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The classical propagation of certain Lorentz-violating fermions is known to be governed by geodesics 
of a four-dimensional pseudo-Finsler b space parametrized by a prescribed background covector field. 
This work identifies systems in classical physics that are governed by the three-dimensional version of 
Finsler b space and constructs a geodesic for a sample non-constant choice for the background covector. 
The existence of these classical analogues demonstrates that Finsler b spaces possess applications in 
conventional physics, which may yield insight into the propagation of SME fermions on curved manifolds.
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1. Introduction

In Einstein’s general relativity, the mathematical description of 
the classical gravitational field is intrinsically geometric and rests 
on the concept of a Riemannian manifold. However, in the quest 
for a consistent quantum theory of gravitation, this phenomeno-
logically successful and elegant geometric formalism may need to 
be generalized. A popular broader geometric framework that in-
corporates Riemannian manifolds as a special limit is provided 
by Riemann–Finsler geometry [1–4]. The recent interest of the 
physics community in studying such geometries [5–23] has pri-
marily arisen in the context of Lorentz-symmetry violation — a 
promising phenomenological signature in various theoretical ap-
proaches to quantum gravity [24–31].

The Standard-Model Extension (SME) has been developed to 
describe Lorentz-violating effects at presently attainable energies 
regardless of their high-energy origin [32,33]. This framework has 
provided the basis for numerous experimental [34–39] and the-
oretical [40–43] studies of Lorentz breaking. In particular, one 
SME study has uncovered the incompatibility of Riemannian (and 
Riemann–Cartan) geometry with explicit Lorentz violation [33], 
suggesting Riemann–Finsler spaces as the appropriate geometrical 
description of Lorentz-violating physics in such situations. Further 
theoretical evidence supporting this suggestion originates from the 
classical-particle limit of the SME [44]: the motion of such par-
ticles is effectively governed by geodesics in a Riemann–Finsler 
space [10] despite the presumed underlying Riemannian structure. 
This analysis also allows a partial classification of the emerging 

* Corresponding author.
E-mail address: ralehner@indiana.edu (R. Lehnert).
http://dx.doi.org/10.1016/j.physletb.2015.04.047
0370-2693/© 2015 The Authors. Published by Elsevier B.V. This is an open access article
SCOAP3.
physically relevant Finsler structures [10] according to the type 
of Lorentz breakdown. For example, the SME’s aμ coefficient for 
fermions leads to the familiar Randers space [45].

The present study is primarily concerned with Finsler b space 
[10], which also emerges from the classical-particle limit of the 
SME. To define b space and other Finsler structures in a simplified 
form suitable for our present purposes, we note the following. The 
aforementioned SME-inspired partial classification of Finsler spaces 
is based on physical spacetime manifolds. These possess indefi-
nite metrics and are therefore pseudo-Riemannian. For perturba-
tive Lorentz violation, the indefinite-metric feature carries over to 
the Finsler-geometry interpretation, yielding pseudo-Finsler spaces. 
In this work, we are primarily concerned with the corresponding 
Finsler versions of these structures with a positive-definite metric. 
In particular, the relevant base manifold for our present study is 
R

3 endowed with the usual Euclidean metric. It then becomes un-
necessary to distinguish between vectors and covectors. Moreover, 
points on the manifold may be interpreted as vectors. In general, 
we denote vectors as boldface letters.

With these consideration in mind, we recall the common nota-
tion for Finsler spaces involving a scalar function F on the tangent 
bundle: integration of F along a path on the manifold yields the 
Finsler path length with geodesics defined as extremal paths be-
tween fixed points. For example, the Randers-space F function is 
denoted by Fa and given by

Fa(x,x′) = ρ(x,x′) + α(x,x′) , (1)

where

ρ(x,x′) =
√

x′ 2 ,

α(x,x′) = a(x) · x′ . (2)
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Here, x = x(λ) is a sufficiently well-behaved curve on the manifold, 
x′ = x′(λ) is the corresponding velocity in the tangent space Tx M , 
and a(x) is a prescribed (co)vector field. The Finsler structure for b
space, on the other hand, is [10]

Fb(x,x′) = ρ(x,x′) ± β(x,x′) , (3)

where

β(x,x′) =
√

b(x)2x′ 2 − [
b(x) · x′]2

, (4)

and b(x) is a given (co)vector field. It has been argued that b space 
is in some sense complementary to Randers space [10]. In any 
case, this Finsler b structure emerges from the classical-particle 
limit of the SME’s bμ coefficient for fermions. For completeness, 
we also recall the definition of the Finsler ab structure [10]

Fab(x,x′) = ρ(x,x′) + α(x,x′) ± β(x,x′) , (5)

which may be thought of as a combination of Randers and b space.
In the present work, our primary focus is to find systems in 

classical physics that are governed by the Finsler b structure pre-
sented in Eq. (3). The identification of simple table-top systems 
described by the same set of equations as some less transparent 
system has long been employed in physics research. Such ana-
logues can give complementary perspectives on and further insight 
into the original system; they may allow the application of ideas 
and methods from other fields of physics; they may create oppor-
tunities for controlled experimentation within the analogue that 
can be translated back to the original system; and they can il-
lustrate key physics ideas for educational purposes. Examples of 
these types of analogues across various sub-disciplines of physics 
include a number of Randers-space applications, such as Zermelo 
navigation, optical metrics, and magnetic flow [46]; modeling dis-
crete spacetime-symmetry violations in meson oscillations with 
mechanical and electric-circuit systems [47]; analogue gravity [48]; 
models for PT-symmetric quantum mechanics [49]; etc.

This Letter is structured as follows. Section 2 reviews some ba-
sics about Finsler b space and sets up our analysis. In Section 3, 
we present a b-space application involving a bead sliding on a 
wire. A second system governed by the Finsler b structure, which 
is based on a transversely polarized magnetic chain, is analyzed in 
Section 4. Section 5 comments on some aspects of the correspond-
ing geodesics. A brief summary is contained in Section 6.

2. Preliminary considerations

An important consideration in the construction of our classical-
physics Finsler examples concerns the dimensionality of the mani-
fold involved. For example, the aforementioned Zermelo navigation 
problem can be formulated in two dimensions, one of the key fea-
tures that makes this Randers-space example particularly simple 
and intuitive. In the present context, it would then seem natural 
to search also for simple, two-dimensional b-space examples. How-
ever, the Finsler structures (1) and (3) are equivalent in two space 
dimensions [10]. Since our goal is to identify classical-physics ana-
logues governed by true Finsler b spaces, nontrivial examples must 
involve at least three-dimensional manifolds. Indeed, it can be 
shown [10] that in three or more dimensions the b-space Mat-
sumoto torsion is non-vanishing. Inequivalence to Randers space 
then follows directly from the Matsumoto–Hōjō theorem [50].

Another consideration concerns the smoothness of Fb because 
basic objects, such as the expression for the Finsler metric g jk =
1
2 ∂x′ j ∂x′ k F 2

b , involve derivatives of Fb . Inspection of Fb reveals that 
it is differentiable everywhere with the exception of an extended 
slit S given by x′ j = κ b j , where κ ∈ R. It has been conjectured 
that the geometry at this extended slit can be resolved using stan-
dard techniques for singularities of algebraic varieties [10], and 
progress towards such results has been made [51]. From the per-
spective of the underlying SME quantum physics, this singularity 
can likely be addressed by introducing a spin variable [10]. In the 
present context of classical-physics analogues, we focus on those 
solutions that do not involve the slit.

For Fb to be a true Finsler structure, some additional condi-
tions need to hold. These include homogeneity of degree one in 
x′ and positive definiteness of both Fb and the associated Finsler 
metric g jk . Homogeneity is established by inspection, and positive 
definiteness requires

|b| < 1 (6)

for the lower sign in Eq. (3). We note that this latter constraint is 
compatible with the underlying motivation of the present analysis: 
b represents the analogue of the Lorentz-symmetry violating bμ

coefficient, which must be perturbatively small on experimental 
grounds.

The construction of classical-physics analogues for Finsler ge-
ometry amounts to finding systems governed by a variational prin-
ciple, i.e., by the extremization of some integral. At first sight, 
the Principle of Least Action applied to nonrelativistic mechanical 
systems would appear to be a natural starting point for the iden-
tification of such Finsler analogues. However, the presence of the 
mandatory kinetic-energy term in the Lagrangian L seems to place 
tight restrictions on the overlap between L and the set of possible 
Finsler structures F , and we have found that Lagrangians without 
a kinetic term will typically seem contrived.

Another widely known physics application of the variational 
method is Fermat’s Principle in ray optics. It states that light rays 
between two fixed points A and B traverse the path of stationary 
optical length with respect to variations of the path, i.e.,

δ

B∫
A

n(x,x′)ds = 0 . (7)

Here, s denotes the arc length of the light path x(s), and n(x, x′)
is the refractive index, which may depend on both the position 
x(s) and the propagation direction x′(s) of the light. The prime 
expresses differentiation with respect to the argument. The spatial 
dependence of the refractive index n(x, x′) can now be selected to 
recover most Finsler structures. Consider, for instance, the choice

n(x,x′) = 1 +
√

b2 − (b · ex′)2 , (8)

where b is a prescribed vector field, and ex′ denotes the unit vec-
tor in the instantaneous propagation direction. With this refractive 
index and a change of variables to a general, well-behaved path 
parametrization s = s(λ), Eq. (7) takes the form of a classical sys-
tem governed by Finsler b space. Although direction-dependent 
refractive indices are not uncommon in physics, it would seem 
difficult to control experimentally the vector field b: if only a con-
stant b can be achieved, translational invariance would yield the 
perhaps less interesting case of straight-line light propagation (see 
Section 5). In what follows, we seek examples in which b is freely 
adjustable, at least in principle.

3. Bead on a wire

As the first classical-physics analogue governed by a Finsler 
b-space geometry, we consider a bead of mass m that slides in 
three space dimensions on a rough wire. The bead’s position vec-
tor as a function of time t is denoted by x(t). The bead fits tightly 
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Fig. 1. Bead on a wire. The dashed line represents the wire with endpoints A and B . 
The figure also shows the external force field Fe(x) and the free-body diagram for 
the bead. In the free-body diagram, the dependence of the forces on the position x
is suppressed for brevity.

around the wire, resulting in a frictional force F0 that is constant 
in magnitude and directed against the bead’s velocity v(t) = ẋ(t). 
The dot denotes the derivative with respect to time.

The bead also experiences a prescribed external force Fe(x). The 
physical origin of Fe(x) could, for example, be due to a gravita-
tional field, an electric field (if the bead is charged), forces result-
ing from the flow of wind or water, etc. This external force and the 
bead’s motion generally require a normal force Fn(x) perpendicu-
lar to ẋ(t) to keep the bead on the wire. This will lead to a further 
frictional force of magnitude μ|Fn(x)| opposing the bead’s motion, 
where μ is a constant coefficient of kinetic friction. This additional 
friction is assumed to be independent of F0.

The forces F0 and Fn(x), the friction coefficient μ, and the ini-
tial conditions may not permit the bead to slide at all. To circum-
vent this issue, we allow for an additional force Fh that can only 
act along the wire. Note in particular that this force can therefore 
not contribute to the friction. We take Fh to be adjustable so that 
certain limiting cases, such as quasistatic motion, can be achieved. 
In a physical context, Fh could for example provide the description 
of a hand moving the bead along the wire.

Given this classical-mechanics system, we now consider the fol-
lowing situation. Given two distinct points A and B in space that 
represent the two ends of the wire, the bead slides from A to B . 
Holding A and B fixed, how must the wire be bent for the energy 
loss 	E due to friction to be minimal? If the wire is not required 
to have a given constant length, 	E can be expressed as

	E = −
B∫

A

Fnet(x) · dx , (9)

where Fnet(x) denotes the net friction, and the integration is un-
derstood to be carried out along a path x(t) with end points A
and B . The overall minus sign expresses our convention that the 
energy loss 	E be positive. Since the friction loss 	E is associated 
with abrasive wear, the problem of minimizing 	E may, for in-
stance, be motivated from an engineering standpoint that seeks to 
make a mechanical system last longer by reducing abrasive wear. 
Our set-up is depicted schematically in Fig. 1.

To find an explicit expression for Fnet(x) in terms of the given 
force field Fe(x), it is useful to consider Newton’s 2nd Law ex-
pressed in the Frenet–Serret frame that is comoving with the bead. 
This frame is as usual composed of the unit vector T(t) tangent 
to the path x(t), the unit normal vector N(t) pointing in the di-
rection of Ṫ(t) perpendicular to T(t), and the binormal vector 
B(t) ≡ T(t) ×N(t). In the TNB basis, the bead’s acceleration is given 
by ẍ(t) = v̇(t)T(t) + v(t)|Ṫ(t)|N(t). Suppressing the time and space 
dependence for brevity and denoting vector components in the T, 
N, and B directions with the respective superscripts T , N , and B , 
Newton’s 2nd Law takes the following form:

F T
e + F T

h − |F0| − μ|Fn| = mv̇ (10)

F N
e + F N

n = mv|Ṫ| (11)

F B
e + F B

n = 0 . (12)

Equations (11) and (12) can be solved for the normal-force com-
ponents F N

n and F B
n . With these components at hand, the net fric-

tional force becomes

Fnet = −(|F0| + μ|Fn|
)
T

= −
[
|F0| + μ

√(
F N

e − mv|Ṫ|)2 + (
F B

e
)2

]
T , (13)

where we have used that kinetic friction acts in the direction op-
posite to the velocity.

We are now in a position to express the integral (9) to be mini-
mized in terms of Fe . The following change of variables dx = ẋ dt =
vT dt gives

	E =
B∫

A

v

[
|F0| + μ

√(
F N

e − mv|Ṫ|)2 + (
F B

e
)2

]
dt . (14)

We now proceed by considering two limiting cases of this expres-
sion, each governed by a Finsler b-space geometry.

The first case is the zero-mass limit, which eliminates the 
centripetal-force term in Eq. (14). The square-root expression can 
then readily be identified with the magnitude of the force F⊥

e =
Fe − v−2(Fe · ẋ) ̇x, which is the component of Fe perpendicular to 
the wire, i.e., F⊥

e · ẋ = 0. Recalling v = √
ẋ2, we find

	E =
B∫

A

[
|F0|

√
ẋ2 + μ

√
F2

e ẋ2 − (
Fe · ẋ

)2
]

dt (15)

for the energy loss due to friction. It is apparent that with the 
identification b = μ|F0|−1Fe , we recover Fb defined in Eq. (3) up 
to an overall factor. Thus, the zero-mass limit of our bead sliding 
on a wire indeed provides a classical-physics situation described by 
the Finsler b structure when the energy loss is to be minimized.

Alternatively, we may consider the limit of quasistatic motion, 
in which the bead is understood to move with a speed v → 0. This 
situation can, for example, be created if the bead is moved slowly 
by hand along the wire, which can be modeled by adjusting Fh
such that the left-hand side of Eq. (10), and thus v̇ , vanish. A slow 
initial speed then remains unchanged. The direct implementation 
of the v → 0 limit in Eq. (14) lacks clarity because the integrand 
exhibits a multiplicative factor of v . We therefore change integra-
tion variables from time t to arc length s, so that the offending v
factor is absorbed into the integration measure v dt = ds. The limit 
is now more transparent; it again eliminates the centripetal-force 
contribution:

	E =
B∫

A

[
|F0| + μ

√
F2

e − (
Fe · x′)2

]
ds , (16)

where the prime denotes differentiation with respect to s. With 
the same identification b = μ|F0|−1Fe as before, we recover up 
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Fig. 2. Magnetic beads on a string. At the point W , the string is attached to a wall. 
Its other end hangs over a pulley at point P and is held under a constant tension Ft . 
The beads are threaded tightly on the string. They are free to rotate about the string 
with their magnetic moments remaining perpendicular to the string. The external B
field is not shown. The inset depicts the close-up of a single bead.

to an overall factor the arc-length version of Fb given in Eq. (3). 
We therefore conclude that the quasistatic limit of our bead-on-a-
wire example also provides a classical-physics analogue for Finsler 
b space.

4. Transversely magnetized chain

To establish a second classical-physics situation described by a 
Finsler b-space structure, we consider a catenary-type problem in 
three space dimensions. More specifically, we examine the shape 
of a chain under the influence of magnetic forces in static equilib-
rium.

The chain consists of beads that are threaded on a string. This 
threading is tight in the sense that neighboring beads are in con-
tact with one another. This is to prevent motion of the beads along 
the string. However, the beads are allowed to rotate freely and in-
dependently about the string. The beads are identical. They carry a 
magnetic dipole moment dμ that is oriented perpendicular to their 
symmetry axis and thus remains perpendicular to the string (see 
Fig. 2). At the point W , this magnetic chain is held fixed, for ex-
ample, by attaching it to a wall. The other end of the chain hangs 
over a pulley P and is kept under constant tension Ft . Such a force 
might be provided by tensioning with a weight. This set-up is de-
picted in Fig. 2. The segment of the chain between P and W is 
exposed to a time-independent external magnetic field B(x). The 
question to be addressed concerns the equilibrium shape x(λ) of 
this magnetic chain.

To find an equation for the equilibrium shape, we note that a 
static, stable configuration minimizes the total potential energy E
of the system. Our magnetic-chain set-up allows for various con-
tributions to E . To make the problem tractable, we idealize the 
set-up by neglecting the following contributions. First, we consider 
the string and the beads to be inelastic so as to preclude energy 
storage in the chain by stretching or compressing. As the second 
idealization, we take the string and the beads to be massless so 
that gravity can be ignored. The third effect we neglect concerns 
the dipole–dipole interactions between different beads.1

1 The physical consistency of neglecting the dipole–dipole interactions may not 
be obvious. Consider a set-up of discrete dipoles with finite 	μ separated by a fi-
nite 	s. This set-up closely resembles the actual physical situation at microscopic 
scales involving atoms. Then, a single dipole in an external B field possesses en-
ergy 	E B ∼ B 	μ, whereas its interaction with one of its neighboring dipoles 
contributes 	Ed–d ∼ 	μ2 	s−3. The B field can then always be selected such that 
	Ed–d is negligible and can be dropped, at least in principle. To obtain a math-
ematically more tractable continuum description, we can now approximate the 
fundamentally discrete sum over 	E B by a suitable integral. Note, however, that 
ignoring the atomistic nature of matter by taking 	s → 0 would lead to a diverging 
	Ed−d for a constant linear dipole density 	μ/	s.
In what follows, we focus on two contributions to the poten-
tial energy E . One of these arises as a result of the tension Ft
applied to the string. This tension implies that any deformation 
of the chain away from the straight-line configuration between W
and P requires work to be done against Ft , which is then stored 
as potential energy Et in the system. Since Ft is constant, Et in-
creases linearly with the length of chain drawn across the pulley. 
Selecting a convenient energy zero, we thus find

Et = Ft

P∫
W

√
x′(λ) · x′(λ) dλ , (17)

where Ft denotes the magnitude of Ft , and λ is a general parame-
ter along the chain such that x(λ) is sufficiently well-behaved.

The second contribution is a result of the magnetic interaction 
between the externally prescribed B(x) and the individual mag-
netic moments dμ(x) of the beads. A single bead at x possesses 
an energy dE B(x) given by [52]:

dE B(x) = −B(x) · dμ(x) . (18)

This expression shows that the net magnetic energy of the chain 
will consist of two contributions: the orientation of the beads’ 
magnetic momenta and the shape of the chain.

As a first step, we consider an arbitrary fixed shape x(λ) of the 
chain. The interaction (18) causes a torque on the dipole in such 
a way as to align it with the magnetic field.2 But as the beads 
are only allowed to rotate about one axis (i.e., the fixed string), 
the alignment is not necessarily perfect. Rather, the beads rotate 
such that the angle θ(x) between each bead’s magnetic moment 
and the external magnetic field B(x) at the bead’s position is min-
imized. In particular, 0 ≤ θ(x) ≤ 90◦ and dμ(x) lies in the plane 
spanned by B(x) and the tangent dx to the curve x(λ).3 In this 
stable configuration, we therefore have

cos θ(x) = sinφ(x) = +
√

1 − cos2 φ(x) , (19)

where φ(x) is the angle between B(x) and dx. Since the beads on 
our magnetic chain are identical, we can take the linear magnetic-
moment density ζ = dμ/ds to be constant and write dμ(x) = ζ ds
for the magnitude dμ of the magnetic moment. With these con-
siderations, Eq. (18) becomes

dE B(x) = −B(x) ζ ds
√

1 − cos2 φ(x)

= −ζ

√
B(x)2 dx2 − [

B(x) · dx
]2

. (20)

For a given shape x(λ), this yields

E B = −ζ

P∫
W

√
B(x)2 x′(λ)2 − [

B(x) · x′(λ)
]2

dλ (21)

for the chain’s net magnetic energy when the dipole beads are 
aligned in their stable orientation.

With the results (17) and (21) at hand, the total energy E of 
the chain is given by

E = Ft

P∫
W

[√
x′ 2 − ζ

Ft

√
B2x′ 2 − (B · x′)2

]
dλ , (22)

2 There can also be a net force on the dipole if B is inhomogeneous.
3 On the slit described in Section 2, which corresponds to situations in which 

B(x) is tangential to x(λ), this is ill-defined. As per our earlier discussion, we ex-
clude such cases from our analysis.
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where the dependence of x′ and B on the curve x(λ) is understood. 
The equilibrium shape of our magnetic chain is now obtained by 
minimizing E . Note that with the identification b = ζB/Ft , this 
system is governed by a Finsler b-space geometry. We remark in 
passing that Eq. (22) is subject to the physical requirement of 
∇ · B = 0 arising from the Maxwell equations.

The above catenary-type system can readily be modified or ex-
tended to represent other Finsler structures. For example, a longi-
tudinally magnetized chain would yield a Randers system. A more 
elaborate bead structure involving transverse magnetic moments, 
as before, as well as longitudinal electric-dipole moments, would 
be governed by the Fab Finsler structure (5) with external elec-
tric and magnetic fields playing the role of the prescribed a and b
covector fields, respectively.

5. Sample geodesic solution

Thus far, we have identified two classical-physics systems that 
are governed by Finsler b space. From a physics perspective, this 
merely corresponds to setting the problem up. Another interest-
ing question concerns the solution of this problem, i.e., finding the 
Finsler geodesics for a given b(x). This section briefly comments 
on this task.

Under mild assumptions, the b-space extremization problem

δ

B∫
A

Fb
(
x(λ),x′(λ)

)
dλ = 0 (23)

can be converted into a system of three ordinary differential equa-
tions. To this end, we employ the usual Euler–Lagrange equations

∂ Fb

∂x j
= d

dλ

∂ Fb

∂x′
j

(24)

to obtain:

∇β = ±
(

x′′

ρ
− x′ · x′′

ρ3
x′

)
+ d

dλ

1

β

[
b2x′ − (b · x′)b

]
. (25)

Here, the upper and lower sign choice corresponds to that in 
Eq. (3). In general, this system of equations is likely to be in-
tractable. However, we may find solutions for special choices for 
b(x).

Consider first the case of a constant b. This case can be used to 
illustrate that our simple analogue models can provide insight into 
Finsler b space. In our magnetized-chain example, b = const. cor-
responds to a homogeneous magnetic field, which does not exert 
any forces on the dipoles. We therefore expect that the equilibrium 
shape of the chain is a straight line.

To see this more rigorously note that the left-hand side of 
Eq. (24) vanishes, and thus

∂ Fb

∂x′ =
(

1

ρ
± b2

β

)
x′ ∓ x′ · b

β
b = C , (26)

where C is a constant. Contraction of this equation with b yields

x′ · b = ρ C · b = ρ c , (27)

with the constant c defined as c ≡ C · b. Using Eq. (27), all occur-
rences of the scalar product x′ · b in Eq. (26) can be traded for ρc. 
A rearrangement of terms in Eq. (26) then gives

x′

ρ
=

(
1 ± b2

√
b2 − c2

)−1(
C ± c√

b2 − c2
b

)
. (28)
Since the right-hand side of this equation is constant, we conclude 
that the unit vector in tangential direction x′/ρ is constant as 
well, so x(λ) must be a straight line with respect to our Euclidean 
base manifold. This result is consistent with the flat-spacetime 
SME’s pseudo-Finsler case, in which free fermions with a constant 
Lorentz-violating bμ coefficient also travel along straight paths.

Although straight-line solutions are analogous to fermion prop-
agation in the Minkowski-space SME, it might also be interesting 
to find sample solutions that do not represent a straight path in 
the Euclidean base manifold. To this end, consider a b(x) field with 
the following cylinder symmetry:

b(x) = [
b0 exp(−σ�) − 1

]
�̂ , (29)

where � denotes the radial cylinder coordinate and �̂ is the unit 
vector associated to �. The range for the parameters b0 and σ is 
given by

1 < b0 < 2 , 0 < σ . (30)

These constraints guarantee the positivity requirement (6) and the 
existence of a nonvanishing cylindrical region

0 < � < σ−1 ln b0 , (31)

in which b(x) points away from the z axis. It is this cylindrical 
region in which we seek helix solutions of the general form

x(λ) = R cosλ x̂ + R sinλ ŷ + h

2π
(λ − λ0) ẑ . (32)

To be located in the region (31), the helix radius R > 0 must obey

0 < R < σ−1 ln b0 < σ−1. (33)

Here, the last of these inequalities follows from the require-
ment (30). The parameter h ∈ R controls the handedness and the 
pitch of the helix, and λ0 ∈R the offset along the z axis.

With these definitions, the geodesic equation (25) with the up-
per, positive sign selected is satisfied if

|h| = 2π R
√

(σ R)−1 − 1 . (34)

Together with the relation (33), this implies

|h| > 2πσ−1 ln b0 . (35)

In view of the parameter ranges (30), this solution is indeed 
a proper helix and not a circle h = 0. It is also apparent that 
both handedness choices are acceptable. Note that λ0 is left un-
constrained by the geodesic equation, as expected from transla-
tional symmetry of b(x) along the z axis. We also note that the 
Finsler b structure is left invariant under b(x) → −b(x). This ob-
servation implies that the established helix solution also solves 
the upper-sign version of Eq. (25) for an external field b(x) =
−[

b0 exp(−σ�) − 1
]
�̂.

The derivation of the above solution has assumed the case in 
which β enters the Finsler structure (3) with a plus sign. To find a 
nontrivial solution for the other sign choice, we consider the same 
expression (29) for the external field, but we focus on the region 
in which b(x) points towards the z axis. Positivity (6) holds if

0 < b0 < 2 , 0 < σ . (36)

As opposed to the analogous expressions (30), this range has been 
chosen solely to guarantee the positivity condition (6); no addi-
tional restrictions are needed since there is always a nonvanishing 
region

max(0,σ−1 ln b0) < � (37)
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with the desired directionality of b(x). We again seek helix solu-
tions of the form (32), so we must have

max(0,σ−1 ln b0) < R (38)

to be in the region of interest. The geodesic equation, now with 
the lower, negative sign, yields again Eq. (34). However, since the 
parameter space for R has changed from the range (33) to the 
range (38), a real-valued |h| is no longer automatic; we must im-
pose

R ≤ σ−1 . (39)

Nevertheless, the inequalities (38) and (39) admit a finite range 
for R . They now also allow the case h = 0. As before, λ0 is left un-
determined, and invariance under b(x) → −b(x) implies that the 
flipped external field b(x) = −[

b0 exp(−σ�) − 1
]
�̂ leads to the 

same helix solution.

6. Summary

This work has considered a particular class of Finsler spaces 
called b space. This Finsler class is complementary to the widely 
known Randers space and arises in its pseudo-Finsler version as 
the classical limit of SME fermion propagation. We have shown 
that three-dimensional b spaces also have other applications in 
conventional classical physics.

One of these applications involves a bead sliding under friction 
and external forces on a wire. The shape of the wire that mini-
mizes abrasive forces follows a Finsler b-space geodesic. In this ex-
ample, the β term enters the expression (3) for Fb with a plus sign. 
The physical origin of this sign arises from the fact that this β term 
describes heat generated by friction, which is always dissipative.

The second example we have discussed concerns a trans-
versely magnetized chain in an external magnetic field: the static-
equilibrium configuration of the chain is governed by a length-
minimizing path with respect to a Finslerian b metric. In this 
set-up, β enters the expression (3) for Fb with a negative sign 
for the following physical reason. The β term models the mag-
netic potential energy of the beads according to Eq. (18). Since the 
dipoles are free to rotate about the string, the lowest-energy con-
figuration (away from the slit) is always characterized by an acute 
angle between the dipole and the B field. This implies a negative 
magnetic energy for each bead.

The general solution for the geodesic curve for a given b(x)

would be interesting, but appears to be difficult to determine. 
However, for the sample cases of a constant b and a b(x) with 
a particular cylinder symmetry we have identified nontrivial 
geodesics.
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