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1. Introduction

Nonlinear evolution equations (NLEEs) are encountered in lots
of domains such as fluid mechanics, biology, condensed matter
physics, optical fibre communication and quantum field theory.
One of the most important research fields in the investigation of
NLEEs is to seek for some special solutions with concrete physical
meaning such as the N-soliton solutions, the algebraic geometry
solutions and the rogue wave solutions. It is well known that
Fourier transform and variable separation are the two most effec-
tive ways to find exact solutions for linear equations. The inverse
scattering transformation (IST) serves as a nonlinear Fourier trans-
form for integrable NLEEs. However, it is very difficult to extend
the variable separation approach to nonlinear cases effectively
and consistently. Fortunately, several kinds of special nonlinear
variable separation approaches have been established recently,
i.e. the classical symmetry method [1], the geometric method [2],
the ansatz-based method [3,4], the conditional symmetry method
[5–7], the formal variable separation approach [8] and the variable
separation approach based on the corresponding Bäcklund trans-
formation (BT-VSA) [9–17].

The BT-VSA has been established perfectly for many famous NLEEs
such as the Davey–Stevartson equation, the Nizhnik–Novikov–
Veselov equation, the dispersive long wave equation, the Broer–
Kaup–Kupershmidt equation, the general (N + M)-component AKNS
equation, the symmetric sine-Gordon equation and the differential-
difference special Toda lattice [9–17]. Because the variable separation
solution includes some lower-dimensional arbitrary functions, we
can construct abundant coherent structures such as the dromions,
the lumps, the ring solitons, the breathers and the instantons.

The Vakhnenko equation
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is first presented by Vakhnenko [18] to describe high-frequency
waves in a relaxing medium [19]. In [20–23] authors have discussed
the multi-loopsoliton solution to the Vakhnenko equation with
boundary condition u ? 0 as jxj?1. The key step in finding this
solution is to introduce the transformation

x ¼ hðX; TÞ :¼ T þWðX; TÞ þ x0; t ¼ X; W ¼
Z X

�1
UðX 0; TÞdX0;

where x0 is a constant, u(x, t) = U(X,T) = WX(X,T) and it is assumed
that, as jXj?1, U ? 0, the derivatives of W vanish, and W tend
to be a constant. In terms of the new variables the Vakhnenko equa-
tion may be written as

WXXT þ ð1þWTÞWX ¼ 0:

In Refs. [24–26], authors also have studied two new equations
which have loop-soliton, hump-soliton, and cusp-soliton solutions,
namely the generalized Vakhnenko equation, and the modified gen-
eralized Vakhnenko equation. Following the papers [27–29], hereaf-
ter the above equation is referred to as the (1+1)-dimensional
Vakhnenko–Parkes (VP) equation.

In Section 2 of this letter, a variable separation solution of the
VP equation is obtained. New coherent structures and interactions
are constructed and depicted in Section 3. The last section contains
the conclusions and discussions.

2. A exact solution of the VP equation

In this section we will consider the VP equation,

VXXT þ VXVT ¼ 0: ð1Þ

This equation arises from the equation WXXT + (1 + WT)WX = 0
through the transformation W(X,T) = V(X,T) � T.

We suppose the exact solution of Eq. (1) has form

VðX; TÞ ¼ V0ðX; TÞ
/ðX; TÞ þ V1ðX; TÞ: ð2Þ

Substituting this expression into Eq. (1), we have
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/�4½V0/X/TðV0 � 6/XÞ� þ /�3f2/Xð2/T V0X þ V0T/XÞ
� V0½/XðV0T � 4/XTÞ þ /TðV0X � 2/XXÞ�g
þ /�2½�2/XV0XT � 2V0X/XT � /T V0XX þ V0TðV0X � /XXÞ
� V0ð/T V1X þ V1T/X þ /XXTÞ� þ /�1ðV1T V0X þ V0T V1X þ V0XXTÞ
þ V1XXT þ V1XV1T ¼ 0: ð3Þ

Here we employ the symbolic computation softwares such as Math-
ematica, Maple and Matlab to achieve some lengthy calculations.
Letting the coefficients of /n(n = �4, . . . ,0) to zero, we can get the
following determining equations

V0�6/X ¼0;
2/Xð2/T V0X þV0T/XÞ�V0½/XðV0T �4/XTÞþ/TðV0X �2/XXÞ� ¼0;
2/X V0XT þ2V0X/XT þ/T V0XX �V0T ðV0X�/XXÞþV0ð/T V1X þV1T/X þ/XXTÞ¼0;
V1T V0X þV0T V1X þV0XXT ¼0;
V1XXT þV1X V1T ¼0:

These nonlinear equations constitute an auto-Bäcklund transforma-
tion (BT), if they are consistent, i.e., if this system is solvable with
respect to /, V0 and V1.

To find out a variable separation solution, we set V0 = 6/X, seed
solution V1 � V1(X) and / has prior variable separation ansatz /
= F(T) + G(X). Then we can reduce the auto-BT to

G0V 01 þ G000 ¼ 0:

This means that the VP equation admits a variable separation
solution

VðX; TÞ ¼ 6
G0ðXÞ

FðTÞ þ GðXÞ �
Z X G000ðeXÞ

G0ðeXÞ deX : ð4Þ

The presence of two 1-dimensional arbitrary functions F(T) and G(X)
implies the existence of a rich diversity of coherent structures for
the physical quantity

U ¼ VT ¼ �6
F 0G0

ðF þ GÞ2
: ð5Þ
Fig. 1. Two solitons collision with parabolic motion.
Remark 1. Similarly, the generalized VP equation

VXXT þ cVXVT þ aVXT þ
ac
3

VT V þ bVT ¼ 0

admits a variable separation solution

VðX;TÞ¼6
c

G0ðXÞ
FðTÞþGðXÞþe

�aX
3 c�

Z X aG00ðeXÞþG000ðeXÞ
cG0ðeXÞ þb

c

 !
e

aeX
3 deX" #

:

Remark 2. For some NLEEs such as the coupled mKdV systems
[30], variable separation ansatz may be of more general form /
= a0 + a1F + a2G + a3FG.

3. New coherent structures of Eq. (5)

In this section, we will construct some new coherent structures
for the physical quantity (5). It is known that there are some singu-
larities for (5) for general selections of F and G. However, when the
arbitrary functions are selected suitably, there may exist abundant
coherent structures without singularities.

Example 1. It is well known that many (1+1)-dimensional inte-
grable NLEEs such as the KdV equation, the Boussinesq equation,
the KP equation and the BKP equation possess N-soliton solutions
which are constructed by multiple exp-functions. Inspired by this
structure, we construct new soliton-type coherent structures by
selecting functions F and G appropriately. If we let GðTÞ ¼ eTþ
e�T ; FðXÞ ¼ eX2

, the two solitons collision with parabolic motion
can be obtained and shown in Fig. 1.
Example 2. If some periodic functions in time variables are
included in the function G(T), we may obtain some new types of
oscillating soliton-type structures. More concretely, if we select
the functions GðTÞ ¼ eTþsin T þ e�T ; FðXÞ ¼ eX2

and GðTÞ ¼ eTþsin Tþ
e�T�sin T ; FðXÞ ¼ eX2

, then we have the structures which are plotted
in Figs. 2 and 3.
Example 3. If we let G(T) = 1 + tanhT, F(X) = 1 � tanhX, the physical
quantity U shows the soliton vanish phenomenon. From Fig. 4, we
can see that when time T < 0, there is a soliton, and as T increases
over 0, it vanishes very soon.
Example 4. Recently, instantons have attracted the attention of
scientists [9]. Here we construct a compacton-type instanton.
When choosing the following piecewise continuous functions

GðTÞ ¼ 20þ
0; T 6 � p

2 ;

�2 sin T � 2; � p
2 < T 6 p

2 ;

�4; T > p
2 ;

8><>:
and

FðXÞ ¼ 20þ
0; X 6 � p

2 ;

sin X þ 1; � p
2 < X 6 p

2 ;

2; X > p
2 ;

8><>:
then we can derive a compacton-type instanton which is plotted in
Fig. 5. In fact, this coherent structure is not stable because the
amplitude changes as t changes till decaying.
Example 5. Rogue waves (or freak waves) are single waves
appearing in the ocean with amplitudes much higher than the
average wave crests around them. If we let

F 0ðXÞ ¼ 0:6sech2ðnþ 7:5Þ þ sech2ðnþ 2:5Þ þ 1:6sech2ðn� 2:5Þ;
X ¼ n� 0:5 tanhðnþ 7:5Þ � tanhðnþ 2:5Þ � 1:5tanh2ðn� 2:5Þ;

G0ðTÞ ¼ 20 exp
g

10
� 6

� �
;

T ¼ g;

the physical quantity U shows three rogue waves phenomenon
including the bell-type, peakon-type and loop-type waves (see
Fig. 6).



Fig. 2. Oscillating soliton-type structure (I).

Fig. 3. Oscillating soliton-type structure (II).

Fig. 4. Soliton vanish phenomenon.

Fig. 5. Compacton-type instanton.

Fig. 6. Three rogue waves.

Fig. 7. Six coherent structures with a = �10 at T = �5.
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Remark 3. For some concrete rogue waves, they may only exist in
limited time, so instantons in Example 4 can be considered as a
kind of rogue waves. Thus, rogue waves in Example 5 are called
standing waves.
Remark 4. In (2+1)-dimensional NLEEs, the similar formula is
U ¼ a FX GY

ðFþGÞ2
. F � F(X,T) and G � G(Y,T) are arbitrary functions for

some NLEEs like the DS and NNV equations. If we set
F ¼ 20þ 1
10 e5�ðX�3TÞ2 þ 5

0; X � 3
5 T 6 � p

2 ;
�2 sin X � 3

5 T
� �

� 2; � p
2 < X � 3

5 T 6 p
2 ;

�4; X � 3
5 T > p

2 ;

8<: � 5
and

G ¼ 20þ 1
10

e5�ðY�3TÞ2 þ
0; Y � T 6 � p

2 ;

sinðY � TÞ þ 1; � p
2 < Y � T 6 p

2 ;

2; Y � T > p
2 ;

8><>:
then the new six coherent structures including a (2+1)-dimensional
ring soliton (RR), two semi-ring-compacton structures (RC, CR), a
(2+1)-dimensional compaction (CC), a semi-ring-peakon structure
(RP) and a peakon-compacton structure (PC) are plotted in Fig. 7.
We use Figs. 8–11 to show their interactions with T.

Through the asymptotic analysis [9], we find that the interac-
� ln tanh 1�X�2T
2

� �
; X þ 2T 6 0;

ln tanh 1þXþ2T
2

� �
� 2 ln tanh 1

2

� �
; X þ 2T > 0;

�



Fig. 9. Interaction at T = 0.

Fig. 10. Interaction at T = 2.

Fig. 11. Six coherent structures after interaction at T = 5.

Y. Ye et al. / Results in Physics 2 (2012) 170–174 173
tion among these coherent structures is not elastic and the phase
position is changed after the interaction. In (1+1)-dimensional
case, these coherent structures are considered as instantons.
4. Summary

In summary, by means of the BT-VSA, a variable separation
solution with two arbitrary functions is obtained for the VP equa-
tion. New coherent structures such as the soliton-type, instanton-
type and rogue wave-type structures are constructed by selecting
functions F and G suitably. Some useful remarks on a new solution
of the generalized VP equation and (2+1)-dimensional coherent
structures are presented. We also believe that more coherent
structures of the VP equation can be found and it is worthwhile
studying further.
In addition, besides the BT-VSA, there are many other ap-
proaches for solving NLEEs such as the linear superposition princi-
ple method, the multiple exp-function algorithm and the linear
subspaces method [31–33]. Thus it is very meaningful to see
whether these methods can be used to solve more NLEEs and ob-
tain more new coherent structures.
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