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Abstract-The steady flow of a micropolar fluid between two infinite discs, when one is held at rest and the 
other rotating with constant angular velocity, is considered. The equations of motion are reduced to a 
system of ordinary differential equations, which in turn are solved numerically using the Gauss-Seidel 
iterative procedure and Simpson’s rule, for four different combinations of the seven parameters involved. 
Results are given both in tabular and graphical form, and compared with the known theoretical results. 

I. INTRODUCTION 

The theory of micropolar fluids[5] has received considerable attention in recent years, the 
extent of which can be judged from the comprehensive review by Smith [ 151. Poiseuille flow has 
been considered by Eringen[S], Condiff and Dahler[6] and Aero, Bulygin and Kuvshinskii[4]; 
Couette flow by Condiff and Dahler[6]. The micropolar model has been used to describe the 
flow of liquid crystals[7]. 

Singh and Smith[8] investigated the steady porous plane Couette and Poiseuille flows of a 
micropolar fluid. They found, for certain ranges of the rate of suction and injection, that the 
velocity is composed of a linear combination of real exponential terms, whereas for other 
values products of exponentials and sinusoidal terms occur, provided the material constants 
satisfy certain inequalities. 

Smith and Guram[lO] considered the two-dimensional incompressible motions of a micro- 
polar fluid, in which the vorticity and spin are constant along a streamline at any time, are 
shown to be one of two types, and particular solutions obtained in a number of cases. 

Guram and Smith[ 1 l] investigated the flow of a micropolar fluid bounded by a rigid wall 
moving with speed proportional to t” parallel to itself, with injection proportional to t-1’2. The 
first two terms of a perturbation expansion for speed and spin in powers of t, with coefficients 
which are functions of n m ~t-“~, were obtained, when the material constants satisfy the 
relation (p + K)j = 7. 

Guram and Smith[12] established the uniqueness and existence of rectilinear flow of a 
micropolar fluid, through a pipe of arbitrary cross-section, with no slip at the boundary, and a 
perturbation expansion obtained for flow through an elliptic pipe. They suggested a method of 
estimating the material constants, when the coupling constant is small. 

Smith and Guram[ 131 considered the flow of a micropolar fluid, which is steady relative to a 
frame of reference rotating with small uniform angular velocity, when the velocity and spin are 
two-dimensional and depend only on the depth, and the pressure is independent of the 
horizontal co-ordinates. They obtained the orientation of the velocity, spin, stress and couple- 
stress vectors on the surface and the flow is determined when the surface is free from the 
couple stress. 

The problem of rotating disc for Newtonian fluids has been considered by Karman [ 11 and 
Cochran 121. Datta and Sastry [ 141 considered the flow of a micropolar fluid between two infinite 
slowly rotating disks and obtained the series solutions in terms of the Reynolds number of the 
motion. 

In this paper, the flow of a micropolar fluid contained between two infinite discs, when one 
is held at rest and the other is rotating with constant angular velocity about their common axis, 
is considered. The specific equations of motion are stated in Section 2. In Section 3, the 
equations of motion are reduced to seven ordinary differential equations, involving seven 
parameters. In Section 4, the finite-difference equations are given. The computational procedure 
is presented in Section 5. In Section 6, the numerical results are presented both in tabular and 
graphical form, and compared with the known theoretical results[l4]. 
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2. EQUATIONS OF MOTION 

The equations of motion of a micropolar fluid are[5] 

$+v.(pv)=o, (2.1) 

(/i+$L+K)V(V’V)-(/L+K)VXVXV+KvXV-Vj?+pf=Pi’, (2.2) 

(cu+p+y)V(V’v)-y(vxVxv)+KVXV-22KV+pi=pjir, (2.3) 

where p is the density, v the velocity, v the micro-rotation or spin, p the thermo-dynamic 
pressure, f and I the body force and couple per unit mass, and j the micro-inertia; (Y, /3, y, A, CL, 
and K are material constants (viscosity coefficients); and the dot signifies material differen- 
tiation. 

The constitutive equations, giving the stress tensor fkl and the couple stress tensor mkl, are 
(in curvilinear co-ordinates) 

tkl = t-p + ‘bkk, + /.d&:, + U,;k) + K(U,;k - E/&), (2.4) 

where gk/ and eklr are the metric tensor and the covariant e-symbol, respectively. The 
semi-colon denotes the covariant partial differentiation with respect to a space co-ordinate and 
repeated indices are summed. The stress vector t and couple stress vector m at a point on a 
surface with normal n are given by t&n, = tk and ma& = mk. The material constants must 
satisfy the following inequalities, derived from the Clausius-Duhem inequality: 

3h+2CL+K~0,2CL+K>O,K>0,3~+P+Y~O,Y~(PI. (2.6) 

The boundary conditions assumed are v(xB, t) = vB, v(xB, t) = vB where xB iS a point on a rigid 
boundary with prescribed velocity vB and spin vB. That is, we assume neither slip nor spin at a 
fixed boundary. Other possible boundary conditions are discussed in [4] and [6]. 

3.FLOW BETWEEN A STATIONARY AND A ROTATING DISC 

We consider the flow of a micropolar fluid between two infinite co-axial discs, at a finite 
distance h, apart from each other. The fluid motion is induced due to the motion of the lower 
disc which is rotating with constant angular velocity Sz. We use the cylindrical polar co-ordinate 
r, 8, z system, where r = 0 is the axis of the rotation of the plane of the lower disc. We assume 
that the material constants of the micropolar fluid are independent of position and neglect body 
forces and body couples. We, also, assume that the flow is steady, incompressible and 
axially-symmetric, and so we look for a solution for which 

v = W, z), 4~ d, wk zh 
(3.1) 

Y = (yr(r, z), r&, z), v3(r, 4). 

Substituting (3.1) in (2.1), (2.2) and (2.3), we obtain 

(3.2) 

(3.3) 

(3.4) 
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(3.5) 

(3.6) 

=pj u~-~vv2+w~ ( > , 

Y[~(~+q)+~3+K(~-~)-2KVZ=Pj(~+~VY,+~), (3.7) 

and 

(3.8) 

The boundary conditions are 

whenz=O; u=o,u=rn,w=o, 

(3.9) 
VI = 0, v2 = 0, v3 = 0, p = 0, 

and when z = h,; u = 0, v = 0, VI = v-2 = v3 = 0. (3.10) 

Using the dimensional analysis, the velocity, the micro-rotation and the pressure are assumed to 
be of the form: 

u = dF,(q), v = A-&(q), w = h,RFJ(v), 

VI = z Gdd, ~2 = $ G2(~7), Y = flG3(7j), (3.11) 

P = P(z) = -b + K)fip(q), 

where 

lj=;. (3.12) 
I 

If we substitute (3.11) into the eqns (3.2)-(3.8), then after some calculations we obtain the 
following seven ordinary differential equations: 

2F,+F;=O, (3.13) 

F’i- qG; = vz(FjF; - F2*+ F,‘), (3.14) 

F;+ q,G; = q2(F3F$+2F,F2), 

F;+~T,G~+P’=T~F~F;, 

G;-T~F;-~~G, = 74(F,G, - FzGz+ F,G;), 

GI + mF; - 2773G2 = vz,(F,Gz + FzG, + FJG;), 

(3.15) 

(3.16) 

(3.17) 

(3.18) 
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G;+27,G; +2r/,dFz- GJ) = q,F3G;, 

where the prime denotes differentiation with respect to 7, and 

(3.19) 

(3.20) 

777 = 
piW* 

a+p+y’ 

and we note that all of these are dimensionless. The dimensions of the above parameters are as 
follows: 

[& K] = ML-IT-‘, [U’, p, J’] = kf~?T-‘, 

II.0 = L*, [iI1 = T-‘, [h,] = L, 

[p] = ML-3. 

(3.21) 

The boundary conditions (3.9) and (3.10), in the new independent variable become 

IJ = 0: F, = 0, F2 = 1, F3 = 0, G, = G2 = G3 = 0, P = 0, 

v=l: F,=F2=0,G,=Gz=G3=0. 
(3.22) 

4. FINITE-DIFFERENCE EQUATIONS 

The interval[O, l] considered is divided into grid points with uniform spacing h. A typical 
grid point is denoted by vi. The eqns (3.14), (3.15), (3.17H3.19) are approximated by replacing 
all derivatives by central-difference approximations. The resulting finite-difference equations 
are the following: 

Fj!!, - 2Fi”’ + Fj:‘, = y (G$, - Gj?,) + n2 ; F/“h(F$:‘, - Ff!,) 

_ h*Fx*‘F<” + h*Ff,‘F{,’ I , I I 1 9 

Ff”, - 2~i’*’ + F$!, = -; s,h(Gj:‘, - G$f_‘,) + v2 
C 
; fic3’h(Fj:‘, - Ff!,) 

+ 2h*F(“JZ@) I I 
I 

9 

Gf!, - 2( 1 + h2v3)Gi (1) + G;:‘, = 773; (Fi:‘, - F?,) + 774[h2Fi”‘Gi”’ - h*E!*‘Gi’*’ 

++“(G$,-GI!,)], 

GfZ’, - 2( 1 + q3h2)Gi’2’ + G$!, = -y (Fj:‘, - F;!,) + ~4[h2F;!“Gi’2’ + h*fi”Gi”) 

+ ; fi3’( G::‘, - GI?,) 
I 

, 

(4.1) 

(4.2) 

(4.3) 

(4.4) 
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and 

G:!, - 2( 1 + ~h*)Gi (‘)+ GI:‘, = - ah(G 
1 

f:‘, - GI!!,) - 2h2n6F$*’ + z h&3)(GI:), - G:“,), 

(4.5) 

which are solved for all grid points interior to the interval[O, I] with conditions (3.22) on Fr, F2, 
G,, G2 and G3 at the end points. The first-order eqns (3.13) and (3.16) are integrated using the 
prescribed conditions (3.22) on F3 and P. 

5. COMPUTATIONAL PROCEDURE 

Now, we need to solve the above system of finite-difference equations at each required grid 
point. Each set of equations is solved in turn, subject to the appropriate boundary conditions, 
using the Gauss-Seidel iterative procedure[9, pp. 154-1561, whereas the equations (3.13) and 
(3.16) are integrated using the Simpson’s rule[9, pp. 67-691 with the formula given in [3, pp. 481 
and the conditions on F3 and P. 

The iterative sequence is as follows: 
(1) The equations (4.1) are solved subject to F, = 0 when 17 = 0 and 7 = 1, using the most 

recently available values for F,, F2, 4, and G2 to calculate the elements of the matrix 
associated with Ft. Then the eqn (3.13) is solved by the Simpson’s rule with FJ = 0 when n = 0; 

(ii) the computed solution for F, and F3 is introduced into (4.2) and these equations are 
solved subject to F2 = 1 at n = 0 and F2 = 0 at 7 = 1. The most recently available information 
for F,, F2, F3 and Gr is again used for calculating the values of F2; 

(iii) the solutions for F,, F2 and F3 are introduced into (4.3)-(4.5), and these sets of equations 
are solved for G,, G2 and G3 respectively, subject to G, = G2 = G3 = 0 when 17 = 0, and 7 = 1, 
using the recent values for F,, F2, F3, G,, G2 and G3. The solutions for these equations provide 
updated information for the subsequent application of (i) and (ii). 

The above procedure is repeated until all the solutions have approached to some required 
criterion of accuracy. The criterion 

IFf”+l) _ Fi(“)J < 10-6, I(-$“+‘)- Gi(")l < 1o-6, 

where i = 1, 2, 3, was adopted as a terminating condition, where here the subscript denotes the 
number of a function and the superscript the iteration. 

The computed solutions of F,, F3 and G2 were introduced to solve (3.16) to calculate the 
pressure with P = 0 when n = 0. 

6. RESULTS AND DISCUSSION 

The results have been obtained for the following four cases: 

Case 1 0.3 0.8 0.2 0.02 0.5 0.08 0.01 
Case 2 0.45 1.4 0.3 0.03 0.85 0.12 0.015 
Case 3 0.6 1.6 0.4 0.04 1.0 0.16 0.02 
Case 4 0.75 2.333 0.5 0.05 1.417 2.4 0.25 

The calculations were carried out for two different grid sizes, namely (a) h = 0.025; (b) 
h = 0.0125. The accuracy of the results may be checked by comparing the results on the 
different grid sizes. For this comparison, in Tables l-4, the values of Fl, F2, F3, Gr, G2, G3 and 
P are given for the cases considered. The general trend of these results as the grid size is 
decreased tends to indicate that the solutions for h = 0.0125 are accurate to within a 0.03% 
tolerance for F,, F2, 4, G1, G2, G3 and 0.33% for P. 

Typical sets of solutions, showing the effects of the parameters nl, Q, q3, n4, n5, 776 and q7 
are given in graphical form in Figs. l-7. For all the four cases considered, it was found that as 
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Table I. 

n F2 

___- 

F3 P 

0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 

0.1 0.0160952 0.8987063 -0.0017296 0.0087350 0.0002138 0.0056283 0.0320491 

0.2 0.0257190 0.7974170 -0.flO60070 0.0154781 0.0001750 0.0090536 0.0513258 

0.3 0.0302414 0.6963258 -0.0116775 0.0202584 -0.0000002 0.0106414 0.0604302 

0.4 0.0308708 0.5955478 -0.0178444 0.0231003 -0.0002223 0.0107509 0.0617903 

0.5 0.0286524 0.4951491 -0.0238363 0.0240224 -0.0004252 0.0097365 0.0574913 

0.6 0.0244675 0.3951687 -0.0291746 0.0230362 -0.0005621 0.0079485 0.0492796 

0.7 0.0190340 0.2956339 -0.0335405 0.0201467 -0.0006023 0.0057348 0.0385694 

0.8 0.0129079 0.1965713 -0.0367424 0.0153515 -0.0005273 0.0034414 O.OL64499 

0.9 0.0064843 0.0980130 -0.0386841 0.0084414 -0.000327t3 0.0014142 0.013b925 

1.0 0.0000000 0.0000000 -0.0393324 0.0000000 -0.0000000 0.0000000 0.0007556 

0.0 0.0 1.0 n.0 0.0 0.0 

0.1 0.0160981 0.8987067 -0.0017299 0.0087352 0.0002136 

0.2 0.0257241 0.7974176 -0.0060081 0.0154784 0.0001747 

0.3 0.0302481 0.6963262 -0.0116798 0.0202588 -0.0000006 

0.4 0.0308784 0.5955479 -0.0178481 0.0231008 -0.0002228 

0.5 0.0286603 0.4951490 -0.0238416 0.024n228 -0.0004258 

0.6 0.0244750 0.395LhR3 -0.0291815 O.O:1n3hh -n.o005627 

0.7 0.0190406 0.2956134 -0.0335487 0.02u1470 -0.0006028 

0.8 0.0129129 0.1965708 -n.o367518 0.01535La -0.nnn5277 

0.9 0.0064d71 O.n9H1ll27 -0."1~6'~4, O.",M6415 -".oou3?~0 

1.0 o.noooooo 0. nonumu -ll.,l,l),:L9 0,"000""l1 -0. ou~m~no 

0.0 0.0 

0.0056283 0.0321558 

0.0090537 0.0514155 

0.0106415 0.0605043 

0.0107510 0.0618499 

0.0097365 0.0575378 

0.011794"6 0.0493143 

0.0057348 0.11185934 

u.0034414 0."164647 

".0014142 0.0136993 

0.0000000 ,l."i,075hL 

i 

Grid 

sire 

1. 
40 

1. 
80 

Table 2. 

” P 

0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 

0.1 0.0275956 0.8959168 -0.0029689 0.0130191 0.0005429 0.0094652 0.0549328 

0.2 0.0439407 0.7920250 -0.0102888 0.0229936 o.oocYi391 0.0148487 0.0876940 

0.3 0.0514764 0.6888571 -0.0199586 0.0299977 -0.0000096 0.0169239 0.1029939 

0.4 0.0523472 0.5867083 -0.0304357 0.0341oc4 -0.0005737 0.0164426 0.1051695 

0.5 0.0483961 0.4857258 -0.0405767 0.0353595 -0.0010851 0.0141370 0.0978791 

0.6 0.0411646 0.3859758 -0.0495761 0.0338191 -0.0014268 0.0107238 0.0841246 

0.7 0.0318966 0.2874903 -0.0569074 0.0295078 -0.0015229 0.0069076 0.0662897 

0.8 0.0215448 0.1902986 -0.0622631 0.0224383 -0.0013293 0.0033856 0.0461774 

0.9 0.0107796 0.0944453 -0.0654983 0.0126082 -0.0008243 0.0008515 0.0250440 

1.0 0.0000000 0.0000000 -0.0665746 0.0000000 -0.0000000 0.0000000 0.0036236 

0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 

0.1 0.0276008 0.8959180 -0.0029695 0.0130198 0.0005422 0.0094654 0.0551186 

0.2 0.0439498 0.7920261 -0.0102908 0.0229947 0.0004379 0.0148489 0.0878496 

0.3 0.0514881 0.6888575 -0.0199627 0.0299992 -0.0000113 0.0169241 0.1031214 

0.4 0.0523603 0.5867078 -0.0304423 0.0341021 -0.0005757 0.0164427 0.1052715 

0.5 0.0484095 0.4857245 -0.0405859 0.0353612 -0.0010871 0.0141370 0.0979580 

0.6 0.0411773 0.3859739 -0.0495880 0.0338207 -0.0014287 0.0107237 0.0841831 

0.7 0.0319075 0.2874883 -0.0569216 0.0295091 -0.0015246 0.0069074 0.0663302 

0.8 0.0215530 0.1902968 -0.0622793 0.0224393 -0.0013306 0.0033854 0.0462024 

0.9 0.0107842 0.0944442 -0.0655158 0.0126087 -0.0008150 0.0008514 0.0250558 

1.0 o.noooooo 0.0000000 -0.0665926 0.0000000 -o.ououooo 0.0000000 0.0036265 

- 

- 
Grid 

sire 

1 
40 

1 
80 
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Table 3. 

241 

;rld 
jL*v ' Fl F2 F3 Gl 

P 

-- 
0.0 0.0 1.0 0.0 0.0 0.0 

0.1 0.0313062 0.8950813 -0.0033694 0.0171590 0.0622936 

0.2 0.0497864 0.7901738 -0.0116681 0.0302531 0.0993172 

0.3 0.0582368 0.b860302 -0.0226160 0.0394037 -0.0000284 0.1165291 

0.4 0.0591201 0.58Jfl919 -0.0344591 0.0447248 -0.0008759 0.1189345 

1 40 0.5 0.0545536 0.4816058 -0.0459015 0.0463132 -0.0016401 0.1107266 

0.6 0.0463059 0.3817118 -0.0560359 0.0442432 -0.0021471 0.0953179 

0.7 0.0358007 0.2835042 -0.0642741 0.0385646 -0.0022853 0.0753929 

0.8 0.0241243 0.1870723 -0.0702788 0.0293019 -0.0019907 0.0529636 

0.9 0.0120394 0.0925244 -0.0738973 0.0164550 -0.0012325 0.0294186 

1.0 0.0000000 0.0000000 -0.0750983 0.0000000 -0.0000000 0.0055603 

0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 

0.1 0.0313129 -0.0033701 0.0171595 0.000R114 0.0131076 0.0625072 

0.2 0.0497983 -0.0116707 0.03fl2537 0.0006482 0.0203678 0.0994976 

0.3 0.0582522 -0.0226214 0.0394045 -0.0000308 0.0229406 0.1166783 

0.4 0.0591373 -0."344678 0.0447257 -0.0008786 0.0219447 0.1190549 
1 
so 0.5 0.0545711 -0.0459137 0.0461141 -0.0016430 0.0184628 0.1108208 

0.6 0.0463224 -0.0560515 0.044244fl -0.0021500 

0.7 0.0358147 -0.0642927 0.038565, -O.O~??HIR 

0.8 0.024,347 -0."71,299') "."2'?3"25 -0.0,11','126 

0.Y 0.",111'~5" -"."7,9:Oo ".O16455, 

L 0 0. iwooiion -,1."7'1,?15 

--__ __.~ 

1 

iiG 

r( 

0.0 0.0 1.0 

0.1 0.0438845 0.8896312 

0.2 0.0692998 0.7797176 

0.3 0.0804668 0.6716677 

0.4 0.0810695 0.5662433 

0.5 0.0742326 0.4638088 

0.6 0.0625224 0.3645137 

0.7 0.0479641 0.2684174 

0.8 0.0320706 0.1755685 

0.9 0.0158801 0.0860502 

1.0 0.0000000 0.0000000 

0.0 0.0 

0.1 0.0438946 

0.2 0.0693174 

0.3 0.0804891 

0.4 0.0810940 

0.5 0.0742571 

0.6 0.0625449 

0.7 0.0479829 

0.8 0.0320R43 

0.9 0.0158875 

1.0 0.0000000 

i 

1.0 

0.8896343 

0.7797206 

0.6716689 

0.5662421 

0.4638056 

0.3645092 

0.2684124 

0.1755642 

0.046"476 

0.0~1000110 

Table 4. 

0.0 0.0 

-0.0047341 0.0215322 

-0.0163236 0.0377609 

-0.0315053 0.0489099 

-0.0478073 0.0552059 

-0.0634384 0.0568548 

-0.0771766 0.0540282 

-0.0882586 0.0468578 

-0.0962743 0.0354346 

-0.1010680 0.0198102 

-0.1026479 0.0000000 

0.0 0.0 

-0.0047352 0.0215336 

-0.0163275 0.0377631 

-0.0315132 0.0489126 

-0.0478199 0.0552088 

-0.0634559 0.0568576 

-0.0771989 0.0540307 

-n.oRX?R51 0.046859H 

-0.0963041" ".,,15436" 

-".1"1"9'~9 "."19R104 

-0.1026805 II.nO""""~~ 

0.0 

0.0013732 

0.0010531 

-0.0001416 

-0.0016025 

-0.0028966 

-0.0037332 

-0.0039332 

-0.0033996 

-0.0020914 

-0.0000000 

-- 

0.0 

0.0013714 

0.0010498 

-0.0001462 

-0.0016078 

-0.OOL9"21 

-".0017385 

-0.01)19379 

-".11"1iO31 

-".,1,,.',19,4 

-0, "iiOl1,WO 

-- i 

0.0 

0.1056531 

0.1681577 

0.1972851 

0.2010599 

0.1861118 

0.1579788 

0.1213706 

0.0803975 

0.0387736 

0.0000000 

0.0 

0.1056695 

0.1681829 

0.1973136 

0.?0108*0 

0.1861369 

0.1579996 

0.12138hl 

O.O804"7b 

".03"7784 

n. Oil",,rln,l 

P 

0.0 

0.0872809 

0.1382868 

0.1614697 

0.1643792 

0.1531291 

0.1325090 

0.1061464 

0.0766661 

0.0458231 

0.0145978 

__- 

0.0 

0.0875893 

0.1385446 

0.16Lb804 

0.1645470 

0.1532588 

0.1326053 

0.1062141 

0."767092 

,1.M,R451 

0 u I : 6 , i L 
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Fig. I. 
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Fig. 2. 
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- F, 

0 IO - 

0 0, 02 03 04 05 06 07 08 09 IO 

1) 

Fig. 3 

0 01 02 03 04 05 06 07 08 09 IO 

n 

Fig. 4. 

the parameters increase 
(1) the profiles of F], Gr, G3 and P were raised, 
(2) the profiles of Fz and F3 were lowered, 
(3) the profile of G2 was raised between 7 = 0 and 77 = 0.3, and lowered between q = 0.3 and 

7) = 1.0. 
Figure 1 shows that F, is positive throughout between the two discs, showing thereby there 

is a radial outwards flow from the lower disc which is maximum at the plane n = 0.4 and starts 
approaching to zero towards the upper plate. 

It is worthwhile to note here that in [ 141, F, is positive near the lower disc and negative near 
the upper disc because of the fact that in [14] the form of the pressure was taken to be 
dependent on two independent variables r and z, whereas in the present paper we followed the 
form as in [2]. Also in the present investigation, the terms involving micro-inertia are not 
neglected but it is noticed by comparing with the results in [14] that their effect is negligible as 
is assumed in [14]. 
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The micro-rotation (or spin) distributions are shown in Figs. 4-6. In Fig. 4, the symmetry of 
the spin component Gr about the plane n = 0.5, where it has maximum value confirms the 
power series solution obtained by Datta and Sastry[l4]. Figure 6 shows that the spin com- 
ponent G3 is positive everywhere implying that it is in the same direction in which the disc 
rotates, also confirming the result given in [ 141. Figure 7 shows the profile of the pressure which 
is positive everywhere indicates that it is maximum at the plane n = 0.4 and approaches to zero 
towards the upper plate. 
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