. The IC50 for inhibition of Y652A IhERG
by lidocaine was 554.33 ± 34.03 μM (h = 0.95 ± 0.06), ~3.8-fold the
corresponding value for WT hERG. Thus, the Y652A mutation had a
marked effect on ranolazine block of IhERG, but only a modest effect on
the action of lidocaine.

Amino acids located at the base of the pore helix (T623, S624 and
V625) have been identified as important components of drug-binding
sites for some [51–53] though not all [34,38] hERG blockers. To investi-
gate the roles of these residues in ranolazine and lidocaine block the
T623A, S624A and V652A mutations were studied. T623A IhERG was
studied using the same voltage protocol and conditions as used for
ration–response relations forWT hERG (black line) and T623A hERG (grey line) inhibition
A, respectively. Error bars for some points are small and are obscured by the symbols. For all
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F656A IhERG. Figs. 4Ai and Aii respectively show the concentration–
response relations for ranolazine and lidocaine against WT and T623A
IhERG. The IC50 for T623A IhERG block by ranolazine was 159.21 ±
2.42 μM (h = 0.52 ± 0.006), ~19-fold its WT control (Fig. 4Ai), whilst
that for lidocaine was 746.48 ± 70.40 μM (h = 0.81 ± 0.07), 1.01-
fold its WT control (Fig. 4Aii). The effect of S624A hERG on IhERG block
by ranolazine was investigated using the standard voltage protocol
(shown in Fig. 1B). Figs. 4Bi and Bii show the concentration–response
relations respectively for ranolazine and lidocaine for S624A IhERG. The
IC50 for S624A IhERG block by ranolazine was 61.53 ± 12.93 μM (h =
0.93± 0.19), ~8-fold that ofWT IhERG (Fig. 4Bi),whilst that for lidocaine
was 107.59 ± 14.18 μM (h=1.03± 0.14), ~0.76-fold that ofWT IhERG.
V625 is located within the K+ signature sequence of hERG (SVGFG) and
mutation to alanine reduces the selectivity of hERG channel for K+ [51].
This mutant requires to be studied by measuring the inward hERG tail
current at −120 mV. Fig. 4Ci shows concentration-response relations
for WT and V625A IhERG inhibition by ranolazine, with an IC50 of
*
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identifies the positively-charged tertiary alkyl amino groups of lidocaine and ranolazine.
63.14 ± 6.88 μM (h = 0.58 ± 0.04), ~8-fold that of WT IhERG. Fig. 4Cii
shows similar data for lidocaine, which for V625A IhERG had an IC50 of
1580 ± 75.48 μM (h = 0.51 ± 0.01), 2.68-fold its WT control. Thus,
each of the pore helix mutants had modest effects on ranolazine block
of IhERG, whilst for lidocaine T623A and S624A were essentially without
effect and V625A had only a small effect.

The effects of all of the studied hERG mutants on the potency of
inhibition of IhERG by both ranolazine and lidocaine are summarized in
supplementary Tables S1 and S2.

3.4. Molecular modelling of ranolazine and lidocaine action

Docking of lidocaine and ranolazine into theMthK and Farid models
produced similar low energy score docked states. In both models the
positively-charged tertiary amine common to both blockers was local-
ized near the binding site for a K+ ion observed in crystal structures of
potassium channels (Fig. 5). K+ ions are stabilised here by the focused
*
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homology models. (A) MthK-based model with a representative lidocaine binding pose;
e. The pale blue ribbon defines the pore helices and K+ ions in the S1 and S3 positions
e chains of Y652 (salmon) and F656 (blue) are shown for three channel subunits. The

rgy score poses for lidocaine (C, D) and ranolazine (E, F) bound to the MthK-based model
n–π interactions with the drugs are shown in salmon (Y652) and light blue (F656). Side
the S3 site of the selectivity filter is represented as a sphere. The blue star in each panel

image of Fig.�5
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electrostatic field arising from the C-terminal helix dipoles of the pore
helices. In this configuration each blocker can make additional interac-
tions with aromatic side chains of Y652 and F656. Neither drug made
direct contact with V625 or S620 (Fig. 5), consistent with previous evi-
dence that effects of S620T andV625Amutations on drug-binding result
from indirect effects on hERG pore conformations (e.g. [54]). Although
both drugs lie high in the pore cavity just below the selectivity filter,
the orientations of the amide group differed, with the ranolazine
amide lying horizontally in a position where it may hydrogen bond
with the S624 side chain (Figs. 5B, E, F). The lidocaine amide was
more vertically oriented and unable to hydrogen bond with the S624
OH group (Figs. 5A, C, D). These observations are consistent with the
mutagenesis data for S624A (Figs. 4Bi, Bii). Similarly, lidocaine made
no interactions with T623 (Figs. 5A, C, D) consistent with a lack of effect
of T623A on lidocaine block (Fig. 4Aii). In some poses (e.g. Fig. 5E)
ranolazine approached close to a T623 side chain; this may be relevant
to the reduced block of T623A (Fig. 4Ai).

The structural basis for enhanced drug-binding to the hERG in-
activated state has been attributed to the conformation of the S6 helix
inwhich side chains, particularly Y652 and F656, are optimally positioned
in the inactivated state to interact with drugmolecules in the pore cavity
[55]. The large suppression of ranolazine block in hERG S620T (Fig. 2Bi)
is consistent with the multiple interactions of ranolazine moieties with
Y652 and F656 side chains in WT hERG (Figs. 5E, F), and the attenuation
of these interactions by non-optimal arrangements of aromatic side
chains in S620T; this accounts for the observation that S620T produces
a larger attenuation of block than either Y652A or F656A alone.

Lidocaine inhibition of IhERG was substantially suppressed by the
S620T mutation (supplemental Fig. S4). However, suppression of IhERG
block was negligible for F656A hERG (Fig. 3Bii) and only ~4-fold in
Y652A (Fig. 3Dii), indicating that neither of these side chains is essential
for block. Docking of lidocaine into hERG models carrying either the
Y652A or F656A mutation showed that these observations may be
understood in terms of a degeneracy in binding partners for the lido-
caine aromatic group (supplemental Fig. S5); the lidocaine aromatic
ring can make interactions with either a Y652 (in the case of F656A) or
F656 (in Y652A) aromatic side chain. However if optimal configurations
of both Y652 and F656 side chains are lost in S620T hERG, low affinity
lidocaine block is considerably suppressed. By contrast, docking of
ranolazine to models carrying either the Y652A or F656A mutation
demonstrated that interactions with both Y652 and F656 aromatic
side chains are required for optimal drug–pore interactions to occur
(supplemental Fig. S6).

4. Discussion

4.1. Comparison with previous studies

The potency of IhERG block by ranolazine reported here (IC50 of
~8 μM) is similar to that reported previously by Rajamani and col-
leagues (~12 μM) [26]. We found that ranolazine was nearly 18-fold
more potent than lidocaine at inhibiting IhERG, consistent with only
a weak propensity of lidocaine to inhibit IhERG [11]. Ranolazine has
previously been suggested to compete with the methansulphonanilide
E-4031 for a binding site on hERG [23], with some data supporting
involvement of S6 aromatic residues in this action [23]. However, to
our knowledge, no prior study has provided information on the role of
inactivation gating in ranolazine's inhibitory action, nor a detailed anal-
ysis of structural determinants of inhibition. Nor, in contrast to its inter-
actions with Na+ channels [31,56], has any prior comparative analysis
in respect of hERG block been conducted with lidocaine.

4.2. Role of inactivation in IhERG block by ranolazine

The potency of ranolazine's inhibition of IhERG reported here is simi-
lar to that of the Class Ia antiarrhythmic drug disopyramide (~7–11 μM
[8,34]), but ranolazine differs markedly from disopyramide in two
key respects: (i) disopyramide block is largely insensitive to muta-
tions near the bottom of the selectivity filter (T623, S624, V625);
(ii) disopyramide shows only a weak dependence of block on intact
inactivation [8,34]. These characteristics are shared by other Class Ia/c
drugs [8,38]. By contrast, the S620T-inactivation deficient channel
showed markedly reduced sensitivity to ranolazine (and lidocaine).
The location of the S620 residue on the pore helix and oriented towards
the extracellular surface of the pore (Figs. 5A, B) excludes a direct inter-
action of this residuewith drugs in the pore. Instead, the effect of S620T
likely arises from the loss of configurations of side chains (especially
Y652 and F656) upon inactivation gating that are favourable for drug
interactions [55]. Indeed, titration of inactivation loss appears to pro-
duce a graded reduction in blocking potency of some drugs [8]. For
ranolazine, the 72-fold reduction in the block of the S620T hERGmutant
is similar to the sumof the individual reductions in block of hERGY652A
(22-fold) and F656A (53-fold), consistent with the expectation that
ranolazine requires interactions with aromatic side chains of both resi-
dues to express full block. This is consistent with docking which shows
simultaneous aromatic interactions with both Y652 and F656 residues
(Fig. 5), and the loss of interactions in each of Y652A and F656A
(Fig. S6). In contrast with the N588D (neutral➔ negative charge substi-
tution) long QT syndrome [56] mutation in the external S5-Pore linker,
which results in a negative-shift in voltage-dependent IhERG inactivation
[57], the N588K (neutral ➔ positive charge substitution) short QT syn-
drome mutant produces a marked positive shift in voltage-dependent
inactivation, but a change that is less extensive than for S620T [8,30].
Less extensive reduction in ranolazine block for N588K likely reflects
the fact that inactivation is incompletely removed for N588K-hERG
[8], so that interactions with aromatic residues are less extensively
perturbed than for S620T. Moreover, in additional experiments per-
formed on WT hERG, in which ranolazine was washed off gated hERG
channels during sustained membrane depolarization (data not
shown), the rate of current recovery was slowed at more depolarized
voltages at which inactivation was promoted. This supports a role for
inactivation gating in stabilizing ranolazine binding within the channel
pore. In a previous investigation of the comparative pharmacology
of the N588K short QT hERG mutant, there was a correlation be-
tween hERG blocking potency and sensitivity of block to attenuated
inactivation [8]. However, despite a similar IhERG blocking potency to
disopyramide [8,34], ranolazine shows a much greater sensitivity to
inactivation attenuation (~15-fold WT IC50 for N588K) than does
disopyramide (~1.5 WT IC50 for N588K [8]). This argues against a
fixed relationship betweenWT IhERG blocking potency and dependence
of blockade on inactivation. Our docking simulations (Fig. 5) indicated
that ranolazine cannot interact directly with V625 whilst interacting
with S6 aromatic residues. Consistent with suggestions for other drugs
(e.g. [54]), the modest effect of V625A on ranolazine block of hERG is
likely to arise from indirect effects of this mutation on the positioning
of drug-binding residues.

4.3. Comparison between ranolazine and lidocaine

Lidocaine shares structural features with ranolazine but is a smaller
molecule (see supplementary Fig. S1). Our findings indicate that
the two drugs differ in their actions on hERG in the following respects:
(i) inhibitory potency (ranolazine N lidocaine); (ii) sensitivity of inhibi-
tion to pore helix and S6 helixmutations; (iii) sensitivity of inhibition to
potassium flux.

Mutagenesis and docking simulations demonstrate the potential for
direct interactions between ranolazine and T623 and S624 residues,
with hydrogen-bonding possible with S624 side chains. These interac-
tions are absent for lidocaine. Ranolazine with two aromatic rings can
make multiple interactions with Y652 and F656 side chains whereas
the smaller lidocainemoleculemakes fewer interactions (supplementary
Fig. S7). Collectively, these factors can account for the greater inhibitory
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potency of ranolazine than of lidocaine. As discussed above, the strong
dependence of IhERG inhibition by ranolazine on intact inactivation kinet-
ics can be accounted for by optimal positioning of (S6) binding residues.
For lidocaine, the effect of the S620T mutation (a 48-fold higher IC50 in
potency) was much greater than that of either Y652A (3.84-fold WT
IC50) or F656A (1.15-fold WT IC50) or their sum. Lidocaine possesses
both an aromatic ring and a charged aliphatic amine group that can be
anticipated to interact with aromatic side chains (through π–π and
cation–π interactions respectively). Indeed, block of voltage gated Na+

channels by local anaesthetics relies on Phe and Tyr residues (equivalent
to F1670 and Y1767 in Nav1.5 isoform-1) in the S6 segment of domain 4,
[58,59] with the Phe likely interacting directly with lidocaine through a
cation–π interaction [60]. Ranolazine's inhibitory action on both peak
and persistent Nav 1.5 current is sensitive to mutation of F1760[20],
indicating a common binding site for lidocaine and ranolazine on Nav
channels (although the underlying molecular interactions may differ
[58]). Thus, it seems reasonable to propose that lidocaine is also likely
to interact with S6 aromatic residues of hERG and our docking data
(Figs. 5 and S5) support such a conclusion. Mutagenesis and docking
data can be reconciled by degeneracy of lidocaine interactions with the
two aromatic residues: the docking simulations suggest that the aromatic
ring of lidocaine can interact with either F656 or Y652 residues. We attri-
bute the marked reduction in lidocaine's IhERG inhibitory action by the
S620T inactivation mutant to the loss of favourable configurations of
both Y652 and F656 in S620T, with the consequence that the aromatic
group of lidocaine is unable to make any aromatic interactions within
the pore cavity (Figs. 5 and S5).

Consistentwith our interpretations for hERG (Figs. 5 and S5),model-
ling of lidocaine binding to the open state Nav channel supports binding
poses in which the positively-charged amino group is located below the
selectivity filter where the pore helix negative dipole charges are
focussed [60]. This binding mode makes lidocaine block susceptible
to competing charge effects (in the case of Nav as a result of charge
repulsion between lidocaine and a Na+ ion in its DEKA binding site in
non-inactivated states [60]). This is manifest in hERG as a reduction of
lidocaine block by competition fromK+ ions under conditions of inward
ion flux (Figs. 1Cii and Dii). The docked poses for lidocaine (Figs. 5
and S5) suggest an explanation for the reduction in hERG block by
inward K+

flux, since binding interactions comprise only the tertiary
amino group with the pore helix dipole charges and the aromatic ring
with either a Y652 or F656 side chain. The electrostatic interaction
constitutes a large proportion of the total contributions to binding
so that competition with permeant ions for the K+ binding site signifi-
cantly reduces lidocaine affinity. The electrostatic component makes a
much smaller contribution to binding for ranolazine which is relatively
resistant to the effects of permeant ions.

4.4. Significance for clinical drug use and development

Recent human subject data indicate that plasma concentrations
(Cmax) of ranolazine of 741.5 ng/ml and 2328.7 ng/ml (~1.73 and
~4.05 μM) are attained after single oral doses of 500 mg and 1500 mg
respectively [61]. These levels are in good agreement with a clinical
plasma concentration range of 2–6 μM quoted by Rajamani and col-
leagues [25]. Thus, partial IhERG/IKr inhibition can be expected to occur
during clinical use of ranolazine. By contrast, plasma lidocaine levels
during clinical use approximate ~7–15 μM [62,63] and, with an IC50

for IhERG inhibition close to 142 μM, lidocaine is anticipated to produce
little or no IhERG/IKr inhibition during therapeutic use. Our results ex-
plain why ranolazine is able to inhibit hERG/IKr at clinically relevant
concentrations, whilst structurally similar lidocaine only produces sig-
nificant inhibition at concentrations markedly exceeding the normal
clinical range. Although ranolazine can exert weak actions on other
ionic currents, the dominant ventricular ion channel effects of
ranolazine at therapeutic concentrations are inhibition of INa,Late and
IKr, whilst comparatively atrioselective inhibition of rapid, peak INa
[24] additionally contributes importantly to the atrial actions of the
drug [64,65]. The IKr blocking effect of ranolazine has been proposed
to be significant to the drug's action against AF [24,28,64]. The greater
atrial than ventricular APD-prolonging effect of the drug may result
from differences in AP configuration (and roles of INa,Late) in the two tis-
sue types, whilst the drug's IKr blockade enhances inactivated state Na+

channel block and therefore ranolazine's overall effectiveness [24,64].
The larger size of ranolazine gives it potential for a greater range

of interactions with hERG pore side chains compared to lidocaine, and
enables interaction of its two aromatic groups with side chains of both
Y652 and F656. Our analysis indicates that low potency lidocaine
block has low susceptibility to either of the Y652A and F656Amutations
because either aromatic side chain can “compensate” for loss of the
other. Given that combining Na+ channel and IKr actions may hold
promise for antiarrhythmic drug rate-dependency [27,66–68], the com-
parative information on ranolazine and lidocaine in this study in respect
of hERG block may feasibly have utility for future design of agents
combining INa and IKr inhibition, through modification(s) of the lido-
caine template that is common to both drugs. Our data in respect of
ranolazine are also of significance to pharmacological treatment of the
hERG-linked (SQT1) variant of the genetic short QT syndrome. Patients
with N588K-hERG-linked SQT1 are at risk of ventricular arrhythmia
and sudden death and are usually treated an implantable cardioverter
defibrillator, which itself carries a risk of inappropriate shocks [69].
This makes antiarrhythmic treatment an attractive adjunct approach.
However, ranolazine inhibition of IhERG at clinically relevant drug con-
centrations appears to require intact inactivation and, in particular,
the reduction in ranolazine potency with the N588K hERG mutation
seen here is significantly greater than that reported for Class Ia or
Class Ic drugs that have been studied previously [8,41,49,50]. Conse-
quently, ranolazine is unlikely to be a suitable alternative to Class Ia
antiarrhythmic agents currently used for the pharmacological treat-
ment of SQT1 [70].
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