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Neural activity is intimately tied to blood flow in the brain. This coupling is specific enough in space and time
that modern imaging methods use local hemodynamics as a measure of brain activity. In this review, we
discuss recent evidence indicating that neuronal activity is coupled to local blood flow changes through
an intermediary, the astrocyte. We highlight unresolved issues regarding the role of astrocytes and propose
ways to address them using novel techniques. Our focus is on cellular level analysis in vivo, but we also relate
mechanistic insights gained from ex vivo experiments to native tissue. We also review some strategies to
harness advances in optical and genetic methods to study neurovascular coupling in the intact brain.
Introduction
Normal brain activity depends on a continuous supply of oxygen

and glucose through cerebral blood flow (CBF). Although cere-

bral energetic demands are very high, the brain has very little

means of energy storage (Attwell and Laughlin, 2001). Therefore,

local brain activity has to be matched by a concomitant increase

in local CBF—a phenomenon referred to as functional hyperemia

or neurovascular coupling.

Understanding the mechanisms underlying functional hyper-

emia is important for several reasons. First, noninvasive func-

tional brain imaging methods, which have provided insight

into the human brain at work at unprecedented detail (Raichle,

1998), rely on this coupling—in particular, the greater rise in

CBF compared to oxygen consumption—to map brain activity

(Lauritzen and Gold, 2003; Logothetis, 2003; Raichle and Min-

tun, 2006; Villringer and Dirnagl, 1995). Therefore, the more

we know about the signaling pathways, the better we will under-

stand what kind of underlying brain activity these techniques

reflect. Second, perturbed functional hyperemia is involved

in the pathophysiology of several neurological diseases (dis-

cussed below) (Attwell et al., 2010; Girouard and Iadecola,

2006; Iadecola, 2004), and identifying key steps in functional

hyperemia may facilitate alleviation or treatment of these

disorders.

Recently, astrocytes have been proposed as important

conduits between neuronal and vascular activity. In this review,

we will discuss the role of astrocytes in functional hyperemia,

highlight the unresolved issues regarding astrocytes, and pro-

pose how they can be addressed by novel techniques. Our focus

is on analysis of cells in their native environment in vivo, but we

also discuss the role of molecular pathways gleaned from

ex vivo studies. For aspects of functional hyperemia not related

to astrocytes, and for astrocytic functions other than functional

hyperemia, we refer the reader to a number of excellent and

recent reviews (Barres, 2008; Halassa and Haydon, 2010;

Iadecola, 2004; Lauritzen, 2005; Sofroniew and Vinters, 2010;

Volterra and Meldolesi, 2005). We have taken the liberty of

combining information from different species and brain regions,

hoping to identify common principles.
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A Macroscopic View of Cerebrovascular Regulation
Most of cerebrovascular regulation takesplaceon the arterial side

of the cerebral vasculature, which can be divided into large pial

arteries, derived from arteries branching off the circle of Willis,

penetrating arterioles delving into the tissue, and capillaries,

where most of the oxygen diffusion into the parenchyma occurs

(Figures 1A–1D). Local CBF changes are induced by constriction

or relaxation of smooth muscle cells in arteries and arterioles.

As penetrating arterioles are located within regions of synaptic

activity (Figure 1D) and, together with surface arteries, account

for a large part of cerebrovascular resistance (Faraci andHeistad,

1990), they are probably the main targets of local neuronal and

glial pathways regulating functional hyperemia. This functional

network of neurons, glia, and vascular cells has been termed the

neurovascular unit (Figure 1D). In addition, upstream dilation of

surface arteries and larger penetrating arterioles is also neces-

sary for adequate and sufficient downstream CBF increase (Erin-

jeri and Woolsey, 2002; Iadecola et al., 1997; Tian et al., 2010).

Since these larger upstream vessels are separated from neurons

and astrocytes by the Virchow-Robin space, it has been postu-

lated that intramural (Dietrichet al., 1996) or flow-mediatedsignals

(Fujii et al., 1991) convey intraparenchymal changes to these

surface vessels, although the glia limitans, a network of astrocytic

processes covering the brain’s surface, may also contribute to

neurovascular signaling (Xu et al., 2008). Finally, although capil-

laries lack smoothmuscle cells, they are surrounded by pericytes

(Figure 1D), which contribute to microvascular CBF (Bell et al.,

2010), and which may have the ability, at least in vitro, to actively

regulate capillary diameter (Kawamura et al., 2003; Peppiatt et al.,

2006), although their contribution to functional hyperemia in vivo

remains uncertain (Fernández-Klett et al., 2010).

In summary, signaling from neurons in activated brain regions

to local penetrating arterioles (and possibly also capillaries) and

a coordinated response of surface vessels, are necessary for

local CBF to increase during neuronal activation.

Neuronal Regulation of Local Blood Flow
Because brain research has traditionally been centered on

neurons, and neuronal activity can easily be measured by
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Figure 1. Organization of the Cerebral Vasculature
(A) The architecture of cerebral vasculature exemplified by casts obtained from human brains. Note the penetrating vessels, from which capillaries emerge to
perfuse brain tissue. Cortical layers are indicated at the left along with cartoons of neuronal cell bodies.
(B) Tangential section through layer 4 from human brain showing the relatively homogeneous coverage of capillaries, except the regions immediately surrounding
arteries.
(C) Three-dimensional volume rendering of human vascular network reconstructed from India ink injected into blood vessels of human brain. Pial surface is on top
and the scale bar is 1 mm.
(D) Schematic of the various elements of the neurovascular unit. Penetrating arterioles and capillaries are completely covered by astrocytes. Interneurons
targeted at the vasculature synapse onto astrocytes. Astrocytes also detect synaptic activity at neuronal synapses.
Panels (A) and (B) are reproduced with permission from Duvernoy et al. (1981) and (C) from Lauwers et al. (2008).
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electrophysiological techniques, there has been the long-held

view that neuronal activity directly triggers functional hyperemia.

Neuronal processes are indeed closely associated with all parts

of the vasculature. Pial arteries and large surface arterioles are

innervated by nerve fibers that originate in autonomic and

trigeminal sensory ganglia (Hamel, 2006). In the brain paren-

chyma, penetrating arterioles and capillaries are contacted by

local interneurons (Figure 1D) as well as by processes of intrinsic

neurons originating from subcortical centers (Golanov et al.,

2001; Hamel, 2006; Rancillac et al., 2006; Yang et al., 2000). In

addition, centrifugal brainstem fibers may also indirectly affect

functional hyperemia by modulating glutamate release from ex-

citatory synapses (Petzold et al., 2009).

If neurons and blood vessels are closely associated anatomi-

cally, what signals are then responsible for the functional transfer

of information between the two? Early hypotheses focused on

the relation between neuronal metabolism and local circulation

and proposed that increased energy use and/or oxygen con-

sumption of neurons directly trigger vasodilation (Siesjo, 1978).

However, changes in hemodynamics can appear within 1–3 s

of increased neural activity, while metabolic changes occur

more slowly than this (Lou et al., 1987), indicating that the nature

of neuron-to-vessel signaling is more complex. In addition, neu-

rovascular coupling remains unchanged in the face of experi-
mental variations of oxygen and glucose supply (Mintun et al.,

2001; Powers et al., 1996), and oxygen consumption occurs in

a much smaller area than the subsequent CBF increase (Attwell

and Iadecola, 2002; Malonek and Grinvald, 1996). These studies

indicated that blood flow changes occur through several inter-

mediate steps, rather than by direct activation through products

of cerebral energy metabolism. Indeed, later studies demon-

strated that a large fraction of functional hyperemia can be

attributed to actions of the excitatory neurotransmitter gluta-

mate (Lauritzen, 2005). For example, ionotropic glutamate

receptor activation may mediate functional hyperemia by

calcium-activated synthesis of nitric oxide (NO), prostaglandins,

and epoxyeicosatrienoic acids in neurons (Akgören et al., 1994;

Faraci and Breese, 1993; Lindauer et al., 1999; Niwa et al.,

2000a; Peng et al., 2002). In addition, the vasculature-targeted

information is conveyed by anatomically discrete local interneu-

rons (Figure 1D), which either can be activated locally by presyn-

aptically released glutamate, as in stellate neurons of the cere-

bellum (Rancillac et al., 2006; Yang et al., 2000), or can act as

relays for remote brainstem nuclei, such as the cholinergic basal

forebrain nucleus or the serotonergic raphe nuclei (Cauli et al.,

2004).

In sum, although there is a close relationship between oxygen

consumption and functional hyperemia (Hoge et al., 1999; Lin
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Figure 2. Astrocytes Are Key Elements of Neurovascular Coupling
(A) GFAP stain (blue or cyan) highlights the larger processes of astrocytes, some of which envelop a small arteriole labeled with laminin (green). Also shown are
glutamatergic synapses, labeled with antibodies against vesicular glutamate transporter 1 (VGluT1; red).
(B) Electron micrograph from cerebellum showing Bergmann glia contacting blood vessel. In this image, the glial process is highlighted by photoconversion of
GFP, which is expressed only in a subset of Bergmann glia in this line of mice. Magnification of the boxed region clearly illustrates the close contact between
astrocytic processes and blood vessel.
(C) Astrocytes from the cortex of a ‘‘brainbow’’ mouse showing their tiling, and the private territory each occupies. Dark ovoid regions are mainly neuronal cell
bodies. In the right image, a small region is shown at higher magnification, revealing the boundaries between neighboring astrocytes.
(D) Serial sections show glial processes (dark regions with photoconverted GFP) in close proximity to a synapse.
Panels (A), (B), and (D) are courtesy of Dr. Akari Hagiwara (unpublished data). Panel (C) shows images courtesy of Dr. Jean Livet and based on published data
(Livet et al., 2007).
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et al., 2010; Offenhauser et al., 2005), metabolic byproducts do

not directly trigger blood flow changes. Instead, the same neu-

rotransmitters that mediate neuron-to-neuron information ex-

change also initiate polysynaptic signaling pathways that ulti-

mately trigger functional hyperemia.

Astrocytes Are Anatomical Intermediaries between
Neurons and Blood Vessels
The intraparenchymal vasculature is extensively covered by as-

trocytic endfeet (Mathiisen et al., 2010; McCaslin et al., 2011)

(Figure 2A and 2B), which may serve as functional intermediaries

between neurons and blood vessels. This intimate anatomical

relationship between astrocytes and blood vessels was already

noted in some of the earliest descriptions of astrocytic mor-

phology by Cajal and Golgi (Golgi, 1886; Ramon y Cajal, 1895).

Recent analyses of astrocytic morphology have revealed that

the vascular external surface is almost completely covered by

astrocytic endfeet (Mathiisen et al., 2010; Nielsen et al., 1997;

Petzold et al., 2008; Simard et al., 2003). Moreover, perivascular

astrocytic endfeet (Figure 2B) are important and highly special-

ized cellular compartments that are enriched in astrocyte-

specific proteins such as aquaporin-4, connexin 43, purinergic

receptors, and potassium channels (Price et al., 2002; Simard

et al., 2003). Finally, at the ultrastructural level, the processes

of many vasoactive interneurons, in particular those expressing

noradrenaline, synapse onto astrocytes rather than directly

onto blood vessels (Hamel, 2006).
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These morphological and functional data indicate that, with

the possible exception of gaseous transmitters, all signaling

molecules targeted to the vasculature must first act on or pass

through astrocytes in order to reach the smooth muscle cells in

the vessel wall (Figure 1D). The organization of astrocytes into

separate domains (Halassa et al., 2007) (Figure 2C) and the

very close anatomical and functional relationship between astro-

cytes and neuronal synapses (Barres, 2008; Haydon, 2001)

(Figure 2D) make these cells ideal candidates to convey changes

in neuronal activity levels to the vasculature and to be common

executors of neurovascular pathways.

A Historical Perspective of Astrocytic Regulation
of Vascular Tone
The first recorded person to implicate astrocytes in functional

hyperemia was Ramón y Cajal, who hypothesized in 1895

that constriction of astrocytic endfeet would trigger vasocon-

striction and endfeet relaxation would induce vasodilation

(Garcı́a-Marı́n et al., 2007). About a century later, Paulson

and Newman proposed astrocytic potassium ‘‘siphoning’’—i.e.,

influx of potassium ions into astrocytes near active synapses,

and efflux of potassium from astrocytic endfeet into the peri-

vascular space and subsequent potassium-induced vaso-

dilation—as a mechanism of functional hyperemia (Paulson

and Newman, 1987). Moreover, Harder and colleagues noted

that astrocytes express all proteins necessary to detect neu-

ronal activity and, facilitated by astrocytic calcium elevations,
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potentially convert these signals into vasodilation (Harder et al.,

1998).

Since astrocytes, unlike neurons, are electrically inexcitable,

they are relatively inert to traditional electrophysiological meth-

ods. Therefore, studies of astrocytic activity were only possible

after the introduction of calcium dyes (Tsien, 1988) and their

delivery into identified astrocytes (Kang et al., 2005; Nimmerjahn

et al., 2004). Most data on astrocytic influences on CBF so far

have been obtained in acute brain slices, because they offer

excellent experimental control, are technically practical, and

allow relatively easymerging of imaging and electrophysiological

techniques (Figure 3A).

Cellular imaging of neurons and astrocytes together with CBF

recordings in single vessels in vivo in living animals was achieved

only relatively recently, using multiphoton microscopy of fluo-

rescently labeled blood vessels and multicell bolus loading of

calcium indicators (Helmchen and Kleinfeld, 2008; Kleinfeld

et al., 1998; Stosiek et al., 2003) (Figures 3B–3D). A particularly

valuable development has been the ability to monitor blood

flow in individual capillaries by following the movement of eryth-

rocytes (Chaigneau et al., 2003; Dirnagl et al., 1992; Kleinfeld

et al., 1998) (Figures 3B and 3D), enabling simultaneous re-

cording of CBF and cellular activity with high spatial and

temporal resolution.

Astrocytic Activation Changes Vascular Tone in Acute
Brain Slices
The different pathways involved in the vascular changes

following astrocytic activation in brain slices, which are, together

with findings obtained in vivo (discussed below), summarized in

Figure 4, have been extensively discussed in recent reviews (Att-

well et al., 2010; Iadecola and Nedergaard, 2007; Koehler et al.,

2009). Briefly, several brain slice studies showed that stimulation

of cortical astrocytes, either directly or through nearby neurons,

triggers an intraastrocytic calcium surge and a subsequent dila-

tion or constriction of neighboring arterioles. Vasodilation was

triggered by activation of astrocytic metabotropic glutamate

receptors (mGluR) and either cyclooxygenase products (Filosa

et al., 2004; Zonta et al., 2003) or combined activation of different

potassium channels on astrocytes and smooth muscle cells

(Filosa et al., 2006). Vasoconstriction, in turn, was mediated by

the conversion of astrocytic arachidonic acid derivates to 20-

hydroxyeicosatetraenoic acid (20-HETE) in smooth muscle cells

by the cytochrome P450 system (Mulligan and MacVicar, 2004).

In other studies, vasoconstriction and vasodilation were both

observed, depending on the level of nitric oxide (Metea andNew-

man, 2006) or oxygen in the tissue (Gordon et al., 2008). Finally,

the level of the astrocytic calcium elevation itself has been sug-

gested to determine the polarity of the arteriolar response (Giro-

uard et al., 2010).

Studying vascular regulation in slices has significant advan-

tages, including the exquisite control over cellular elements.

However, an inherent and critical limitation of studies in brain sli-

ces is that blood vessels in these preparations lack perfusion

and, therefore, are maximally dilated, because myogenic tone

induced by intraluminal pressure is missing (Iadecola and Neder-

gaard, 2007). In most studies, slices were pretreated with vaso-

constrictive agents to compensate for the loss in tone (Filosa
et al., 2004, 2006; Metea and Newman, 2006; Zonta et al.,

2003). Preconstriction of vessels in slices, as well as large

changes in the oxygen tension, can result in the conversion of

arteriolar constriction into dilation (Gordon et al., 2008; Mulligan

and MacVicar, 2004). This conversion has been suggested to

underlie competing roles of astrocytes during different states

of brain activation, but it is difficult to decide what is more phys-

iological or at least less artificial—preconstriction of vessels by

pharmacologically blocking the production of important sig-

naling molecules such as NO (Zonta et al., 2003), leaving vessels

untreated and, thus, maximally dilated (Mulligan and MacVicar,

2004) (Figure 3A), or inducing variations of tissue oxygen tension

(Gordon et al., 2008) that are larger than those measured in the

intact brain during physiological activation (Ances et al., 2001;

Offenhauser et al., 2005). Another important point to consider

is how slice stimulation protocols relate to typical physiological

sensory stimulation (Anderson and Nedergaard, 2003). It is also

difficult to speculate whether the very slow time scale at which

vessel tone changed in some studies (Gordon et al., 2008; Zonta

et al., 2003) (Figure 3A) is an effect of slice temperature, maxi-

mally dilated vessels, or lack of perfusion.

In the following paragraphs, we will discuss how astrocytes

might mediate functional hyperemia in vivo (also summarized

in Figure 4). As outlined below, there are several open questions

regarding how astrocytes are activated by glutamate, how

quickly and by what pathways they respond, and by what mech-

anisms they might ultimately regulate functional hyperemia.

How and at What Time Scale Do Astrocytes Respond
to Synaptic Activity in Vivo?
Takano et al. (2006) were the first to show that astrocytic calcium

elevations induce vasodilation of cortical penetrating arterioles

(Figure 5A). However, whether the time course of sensory-

evoked astrocytic calcium changes is actually compatible with

the onset and temporal sequence of functional hyperemia has

remained an open question. Following initial demonstrations of

spontaneous calcium dynamics in astrocytes in the intact brain

(Hirase et al., 2004; Nimmerjahn et al., 2004), it was shown that

sensory stimulation of whiskers (Wang et al., 2006) or direct

cortical electrical stimulation (Takano et al., 2006) elicited

calcium transients in layer II astrocytes in mouse somatosensory

cortex. Astrocytic responses peaked at stimulation frequencies

at which local synaptic input was highest (measured by summed

local field potential) and were much smaller at weaker synaptic

activation (Wang et al., 2006). The latency of onset of these

calcium changes was in the order of 1–6 s—i.e., later than the

onset of functional hyperemia, which typically occurs at about

1 s after stimulus onset (Tian et al., 2010). In another study in

ferret visual cortex, astrocytes responded at a delay of 3–4 s (Fig-

ure 5B), and, similar to somatosensory cortex, were sharply

tuned to maximal synaptic input (Schummers et al., 2008). In

olfactory glomeruli, astrocytic calcium elevations in response

to odor stimulation commenced about 1–2 s after stimulus onset

(Petzold et al., 2008), although the precise stimulus onset is more

difficult to determine here because of variations in the flow of

odorants to the nose as well as breathing and sniffing rates of

the animals. In the cortex, a subset of astrocytes showed

rapid responses more compatible with the onset of functional
Neuron 71, September 8, 2011 ª2011 Elsevier Inc. 785



Figure 3. Cellular-Level Measurements of the Elements in Neurovascular Coupling
(A) Vessel diameter can be directly measured with calcium dynamics in ex vivo preparations, such as the acute brain slice preparation. Upper panel: calcium
uncaging in astrocytes (labeled with the calcium indicator Rhod-2) is associated with subsequent arteriolar vasoconstriction (scale bar, 20 mm). Lower panel:
afferent electrical stimulation induces arteriolar vasodilation (scale bars, 10 mm). Down and up triangles in the graph indicate the duration of stimulation. Note the
relatively slow kinetics of the vessel response compared to in vivo conditions.
(B) Blood flow can be measured in vivo by high-speed imaging of red blood cell (RBC) movement in capillaries using multiphoton microscopy. In this example,
fluorescent dyes in the plasma allow erythrocytes to be seen as dark shadows. By performing rapid line scans along the capillary axis, passing RBCs appear as
dark bands in the fluorescent plasma. CBF parameters can then be calculated from these bands (the time between two bands, Dt, is inversely proportional to
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Figure 4. Postulated Signaling Pathways from
Synapse to Blood Vessel
Molecular pathways that have been identified in in vivo
and in vitro studies are displayed. Pathways that have only
been identified in vitro, but await characterization in vivo,
have been highlighted to the right. Question marks indi-
cate unknown molecular mediators. In summary, pre-
synaptic terminals release glutamate (Glu), which acts on
postsynaptic neurons and astrocytes. In postsynaptic
neurons, glutamate activates ionotropic receptors (iGluR),
which trigger calcium elevations that activate neuronal NO
synthase (nNOS) and cyclooxygenase 2 (COX2), which in
turn leads to production of PGE2. It is not known whether
PGE2 dilates blood vessels by acting on smooth muscle
cells or on astrocytes. In astrocytes, glutamate activates
metabotropic glutamate receptors-5 (mGluR5), which
triggers calcium elevations that—by phospholipase A2

(PLA2)-mediated synthesis of arachidonic acid (AA)—lead
to production of PGE2 through COX1 and epoxyeicosa-
trienoic acids (EETs) through cytochrome P450 2C11 ep-
oxygenase (CYP2C11). Moreover, calcium induces po-
tassium release from astrocytic endfeet through large
conductance calcium-dependent potassium channels
(BKCa), which in turn triggers vasodilation through hyper-
polarization of smooth muscle cells via inward-rectifier
potassium channels (Kir). Glutamate is also taken up into
astrocytes through glutamate/Na+-cotransport, but the
pathways that eventually lead to vasodilation remain
unknown. In addition to these neurovascular pathways,
endothelial cells can also trigger vasodilation via endo-
thelial NO synthase (eNOS) and PGIi production by COX1.
Slice studies have suggested that astrocytic calcium can
by unknown mechanisms also lead to vasoconstriction

through the production of 20-hydroxyeicosatetraenoic acid (20-HETE) mediated by cytochrome P450 4A (CYP4A) u-hydroxylase. In slices, low [O2] may inhibit
vasoconstriction through increased production of lactate (which may inhibit astrocytic PGE2 reuptake) and adenosine.
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hyperemia, following brief mechanical limb stimulation (Winship

et al., 2007). Another study found astrocytic calcium elevations in

somatosensory cortex in awake mice, which appeared 1–2 s

after the onset of voluntary running (Dombeck et al., 2007). How-

ever, in both studies, but in contrast to other studies (Schum-

mers et al., 2008) (Figure 5B), the onset and kinetics of calcium

responses in neurons and neuropil, which were simultaneously

labeled with the same calcium indicator, were similar to the as-

trocytic response (Dombeck et al., 2007; Winship et al., 2007),

indicating that they might have been included in the axial depth

of the optical plane and may have contributed to the imaging

signal. In yet another study in awake behaving mice, the onset

of calcium ‘‘flares,’’ which were abundant in awake mice but

absent in anesthetized animals, in cerebellar Bergmann glia,

closely matched the onset of functional hyperemia (Nimmerjahn

et al., 2009) (Figure 5C). However, CBF was measured in sepa-

rate animals by laser-Doppler flowmetry in a much larger tissue

volume than the calcium measurements, making it difficult to
RBC flux; the distance between bands, Dx, is inversely proportional to RBC linea
velocity).
(C) Calcium signals in neurons and astrocytes can be imaged using multiphoton m
101 (SR101). In this example from Nimmerjahn et al. (2004), astrocytes are visu
Spontaneous calcium responses were measured in both cell types, and had sign
also be imaged under various conditions.
(D) In the olfactory bulb, several different cellular elements can be imaged simulta
estimated by fluorescence imaging, of nerve terminals expressing synaptopHlu
using calcium imaging, and blood flow by measuring erythrocyte velocity.
The following images are reproduced with permission: (A) from Mulligan and Mac
and Kleinfeld (2008), (C) from Nimmerjahn et al. (2004), and (D) from Petzold et a
accurately relate the onset of functional hyperemia with astro-

cytic calcium. In summary, calcium elevations in different sys-

tems and after different stimulation paradigms typically occur

in areas of maximal synaptic activity and often start somewhat

later than functional hyperemia.

Given that astrocytic responses in vivo are typically detected

after the onset of functional hyperemia, how can they be respon-

sible for the vascular changes? One can envision three possible

scenarios. First, calcium elevations in astrocytes in all of these

studies were monitored using synthetic dyes, loaded into cells

using the membrane permeant AM ester form, and by identifying

astrocytes using either genetic markers (Zhuo et al., 1997) or sul-

forhodamine 101 (Nimmerjahn et al., 2004). However, the dye is

taken up by all cells, and even when using counterstains (Figures

3C and 5C), signal separation can become difficult (Göbel and

Helmchen, 2007; Grewe and Helmchen, 2009). In addition, the

time course of calcium responses in neurons and astrocytes is

influenced by the properties of the indicator as well as the
r density; and the slope of the bands, Dt/Dx, is inversely proportional to RBC

icroscopy and selective labeling of astrocytes using the dye sulforhodamine-
alized as yellow regions (overlap of red SR101 and green calcium indicator).
ificantly different temporal dynamics. Evoked responses in both cell types can

neously or separately under very similar conditions. Presynaptic activity can be
orin (spH), postsynaptic and astrocytic activity (identified by GFP expression)

Vicar (2004) (upper row) and Zonta et al. (2003) (lower row), (B) from Helmchen
l. (2008).

Neuron 71, September 8, 2011 ª2011 Elsevier Inc. 787



Figure 5. Relation between Astrocyte Activity and
Blood Flow
(A) Increasing calcium concentration in astrocytic endfeet
surrounding a blood vessel causes vasodilation. In this
example, calcium increases were induced by uncaging,
and measurements of calcium levels and vessel diameter
done using multiphoton microscopy (in the line scan
mode). Calciumwas measured using Rhod-2, and vessels
were visualized using a dextran-coupled dye. Although the
overall time course is gradual, the vessel diameter tracks
the rise in calcium concentration in the endfoot.
(B) Astrocytic responses following sensory stimulation
occur several seconds after the stimulus and have a time
course distinct from neuronal responses. Images show
astrocytes and neurons in ferret visual cortex labeled with
the calcium indicator Oregon Green BAPTA-1 (OGB1,
green). The astrocyte was identified by costaining with
sulforhodamine 101 (SR101, purple). Lower image: time
course of neuronal (blue) and astrocytic (red) calcium
responses to visual stimulation (the thick bar represents
stimulation time). Scale bar, 25 mm.
(C) Calcium waves can occur in astrocytes vivo. In this
example, radially expanding calciumwaves, termed ‘‘Ca2+

bursts,’’ were measured using OGB1 in cerebellar Berg-
mann glia in awakemice. Fifteen frames are illustrated (five
time points and three different depths). The time courses
of these calcium signals are shown in the middle panel
(black, individual traces; green, mean time course). In the

bottom panel, the time course of large-scale concerted glial calcium signals, termed ‘‘Ca2+ flares,’’ is shown (black) along with average blood flow changes
(green), both averaged by triggering on movement onset (vertical line; note, however, that these measurements were taken in separate groups). Two different
types of movement were considered: brief movement and extended movements. The onset of blood flow changes tracks glial calcium well for both cases.
However, for extended movements, blood flow stays high even though glial calcium levels return to baseline.
The following images are reproduced with permission: (A) from Takano et al. (2006), (B) from Schummers et al. (2008), and (C) from Nimmerjahn et al. (2009).
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endogenous calcium buffer capacity (Helmchen et al., 1996;

Neher and Augustine, 1992), although onset kinetics are prob-

ably not affected significantly.

A second scenario is that calcium changes in astrocytes do

occur earlier than functional hyperemia but that they are not

picked up by the indicator. This may be either because the

affinity of typical bulk-loaded indicators is too low to detect

very subtle calcium changes or because the indicators tend to

accumulate in somata and larger processes, leaving out the

extensive network of smaller astrocytic processes and their

even finer ramifications. There is clear evidence for differences

in calcium signals recorded in astrocyte somata and fine pro-

cesses (Reeves et al., 2011). Perhaps progress can be made if

astrocytes can be selectively labeled with calcium indicators,

especially with genetically encoded indicators such as GCaMPs

(Nakai et al., 2001; Shigetomi et al., 2010; Tian et al., 2009),

troponin-based probes (Mank et al., 2006, 2008), and chame-

leons (Atkin et al., 2009; Miyawaki et al., 1997; Truong et al.,

2007).

A third scenario is that calcium changes in astrocytes indeed

appear later than functional hyperemia. For example, it is

possible that nonastrocytic mechanisms—e.g., neuronal NO or

dedicated interneurons—trigger the initial rise of functional

hyperemia, but that astrocytic pathways are necessary to main-

tain the response. Moreover, signaling steps between astrocytic

activation and calcium increase, such as diacylglycerol produc-

tion, may also be vasoactive. It is also feasible that calcium

represents just one of many different vasoactive astrocytic

messengers, such as sodium (Bernardinelli et al., 2004), protons

(Amato et al., 1994; Chesler and Kraig, 1987), cAMP (Moldrich

et al., 2002), ATP (Cotrina et al., 2000; Pascual et al., 2005), or
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lactate (Gordon et al., 2008). Future experiments may benefit

from monitoring changes in these parameters within astrocytes

in vivo.

In addition to monitoring calcium rises, it is also important to

be able to perturb calcium levels within astrocytes at will. One

method that has been used successfully is optical uncaging—

caged calcium loaded into astrocytes can be released by ultra-

violet light, a method that has been used extensively in vitro

(Filosa et al., 2006; Gordon et al., 2008; Metea and Newman,

2006; Zonta et al., 2003) (Figure 3A). In vivo uncaging was shown

to lead to vessel dilation (Takano et al., 2006) (Figure 5A), but

additional experiments with more controlled and spatially

confined changes in calciummay offer more refined information.

How Are Astrocytes Activated by Neuronal Activity?
Neuron-derived substances, such as glutamate, GABA, nor-

adrenaline, acetylcholine, dopamine, ATP, and nitric oxide,

trigger propagating astrocytic calcium elevations in culture (Hay-

don andCarmignoto, 2006; Volterra andMeldolesi, 2005). So far,

only glutamate has been shown to be relevant for astrocytic acti-

vation following sensory stimulation in vivo. In cortex, local inhi-

bition of the metabotropic glutamate receptors mGluR1 and

mGluR5, respectively, decreased astrocytic calcium elevations

evoked by whisker stimulation by about 40%–50% each

(Wang et al., 2006). Similarly, in olfactory glomeruli, inhibition of

mGluR5 decreased the rise of astrocytic calcium (as well as

functional hyperemia) following odor stimulation (Petzold et al.,

2008). Neither presynaptic (Petzold et al., 2008) nor postsynaptic

neuronal activity (Wang et al., 2006) was altered by the pharma-

cological treatment, indicating that the effect was mainly attrib-

utable to astrocytic but not neuronal mGluRs. As an additional
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pathway, inhibition of glutamate uptake into astrocytes driven

by the glutamate/sodium cotransporter decreased functional

hyperemia in the mouse olfactory bulb (Petzold et al., 2008)

and in the ferret visual cortex (Schummers et al., 2008).

As in any complex signaling system, many uncertainties

remain. For example, some studies have suggested that mGluR5

might be predominantly expressed in neurons in the mature

brain (Barres, 2008; D’Antoni et al., 2008). Moreover, pharmaco-

logical blockade of glutamate uptake increases the concentra-

tion and half-life of glutamate at the synaptic space, although

the effect of astrocytic glutamate transport inhibition on func-

tional hyperemia remained in the olfactory bulb when all neuronal

targets of glutamate as well as astrocytic mGluRs were blocked

(Petzold et al., 2008). It is currently unclear to what extent gluta-

mate uptake-mediated functional hyperemia depends on a rise

in astrocytic calcium. Astrocytic calcium responses remained

unaltered after relatively specific blockade of astrocytic trans-

porters in the olfactory bulb (Petzold et al., 2008). In contrast,

injections of high concentrations of the unspecific neuronal

and astrocytic uptake inhibitor TBOA decreased astrocytic

calcium elevations in ferret visual cortex (Schummers et al.,

2008). The mechanisms responsible for this decrease remain

to be determined, especially since neuronal calcium responses

increased simultaneously because TBOA elevated synaptic

glutamate and this should theoretically increase astrocytic

calcium. Additional nonpharmacological studies will be neces-

sary to clearly delineate the role of astrocytic glutamate uptake

and mGluRs for functional hyperemia. This could be achieved

by using genetically engineered mice in which metabotropic

receptor pathways are knocked in or out specifically in astro-

cytes (Fiacco et al., 2007; Petravicz et al., 2008). Better temporal

and spatial resolution may be achieved by the use of optically

activated G protein-coupled receptors, referred to as OptoXRs

(Airan et al., 2009). These chimeric receptors have opsin

domains that can be activated by light, and intracellular

domains—e.g., the signaling domain of mGluR5—that allow

them to signal like native receptors. In addition, specific manip-

ulation of neurons using optogenetic probes such as channelr-

hodopsins (Boyden et al., 2005; Miesenböck, 2009; Nagel

et al., 2003) could reveal the role of pre- and postsynaptic activa-

tion (see below), and the contribution of specific interneurons.

Astrocytes could also be activated directly, bypassing neurons,

using channelrhodopsins (Gourine et al., 2010; Gradinaru et al.,

2009). It remains to be established, however, that activation of

channelrhodopsin-2 (ChR2) in astrocytes can cause significant

depolarization (because of the low electrical impedance) and

that these depolarizations have a signaling role. Finally, to test

the roles of glutamate transporters, gene-targeted mice lacking

specific transporters in astrocytes can be used (Colin et al.,

2009).

What Is the Role of Postsynaptic Activity for Astrocyte-
Mediated Functional Hyperemia?
All astrocytic pathways identified so far require the direct action

of glutamate on astrocytes (Petzold et al., 2008; Schummers

et al., 2008; Takano et al., 2006; Wang et al., 2006). In contrast,

when the activity of postsynaptic neuronal NMDA and AMPA

receptors was blocked locally, no changes were seen in func-
tional hyperemia (Chaigneau et al., 2007; Petzold et al., 2008)

or intrinsic optical signals (Gurden et al., 2006) in the olfactory

bulb. Moreover, no effect on astrocytic calcium transients

evoked by sensory stimulation was observed in somatosensory

cortex in vivo after blockade of postsynaptic NMDA and AMPA

receptors (Wang et al., 2006).

These results indicate that astrocytesmainly detect presynap-

tically released glutamate, and that local postsynaptic neuronal

activity plays only a minor role in the vasoactive actions of

astrocytes. Accordingly, presynaptic activity, when measured

simultaneously with CBF using a fluorescent marker for gluta-

mate release, correlates strongly with functional hyperemia in

olfactory glomeruli (Petzold et al., 2008) (Figure 3D). In contrast,

earlier studies have shown that postsynaptic neuronal activity

triggered by ionotropic glutamate receptor activation repre-

sents an important pathway in functional hyperemia in the

neocortex and cerebellum (Gsell et al., 2006; Lauritzen, 2005;

Yang and Iadecola, 1996). In addition, recent studies may indi-

cate that the neuronal stimulus strength might influence which

mechanism—presynaptic/astrocytic activity or postsynaptic/

neuronal activation—prevails in the control of functional hyper-

emia. While sparse activation of single glomeruli in the olfactory

bulb using low odorant concentrations revealed a contribution

of presynaptic glutamate release and astrocytic activity to the

local glomerular CBF response (Petzold et al., 2008), another

study reported that clustered activation of many glomeruli, i.e.

a stronger and more widespread stimulus, triggered CBF re-

sponses that were attenuated by global, but not local, postsyn-

aptic blockade (Chaigneau et al., 2007).

It is possible that the contribution of presynaptic activity may

have been underestimated in studies focusing on postsynaptic

activity because of the lack of direct markers of presynaptic

release in these systems, and because classical electrophysio-

logical indicators such as the local field potential mainly report

postsynaptic activity (Aroniadou-Anderjaska et al., 1997). More-

over, topical application of postsynaptic blockers will not only

decrease the activity of principal neurons, but also presynaptic

glutamate release from local excitatory neurons, which are nor-

mally recruited by recurrent activity. Notably, thalamocortical

synapses contribute to only a small fraction of the total number

of excitatory synapses in many sensory cortical areas (Douglas

and Martin, 2007; Peters and Payne, 1993; White, 1989). There-

fore, an experimental perturbation of postsynaptic activity will

probably also alter presynaptic release, which is usually very

difficult to measure concomitantly.

Overall, the results available today indicate that postsynaptic

neuronal activity may predominate in the control of CBF when

stimulation intensity is high or if widespread activation or co-

activation of distant areas occur, while presynaptic/astrocytic

activity may predominantly regulate CBF during mild or local

sensory stimulation. Such a shift may be optimal for matching

the CBF response to metabolic needs—for example, a quantita-

tive analysis of glomerular metabolic demands in the olfactory

glomerulus (Nawroth et al., 2007) showed that postsynaptic

receptor activation contributes to less than 0.3% of the total

energy budget during low activation but increases exponentially

to one-third with stronger activation patterns comparable to

those used by Chaigneau et al. (2007). In future studies, these
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computational predictions could be tested experimentally by

harnessing optogenetics to express light-activated proteins in

neurons, allowing the experimenter to excite neurons more

specifically than feasible with physiological stimuli. Such exoge-

nous activation of neurons with spatiotemporal precision could

yield answers to questions such as: (1) how much activity is

necessary to cause hemodynamic changes, (2) how local (non-

local) is the hemodynamic change when neuronal activity is

focused to a small volume, (3) is postsynaptic activity dispens-

able for neurovascular coupling—this can be addressed by ex-

pressing optical inhibitors (Han and Boyden, 2007; Zhang

et al., 2007) in postsynaptic neurons. In structures such as the

olfactory bulb with clear morphological boundaries (such as

the glomeruli), optical stimulation of individual elements using

light can be used to great advantage (Dhawale et al., 2010).

Recent studies have demonstrated the feasibility of using opto-

genetic activation to study the origins of vasoactive signals

(Desai et al., 2011; Lee et al., 2010).

What Intraastrocytic Pathways Are Involved?
Although many questions regarding the activation of astrocytes

by glutamate remain unanswered, the picture is clearer for the

effects downstreamofmGluR5 activation. Photolysis of ‘‘caged’’

calcium in perivascular astrocytic endfeet triggered vasodilation

of cortical penetrating arterioles in anesthetized mice (Takano

et al., 2006) (Figure 5A). This dilation was strongly reduced by

inhibition of cyclooxygenase-1 (COX-1), which is expressed in

perivascular astrocytes (Takano et al., 2006) and microglia (Ca-

pone et al., 2010), resulting in the synthesis of vasoactive pros-

taglandins (Koehler et al., 2009), but not by inhibition of COX-2

(Takano et al., 2006), which is expressed in neurons (Wang

et al., 2005). Similarly, in olfactory glomeruli, COX-1 is expressed

by glomerular astrocytes, and its inhibition reduced functional

hyperemia, probably downstream of mGluR5 activation (Petzold

et al., 2008). A strong reduction in functional hyperemia was

recently found in human subjects carrying a COX-1 genotype

that results in lower enzymatic function (Hahn et al., 2011). In

contrast, a role for COX-2 in neurovascular coupling was sup-

ported by studies in somatosensory cortex (Niwa et al., 2000a;

Stefanovic et al., 2006), and functional hyperemia was not atten-

uated in COX-1 null mice (Niwa et al., 2001a). It is currently

unclear whether glial COX-1 and neuronal COX-2 may be acti-

vated at different kinetics, in different regions, or following

different stimulus paradigms. Moreover, the selectivity of some

COX inhibitors is lower in vivo than in vitro (Brenneis et al.,

2006), and some COX inhibitors have additional pharmacolog-

ical effects (Niwa et al., 2001a). To make matters even more

complicated, COX-2 and also COX-3 might also be expressed

in astrocytes under some conditions (Hirst et al., 1999; Kis

et al., 2003), and the expression profile of prostaglandin recep-

tors remains to be characterized in full detail (Andreasson,

2010). Finally, the effect of COX inhibition is regionally heteroge-

neous (Dahlgren et al., 1984; Niwa et al., 2001a), and the effect of

mGluR5 inhibition differs profoundly between different brain

regions (Sloan et al., 2010), indicating that some pathways might

prevail over others depending on the location, and that lessons

learned in one region may not be applicable elsewhere. Interest-

ingly, regional diversity has also been observed for the role of
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nitric oxide in cortex (Lindauer et al., 1999) versus cerebellum

(Akgören et al., 1996; Yang et al., 2000).

The vasoactive pathways downstream of glutamate uptake

into astrocytes are largely unknown, but there are several in-

triguing possibilities. First, the cotransport of sodium and gluta-

mate slightly depolarizes the astrocyte, which could lead to

potassium efflux at astrocytic end-feet and subsequent vasodi-

lation (Filosa et al., 2006; Howarth and Attwell, 2006; Paulson

and Newman, 1987). However, the current generated by gluta-

mate transport is small compared to that generated by astrocytic

K+ uptake at the synaptic cleft in olfactory glomeruli (De Saint Jan

andWestbrook, 2005), and it seems unlikely that the blockade of

a comparatively small current would reduce functional hyper-

emia as much as observed. Second, CBF may increase as a

result of metabolic activation induced by glutamate uptake.

Sodium/glutamate cotransport consumes energy for the resto-

ration of the ionic gradient by the Na+-/K+-ATPase, and for the

conversion of glutamate to glutamine. While the contribution of

these processes to the brain’s energy budget is small (Attwell

and Laughlin, 2001), glutamate uptake into astrocytes also

directly initiates astrocytic nonoxidative glycolysis and lactate

release (Pellerin, 2005). Lactate itself may initiate vasodilation

(Gordon et al., 2008), but it is also possible that sodium ions co-

transported into astrocytes with glutamatemay trigger a vasoac-

tive pathway. Sodium ions shuttled into astrocytes by this

cotransport propagate as interastrocytic sodium waves in cell

cultures (Bernardinelli et al., 2004), and they have also been

shown to couple synaptic activity and astrocytic nonoxidative

glucose consumption (Voutsinos-Porche et al., 2003). This stim-

ulation of nonoxidative glycolysis in astrocytes is thought to

underlie the disproportionate rise of CBF and glucose compared

to a smaller increase in oxygen consumption—themismatch that

forms the basis of functional brain imaging (Magistretti and Pel-

lerin, 1999). Therefore, glutamate transport into astrocytes may

simultaneously activate functional hyperemia and nonoxidative

glycolysis in astrocytes, andmay contribute to the high temporal

and spatial correlation of CBF increase and glucose consump-

tion observed in functional brain imaging (Raichle and Mintun,

2006).

Advances in imaging and cellular manipulation may be

harnessed to overcome the uncertainties regarding the role of

astrocytic molecular agents in functional hyperemia. Optical

imaging during physiological activity can, in principle, be ex-

tended to any small molecule for which there is an appropriate

fluorescent indicator (Zhang et al., 2002). Genetic manipulations

may also be valuable, particularly if the perturbations can be

performed in a cell-type-specific and temporally precise manner

(Kennedy et al., 2010). Methods to stimulate or downregulate the

expression of genes, such as those for glutamate transporters,

specifically in mature astrocytes are increasingly becoming

available (Colin et al., 2009). Pharmacological methods with in-

creased specificity may also be useful, as will methods that

marry chemical approaches with genetic methods (‘‘chemical

genetics’’) (Knight and Shokat, 2005). For example, mutations

in transporters that confer susceptibility to blockade by exoge-

nous small molecules that have no effects on native proteins

could allow acute and reversible inhibition of transporters in

astrocytes.
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What Is the Spatial Range of Astrocytic Input and Output
in Relation to Functional Hyperemia?
It is worth considering some of the physical and chemical

constraints for functional hyperemia. First and foremost, since

neurovascular coupling is spatially confined, the molecular

signals need to be generated and communicated locally. There-

fore, it is important to determine the range of integration and

range of influence of astrocytes, especially since astrocytes

are extensively coupled through gap junctions (Haydon, 2001).

Second, even if the vasoactive signals are generated locally,

they may spread far if they diffuse rapidly and have a long

lifetime—these parameters need to be measured for molecules

such as NO and ions such as potassium. Third, affecting blood

vessels in one placemay affect the perfusion nonlocally because

of vascular connectivity and passive redistribution of blood

(Boas et al., 2008). These considerations have been recognized

for some time but are not always attended to in molecular and

cellular studies. Finally, the same messenger might have dif-

ferent or even opposing effects on blood flow (Attwell et al.,

2010).

Another open issue is related to the spatial ‘‘reach’’ of astro-

cytes. Cortical astrocytes are organized into nonoverlapping

functional domains (Halassa et al., 2007) (Figure 2C). On the input

side, a single cortical astrocyte can, in principle, listen to tens of

thousands of synapses by virtue of its extensive processes

(Haydon, 2001), but it is unclear howmany synapses are needed

to activate an astrocyte. Recent in vivo experiments in visual

cortex indicate that astrocytes respond to visual stimulation

with calcium rises with exquisite selectivity, suggesting that their

‘‘input’’ field may be highly selective (Schummers et al., 2008).

Selective astrocytic responses were also found in slice experi-

ments in barrel cortex (Schipke et al., 2008). On the other

hand, what is the spatial extent of a single astrocyte’s output?

In theory, the organization of astrocytes into separate domains

may contribute to the spatial distribution of the CBF response

(Iadecola and Nedergaard, 2007). However, the input and output

selectivity may not be limited by the spatial extent of a single

astrocyte’s processes, since extensive gap junction coupling

of astrocytes may extend the range substantially by allowing

intercellular transfer of signaling molecules (Haydon, 2001;

Scemes and Giaume, 2006). The degree of astrocyte coupling

may also be regulated to make network topology modifiable.

The extent of astrocyte coupling in vivo is unclear. One

signaling event that has been observed to propagate across

astrocytes is a rise in calcium concentration. Calcium waves

spreading across multiple astrocytes were imaged more than

two decades ago in vitro (Cornell-Bell et al., 1990), but their

occurrence in vivo in themature brain under physiological condi-

tions has remained in question (Wang and Bordey, 2008).

Recently, spontaneous andmovement-evoked nonsynchronous

events (Nimmerjahn et al., 2009) and large coherent transglial

calcium waves (Hoogland et al., 2009; Nimmerjahn et al., 2009)

were observed in the cerebellum, as well as in cortex (Dombeck

et al., 2007). Whether these are all truly glial signals and whether

similar transglial calcium waves occur in other brain regions

awaits experimental testing. The existing data, however, suggest

that glial coupling is not an all-or-none phenomenon, but that it is

highly regulated. Of particular interest, Nimmerjahn et al. (2009)
found that hemodynamic changes elicited in the cerebellum by

motor activity were accompanied by calcium rises in a large

number of Bergmann glia (Figure 5C), although the two signals

were measured in separate groups (see above). Whether such

large-scale coordinated signaling is required for local hemody-

namic changes is not clear, but is an important question for

future work. Interestingly, it was recently reported that neuronal

activity differentially modulated the level of coupling of astrocyte

networks in the olfactory bulb (Roux and Giaume, 2009), indi-

cating that the strength and range of astrocytic communication

might depend on the ongoing local neuronal activity.

What Is the Influence of the Behavioral State
on Astrocytes and Functional Hyperemia?
An important consideration for future experiments is the behav-

ioral state of the animal. For technical reasons, much of the work

to date has been conducted in anesthetized animals, where

movement is minimized and stimuli can be controlled well.

However, anesthetics by their very nature interfere with neuronal

signaling, and it is well known that they also affect functional

hyperemia (Lindauer et al., 1993, Nakao et al., 2001), although

the extent of which remains to be defined (Franceschini et al.,

2010). Therefore, the question arises whether astrocytic sig-

naling is also altered by the anesthetic state. A pioneering study

by Dombeck et al. (2007) examining calcium responses in the

somatosensory cortex of awake, mobile mice noted that astro-

cyte responses can be coordinated or independent of each

other, suggesting specific and variable coupling in astrocyte

networks. Recently, Nimmerjahn et al. (2009) found that calcium

signals in Bergmann glia in the cerebellar molecular layer had

different characteristics in different behavioral states as well as

different sensitivity to anesthetics. In the visual cortex, stim-

ulus-evoked astrocytic calcium signals and intrinsic optical sig-

nals, which reflect hemodynamics, were reduced by increasing

concentration of the volatile anesthetic isoflurane (Schummers

et al., 2008). An important direction for future research is the

examination of the cellular basis of neurovascular coupling in

different waking states—constrained, behaving, and startled—

with a particular emphasis on simultaneous imaging of neuronal,

astrocytic, and vascular network activity.

Pathophysiological Implications
Neurovascular coupling has been implicated in the pathogenesis

of several important neurological diseases. Functional hyper-

emia is attenuated after experimental and clinical focal ischemia,

(Girouard and Iadecola, 2006). It is currently unclear whether this

reduction represents a decoupling of functional hyperemia by

impaired cerebrovascular reactivity (Kim et al., 2005; Rossini

et al., 2004), or whether neurovascular coupling is preserved,

but has a reduced amplitude because the underlying neuronal

activity is attenuated (Bundo et al., 2002; Weber et al., 2008;

Zhang and Murphy, 2007). Moreover, ischemia also reduces

the ability of endothelial cells to initiate vasodilation (Kunz et al.,

2007). Functional hyperemia is also reduced following global

cerebral hypoxia (Schmitz et al., 1998), and in arterial hyperten-

sion (Girouard and Iadecola, 2006). In addition, pericyte-medi-

ated contraction of capillaries may also contribute to the pertur-

bation of blood flow after cerebral ischemia (Yemisci et al., 2009).
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During migraine aura, as well as after stroke, traumatic brain

injury, and subarachnoid hemorrhage, spreading waves of neu-

ronal depolarization occur (Lauritzen et al., 2011). In the healthy

brain and during migraine aura, these events are associated with

a transient increase in local CBF (Hadjikhani et al., 2001; Laurit-

zen, 1987), and do not induce overt neuronal injury (Nedergaard

and Hansen, 1988). However, during ischemia, as well as after

brain injury or hemorrhage, the coupling between these neuronal

depolarization waves and CBF is inverted, such that the in-

creased neuronal activity is accompanied by a drop of CBF to

ischemic levels, indicating that this inverted neurovascular cou-

plingmay contribute to tissue damage (Dohmen et al., 2008; Dre-

ier et al., 2009; Petzold et al., 2003; Shin et al., 2006).

Functional hyperemia is also perturbed in Alzheimer’s disease

(Iadecola, 2004). In patients, resting CBF is reduced early in the

disease (Johnson and Albert, 2000), and functional hyperemia is

significantly impaired in animal models and patients (Hock et al.,

1996; Nicolakakis et al., 2008; Niwa et al., 2000b; Park et al.,

2004; Park et al., 2008; Shin et al., 2007; Smith et al., 1999;

Tong et al., 2005). Amyloid-b, the main constituent of amyloid

plaques in the brains of patients with Alzheimer’s disease, is

vasoactive in vitro (Crawford et al., 1998) and in vivo (Niwa

et al., 2000b), and soluble amyloid-b contributes to the reduction

of functional hyperemia in animal models in vivo (Niwa et al.,

2001b; Park et al., 2004), although it has also been suggested

that insoluble amyloid plaques and amyloid angiopathy are

necessary for this effect (Christie et al., 2001; Hu et al., 2008;

Shin et al., 2007). This perturbation of neurovascular coupling,

together with nonvascular mechanisms triggering neurodegen-

eration, may have synergistic detrimental effects on cognition

and memory in this disease (Iadecola, 2004).

Interestingly, dysregulation of astrocytic signaling has been

reported for all of these aforementioned diseases. Astrocytes

swell under ischemia, and because of their proximity to arterioles

and capillaries, this edema may contribute to the CBF reduction

in the microcirculation after stroke (Frydenlund et al., 2006; Man-

ley et al., 2000). On the other hand, astrocytes are also neuropro-

tective after ischemia and in other conditions (Barres, 2008;

Nedergaard and Dirnagl, 2005). Astrocytes also participate in

spreading neocortical depolarizations (Chuquet et al., 2007),

but to what extent they also contribute to the CBF response

and its inversion under pathological conditions remains un-

known. Finally, astrocytic calcium homeostasis is disrupted in

animal models of Alzheimer’s disease (Kuchibhotla et al., 2009),

but it remains to be determined whether these changes also

contribute to cerebrovascular dysregulation.

Concluding Remarks
There is substantial evidence now for the role of astrocytes

in neurovascular coupling. However, to establish with certainty

the exact aspects of functional hyperemia that astrocytes are

involved in, the following criteria must be satisfied: (1) astrocytes

must be activated in some way by neuronal signals that cause

functional hyperemia, (2) removing astrocytic signaling specifi-

cally in time and spatial location must perturb or abolish in-

creased blood flow caused by increased neural activity, and (3)

specifically activating astrocytic signals in the absence of neu-

ronal activity should lead to functional hyperemia. Of these, the
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first requirement has significant experimental support, but the

last two have not been fully addressed. Significant progress

can be anticipated in the coming years in this field. We are partic-

ularly optimistic about the use of detailed cellular imaging and

cell biological manipulations in vivo. Application of cutting-

edge optical imaging methods, including multiphoton micros-

copy, has allowed a detailed dissection of different cellular

components—blood vessels, astrocytes, pericytes, endothe-

lium, and neurons. Since individual cells are elementary units

of tissue organization, probing their properties at high resolution

allows one to discern individual events that may be smoothed

out or buried within population signals. This sort of cell biology

in the intact brain will also be aided by unequivocal identification

of specific cell types using genetic methods. These novel ap-

proaches might be helpful for the interpretation of brain imaging

studies and to pinpoint the mechanisms involved in the dysregu-

lation of functional hyperemia in neurological diseases.
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Hossmann, K.A. (1998). Recovery of the rodent brain after cardiac arrest:
a functional MRI study. Magn. Reson. Med. 39, 783–788.

Schummers, J., Yu, H., and Sur, M. (2008). Tuned responses of astrocytes and
their influence on hemodynamic signals in the visual cortex. Science 320,
1638–1643.

Shigetomi, E., Kracun, S., Sofroniew, M.V., and Khakh, B.S. (2010). A geneti-
cally targeted optical sensor to monitor calcium signals in astrocyte
processes. Nat. Neurosci. 13, 759–766.

Shin, H.K., Dunn, A.K., Jones, P.B., Boas, D.A., Moskowitz, M.A., and Ayata,
C. (2006). Vasoconstrictive neurovascular coupling during focal ischemic
depolarizations. J. Cereb. Blood Flow Metab. 26, 1018–1030.

Shin, H.K., Jones, P.B., Garcia-Alloza, M., Borrelli, L., Greenberg, S.M., Bac-
skai, B.J., Frosch, M.P., Hyman, B.T., Moskowitz, M.A., and Ayata, C. (2007).
Age-dependent cerebrovascular dysfunction in a transgenic mouse model of
cerebral amyloid angiopathy. Brain 130, 2310–2319.

Siesjo, B.K. (1978). Brain Energy Metabolism (New York: John Wiley & Sons).

Simard, M., Arcuino, G., Takano, T., Liu, Q.S., and Nedergaard, M. (2003).
Signaling at the gliovascular interface. J. Neurosci. 23, 9254–9262.

Sloan, H.L., Austin, V.C., Blamire, A.M., Schnupp, J.W., Lowe, A.S., Allers,
K.A., Matthews, P.M., and Sibson, N.R. (2010). Regional differences in neuro-
vascular coupling in rat brain as determined by fMRI and electrophysiology.
Neuroimage 53, 399–411.

Smith, C.D., Andersen, A.H., Kryscio, R.J., Schmitt, F.A., Kindy, M.S., Blonder,
L.X., and Avison, M.J. (1999). Altered brain activation in cognitively intact indi-
viduals at high risk for Alzheimer’s disease. Neurology 53, 1391–1396.

Sofroniew, M.V., and Vinters, H.V. (2010). Astrocytes: biology and pathology.
Acta Neuropathol. 119, 7–35.

Stefanovic, B., Bosetti, F., and Silva, A.C. (2006). Modulatory role of cycloox-
ygenase-2 in cerebrovascular coupling. Neuroimage 32, 23–32.

Stosiek, C., Garaschuk, O., Holthoff, K., and Konnerth, A. (2003). In vivo two-
photon calcium imaging of neuronal networks. Proc. Natl. Acad. Sci. USA 100,
7319–7324.

Takano, T., Tian, G.F., Peng, W., Lou, N., Libionka, W., Han, X., and Neder-
gaard, M. (2006). Astrocyte-mediated control of cerebral blood flow. Nat. Neu-
rosci. 9, 260–267.

Tian, L., Hires, S.A., Mao, T., Huber, D., Chiappe, M.E., Chalasani, S.H., Pet-
reanu, L., Akerboom, J., McKinney, S.A., Schreiter, E.R., et al. (2009). Imaging
neural activity in worms, flies and mice with improved GCaMP calcium indica-
tors. Nat. Methods 6, 875–881.

Tian, P., Teng, I.C., May, L.D., Kurz, R., Lu, K., Scadeng, M., Hillman, E.M., De
Crespigny, A.J., D’Arceuil, H.E., Mandeville, J.B., et al. (2010). Cortical depth-
specific microvascular dilation underlies laminar differences in blood oxygen-
ation level-dependent functional MRI signal. Proc. Natl. Acad. Sci. USA 107,
15246–15251.

Tong, X.K., Nicolakakis, N., Kocharyan, A., and Hamel, E. (2005). Vascular re-
modeling versus amyloid beta-induced oxidative stress in the cerebrovascular
dysfunctions associated with Alzheimer’s disease. J. Neurosci. 25, 11165–
11174.



Neuron

Review
Truong, K., Sawano, A., Miyawaki, A., and Ikura, M. (2007). Calcium indicators
based on calmodulin-fluorescent protein fusions. Methods Mol. Biol. 352,
71–82.

Tsien, R.Y. (1988). Fluorescence measurement and photochemical manipula-
tion of cytosolic free calcium. Trends Neurosci. 11, 419–424.

Villringer, A., and Dirnagl, U. (1995). Coupling of brain activity and cerebral
blood flow: basis of functional neuroimaging. Cerebrovasc. Brain Metab.
Rev. 7, 240–276.

Volterra, A., and Meldolesi, J. (2005). Astrocytes, from brain glue to communi-
cation elements: the revolution continues. Nat. Rev. Neurosci. 6, 626–640.

Voutsinos-Porche, B., Bonvento, G., Tanaka, K., Steiner, P., Welker, E., Chat-
ton, J.Y., Magistretti, P.J., and Pellerin, L. (2003). Glial glutamate transporters
mediate a functional metabolic crosstalk between neurons and astrocytes in
the mouse developing cortex. Neuron 37, 275–286.

Wang, D.D., and Bordey, A. (2008). The astrocyte odyssey. Prog. Neurobiol.
86, 342–367.

Wang, H., Hitron, I.M., Iadecola, C., and Pickel, V.M. (2005). Synaptic and
vascular associations of neurons containing cyclooxygenase-2 and nitric
oxide synthase in rat somatosensory cortex. Cereb. Cortex 15, 1250–1260.

Wang, X., Lou, N., Xu, Q., Tian, G.F., Peng, W.G., Han, X., Kang, J., Takano, T.,
andNedergaard, M. (2006). Astrocytic Ca2+ signaling evoked by sensory stim-
ulation in vivo. Nat. Neurosci. 9, 816–823.

Weber, R., Ramos-Cabrer, P., Justicia, C., Wiedermann, D., Strecker, C.,
Sprenger, C., and Hoehn, M. (2008). Early prediction of functional recovery
after experimental stroke: functional magnetic resonance imaging, electro-
physiology, and behavioral testing in rats. J. Neurosci. 28, 1022–1029.

White, E.L. (1989). Cortical Circuits: Synaptic Organization of the Cerebral
Cortex. Structure, Function and Theory (Boston: Birkhauser).

Winship, I.R., Plaa, N., and Murphy, T.H. (2007). Rapid astrocyte calcium
signals correlate with neuronal activity and onset of the hemodynamic
response in vivo. J. Neurosci. 27, 6268–6272.
Xu, H.L., Mao, L., Ye, S., Paisansathan, C., Vetri, F., and Pelligrino, D.A. (2008).
Astrocytes are a key conduit for upstream signaling of vasodilation during
cerebral cortical neuronal activation in vivo. Am. J. Physiol. Heart Circ. Physiol.
294, H622–H632.

Yang, G., and Iadecola, C. (1996). Glutamate microinjections in cerebellar
cortex reproduce cerebrovascular effects of parallel fiber stimulation. Am. J.
Physiol. 271, R1568–R1575.

Yang, G., Huard, J.M., Beitz, A.J., Ross, M.E., and Iadecola, C. (2000). Stellate
neurons mediate functional hyperemia in the cerebellar molecular layer. J.
Neurosci. 20, 6968–6973.

Yemisci, M., Gursoy-Ozdemir, Y., Vural, A., Can, A., Topalkara, K., and
Dalkara, T. (2009). Pericyte contraction induced by oxidative-nitrative stress
impairs capillary reflow despite successful opening of an occluded cerebral
artery. Nat. Med. 15, 1031–1037.

Zhang, S., and Murphy, T.H. (2007). Imaging the impact of cortical microcircu-
lation on synaptic structure and sensory-evoked hemodynamic responses
in vivo. PLoS Biol. 5, e119.

Zhang, J., Campbell, R.E., Ting, A.Y., and Tsien, R.Y. (2002). Creating new
fluorescent probes for cell biology. Nat. Rev. Mol. Cell Biol. 3, 906–918.

Zhang, F., Wang, L.P., Brauner, M., Liewald, J.F., Kay, K., Watzke, N., Wood,
P.G., Bamberg, E., Nagel, G., Gottschalk, A., and Deisseroth, K. (2007). Multi-
modal fast optical interrogation of neural circuitry. Nature 446, 633–639.

Zhuo, L., Sun, B., Zhang, C.L., Fine, A., Chiu, S.Y., andMessing, A. (1997). Live
astrocytes visualized by green fluorescent protein in transgenic mice. Dev.
Biol. 187, 36–42.

Zonta, M., Angulo, M.C., Gobbo, S., Rosengarten, B., Hossmann, K.A.,
Pozzan, T., and Carmignoto, G. (2003). Neuron-to-astrocyte signaling is
central to the dynamic control of brain microcirculation. Nat. Neurosci. 6,
43–50.
Neuron 71, September 8, 2011 ª2011 Elsevier Inc. 797


	Role of Astrocytes in Neurovascular Coupling
	Introduction
	A Macroscopic View of Cerebrovascular Regulation
	Neuronal Regulation of Local Blood Flow
	Astrocytes Are Anatomical Intermediaries between Neurons and Blood Vessels
	A Historical Perspective of Astrocytic Regulation of Vascular Tone
	Astrocytic Activation Changes Vascular Tone in Acute Brain Slices
	How and at What Time Scale Do Astrocytes Respond to Synaptic Activity in Vivo?
	How Are Astrocytes Activated by Neuronal Activity?
	What Is the Role of Postsynaptic Activity for Astrocyte-Mediated Functional Hyperemia?
	What Intraastrocytic Pathways Are Involved?
	What Is the Spatial Range of Astrocytic Input and Output in Relation to Functional Hyperemia?
	What Is the Influence of the Behavioral State on Astrocytes and Functional Hyperemia?
	Pathophysiological Implications
	Concluding Remarks
	 Acknowledgments
	References


