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Abstract

ArcAngel is a specialised tactic language devised to facilitate and automate program developments using
Morgan’s refinement calculus. It is especially well-suited for the specification of high-level strategies to derive
programs by construction, and equipped with a formal semantics that enables reasoning about tactics. In
this paper, we present an implementation of ArcAngel for the ProofPower theorem prover. We discuss
the underlying design, explain how it implements the semantics of ArcAngel, and examine differences in
expressiveness and flexibility in comparison to ProofPower’s in-built tactic language. ArcAngel supports
backtracking through angelic choice; this is beyond the basic capabilities of ProofPower and many other
main-stream theorem provers. The implementation is demonstrated with a non-trivial tactic example.

Keywords: tactic language; proof automation; refinement; Z

1 Introduction

Morgan’s refinement calculus [10] supports the derivation of programs from specifi-
cations. It incorporates the constructs of Dijkstra’s guarded command language and
adds a specification statement w : [pre, post] which captures the behaviour of a pro-
gram that can update the variables in the list w (the frame), and has precondition
pre and postcondition post. Specifications are transformed into executable programs
by a series of correctness-preserving refinement steps, and each step is justified by
the application of a law within the calculus. This guarantees by construction that
the concrete refinement correctly implements its abstract specification.

To automate recurring sequences of derivation steps in the refinement of program
specifications, the ArcAngel tactic language was proposed [12]. It has a formal
semantics and an extensive set of algebraic laws that support transformation and
reasoning about tactics. ArcAngel is itself an extension of Angel [6,8], owing its name
to the angelic resolution of nondeterminism in the process of solving proof goals.
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Law ‘ Definition ‘

expandFrame(z) w : [pre, post] = w,z : [pre, post \ z = xp)

followAssign(z, E) | w,x : [pre, post] T w,x : [pre, post|z\FE]]; z := E

Fig. 1. Two examples of elementary refinement laws.

Whereas Angel is a general-purpose tactic language, ArcAngel specifically targets
transformation of programs. We can think of ArcAngel tactics as procedures for
rewriting program expressions in Morgan’s calculus.

ArcAngel tactics are written in a notation that supports the application of prim-
itive refinement laws, as well as various operators to combine tactics; the latter are
often called tacticals. Two fundamental tactic combinators are alternation ¢ | t;
and sequential composition ¢ ; t. Alternation first attempts to apply #1, and if this
leads to failure at any point, applies t2. Sequential composition applies the tactics
t; and t» in sequence. In general, failure might occur for a number of reasons, one
of them is a primitive law not being applicable to a program.

An important feature of the alternating choice in ArcAngel is that it is angelic,
in that it always finds a successful execution, if there is one, by making the right
choices. As an example, we consider the following tactic.

-~

robustFollowAssign(z, F') (skip | law expandFrame(z)) ; law followAssign(z, F)

The law name(args) construct invokes a parametrised refinement law name passing
the list of arguments args. Here, we use refinement laws from [10]: expandFrame(z)
extends the frame of a specification with a variable z, and followAssign(z, E) refines
a specification statement into a sequence composed of a specification statement
followed by the assignment z := F. The definition of the laws is in Fig.1. The skip
tactic always succeeds and does not alter the program.

We observe that followAssign(z, E') can only be applied if the program is of the
form w,x : [pre, post]. The tactic robustFollowAssign(z, E') above, on the other
hand, may be successfully applied to specification statements that may not have x
in their frame. Operationally, this results in followAssign(z, E) failing after the first
choice skip is taken, and the execution backtracking to explore the second choice
of the alternation in attempting to find a successful path of continuation.

The angelic nondeterminism embedded in the choice supports a concise and
general description of many robust tactics of refinement and proof. Several examples
are presented in [12]. The implicit backtracking manifests itself in the following law
which is valid for ArcAngel (and Angel): (1 | t2); t3 = (t15 t3) | (25 t3).

The Ergo theorem prover [16], which is implemented in Prolog, was extended
to use Angel as a tactic language [9]. ArcAngel is incorporated in the refinement
editor REFINE [14], which however does not provide facilities for theorem proving.
In this paper, we present an implementation of ArcAngel in ProofPower, a flexible
and extensible theorem prover based on HOL. It has an open architecture and has
been successfully used on industrial-scale projects [1]. ProofPower also provides an
embedding and formalisation of the Z language. This is useful in defining a semantic
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model for Morgan’s refinement calculus as part of the ArcAngel implementation.

To encode the ArcAngel tactic above in ProofPower, we could try and use the
tactical ORELSE to represent alternation, and THEN to represent sequencing. Even
so (t; ORELSE f3) THEN {3 would not have the same operational behaviour as the
ArcAngel tactic (¢ | t2); t3. The ProofPower tactic would first apply ¢;, and if this
fails resolve to applying to. The choice of either applying #; or ty, however, is not
revised if #3 subsequently turns out to fail. In general, ORELSE acts like a cut on
alternation; the choice it makes is not a provisional one unless #; on its own fails, in
which case tz is executed. Similar limitations to backtracking also exist in LCF and
HOL. PVS, on the other hand, does provide in-built support for backtracking tactics
via its try tactical, but its semantics is more difficult to describe (and, consequently,
more difficult to use) as failure and backtracking are treated as distinct outcomes
of tactic applications; this becomes apparent, for example, in [5].

A second limitation that we overcome in our implementation is that conven-
tionally tactics in ProofPower, like in many other theorem provers, apply to goals
(sequents), namely pairs of assumptions and conclusions. The purpose of ArcAn-
gel tactics, on the other hand, is to transform program ezpressions. In this paper
we describe how we support the use of ArcAngel tactics, which is independent of
the ProofPower tactic language. Our implementation is very close to the formal
semantics of ArcAngel, increasing confidence in its correctness.

We also address several issues that led to a generalisation and in parts unification
of ArcAngel with its kin Angel, as well as the more specialised derivate ArcAngelC, a
variant tailored for refinement in the Circus language [11]. Whereas Angel deals with
proving general theorems, ArcAngel(C) are methods for constructive refinement. A
by-product of this unification is a framework that fosters the development of other
derivatives of Angel, and we explain how we support their embedding.

The structure of the paper is as follows. In Section 2 we introduce the relevant
preliminary material; more specifically, we give a brief account of the syntax and
semantics of ArcAngel, and the ProofPower theorem prover. Section 3 discusses
the fundamental design of our implementation and its relationship to the ArcAngel
semantics. The following section illustrates the use of the tool through an example,
and in Section 5 we draw our conclusions, address some aspects of extensions and
generalisations, and identify future work.

2 Preliminaries

In this section, we introduce the relevant preliminary material. First, the ArcAngel
tactic language is explained in more detail: we illustrate its use, and briefly discuss its
semantic model. The last section provides background information on ProofPower.

2.1 ArcAngel

ArcAngel includes basic tactics, like skip or the application of laws, tacticals, and
structural combinators, which facilitate the application of tactics to arguments of
the program operators. The basic tactics and tacticals are inherited from Angel,



228 F. Zeyda et al. / Electronic Notes in Theoretical Computer Science 259 (2009) 225-243

albeit adapted to deal with refinement laws. Whereas Angel provides one struc-
tural combinator for applying tactics to sequences of subgoals, ArcAngel provides a
collection of structural combinators corresponding to the program constructors.

A tactic program in ArcAngel is a sequence of tactic declarations. We declare
a tactic name with body ¢ and arguments args as Tactic name(args) t end. The
optional clause proof obligations documents the proof obligations (provisos) pro-
duced by application of ¢t. An additional optional clause generates records the
shape of the generated program. The body of the declaration can be any tactic
expression involving the variables introduced through args.

The most basic tactic is law name(args); it assumes name, the law, to be a priori
defined and to have parameters that are suitably instantiated by args. If name with
arguments args is applicable, the application of the tactic succeeds and returns a
new program, possibly generating proof obligations for the provisos of name. If, on
the other hand, the law is not applicable, the tactic fails. An analogous construct
exists to invoke a declared tactic. Its syntax is tactic name(args) where name is the
name of the tactic, and args the list of arguments passed to it.

The other basic tactics are skip, fail, and abort. The tactic skip always suc-
ceeds leaving the program unchanged, fail always fails, and abort neither succeeds
nor fails, but may produce any (list of) outcome(s) or even run indefinitely. Nonter-
mination is not equated with failure since we cannot compute it. With regards to
implementability of angelic nondeterminism, failure must always be inferable from
tactic execution. Thence comes the need to distinguish fail and abort.

Tactics can be composed using tacticals. We already met the binary tacticals
t1; to for sequential composition, and ¢ | f for alternation. Alternation is strict
with respect to abort in its first operand, but not the second one, because, whenever
t; succeeds or leads to success, application of # is not carried out.

The cut operator ! ¢ is a unary tactical. Its effect is to apply ¢, but only considers
the first result of the application when there is more than one possible outcome due
to nondeterminism. It acts like a ‘cut’ in Prolog with regards to the backtracking
search of finding a feasible path of tactic execution.

Two further unary tactics are the assertions succst and fails¢. The first ter-
minates without changing the program (that is, behaving like skip) if ¢ succeeds,
and otherwise fails. The second terminates without changing the program if ¢ fails,
and otherwise fails. Both are strict with respect to abort too.

ArcAngel also permits the specification of recursive tactics; they are generally
useful to define tactics that carry out repetitive actions. The fixed-point construc-
tion p X e f(X) is used for this purpose; here f is some function on tactics.

The tactic appliesto p do ¢ guards the application of ¢ by checking whether
the program the tactic is applied to is of the form p, which acts as a pattern. If the
pattern matching succeeds, the free variables in p are instantiated as meta-variables,
and can be referenced in the definition of ¢. Otherwise, the tactic fails. To illustrate
this, consider, for example, appliesto w : [pre, post; A postz] do t being applied to
the program z,y : [true,z = 1 A y = 2]. The matching in this case associates w
with (z,y), pre with true, post; with z = 1, and poste with y = 2. The body of ¢
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Tactic takeConjAslnv(invBound, lstVar, st Val, variantEzp)
appliesto w : [pre, inv A = guard] do
law strPost(inv A invBound A — guard);
law seqComp(inv A invBound) ;
(law assign(Ist Var, IstVal) |;| law iter({guard), variantExp))

proof obligations
1. inv A = guard A invBound = inv A = guard (from strPost)
2. pre = (inv A invBound)|lstVar\IstVal] (from assign)
generates
IstVar .= IstVal ;

v A invBound N\ guard,
do guard — w : I od

inv A 0 < variantExp < variantEzp[w\wp
end
Fig. 2. Definition of the takeConjAslInv tactic.

can refer to w, pre, post; and posty in its definition.
Finally, structural combinators allow us to apply tactics to subprograms of some
program operator. For example, t; |;| to transforms programs of the form p; ; p2 by

applying t; to p; and to to ps. The proof obligations generated are those arising
from both tactic applications, and the piecewise application of the tactics is sound
because of monotonicity, namely here of sequential composition in both operands.
In ArcAngel, we have a structural combinator for each syntactic construct of the
refinement calculus. They are easily identifiable as boxed versions of the program
operators. In the sequel, we give an example of a non-trivial ArcAngel tactic.

2.1.1 Tactic Example

Fig. 2 presents a tactic to derive an initialised iteration. It uses the iter law in
Fig. 3 to refine a specification of the form w : [inv,inv A = GG] into an iteration
do [ ie G; — w: [inv A Gjinv A0 < V < Vp] od. Notice that O-subscripted
variables in the postcondition refer to initial values. Here, inv is the invariant of
the loop, and GG the disjunction of the guards G;. To apply this law, we have to
provide a list of guards (G, Ga, ..., Gp) as well as a variant expression V.

The tactic takeConjAsInv performs a more sophisticated refinement of such spec-
ifications by additionally strengthening the invariant with a user-supplied (bound-
ary) constraint, and performing an initialisation of the variables modified by the
iteration. It was originally presented in [12]. In its definition and hereafter, we
assume that A associates to the left; this reduces the number of parentheses.

The tactic takeConjAsInv is parametrised in terms of the additional invariant
constraint invBound, the left-hand side lstVar and right-hand side IstVal of the
initialising assignment, and the variant expression variantEzrp. The appliesto _ do
_ construct requires the program to be of the form w : [pre, inv A = guard] for the
tactic to be applicable. Its body executes the primitive laws strPost, seqComp, assign
and iter; their definitions are also given, in Fig. 3.
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Law Name ‘ Definition ‘ Provisos
strPost(post’) w : [pre, post] T w : [pre, post’] post’ = post

. e . mid and post have
seqComp(mid) w : [pre, post] & w : [pre, mid] ; w : [mid, post] 1o free initial variables

assign(w, E) w: [pre,post] C w:=FE pre = post[w\ E|
w : [tnv, inv A - GG

neither inv nor any
of the G; contain
initial variables

iter((Gl, G27 ey Gn>1 V)

do[ie G — w: v AO< V< Vo

_im)/\Gi, ]od

Fig. 3. Laws used in the definition of the takeConjAsInv tactic.

First, the application of the strPost law strengthens the postcondition of the
specification statement to inv A invBound A - guard, including the additional
conjunct invBound. The corresponding proviso (1) is always true. The second
law seqComp decomposes the specification statement using inv A invBound as an
intermediate condition. The program resulting from this step is of the general form

w : [pre,inv A invBound]; w : [inv A invBound, inv A invBound A — guard]

The law seqComp is applicable providing that neither the intermediate condition nor
the postcondition inv A invBound A — guard contains initial variables. The final
step uses the structural combinator |;| to apply the assign law to the first operand
of the sequential composition, and the iter law to the second operand. The assign
law refines a specification statement into an assignment, and gives rise to proof
obligation (2). We thus obtain the program reported in the generates clause.

In Section 4 we encode takeConjAsInv in ProofPower.

2.1.2 Semantics of ArcAngel

An important feature of ArcAngel is that, like Angel, it is equipped with a formal
semantics. Tactics in ArcAngel are characterised by functions that map refinement
cells to (possibly infinite) lists of refinement cells. A refinement cell captures a
program expression and includes a set of proof obligations to derive that program.

RCell == Program x P Predicate and Tactic == RCell -+ pfiseq RCell

Program is the semantic domain for program expressions, and Predicate represents
proof obligations. The list generated by a tactic application can be infinite, namely
if there is an infinite succession of possible outcomes, and also has to admit the
possibility of being only partially defined. For example, the tactic skip | abort
generates a list for which evaluation of only the first element is guaranteed to suc-
ceed. Any further outcome is undefined and could even lead to evaluation failing to
terminate. The standard representation of lists as (finite) sequences is not expres-
sive enough. In [7] Martin presents a model for partial, finite and infinite lists (pfi
lists). The function pfiseq above is the type constructor for such lists.

In this model lists can be either partial or finite. Whereas finite lists end in
concatenation with the empty list as in 1 : 2 : [], partial lists end in concatenation
with the undefined list L. The interpretation of, for example, 1 : 2 : L, is that
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evaluation of only the first two elements is guaranteed to succeed; attempting to
evaluate the remainder of the list could give any result, and even fail to terminate.

To illustrate how infinite lists represent tactic outcomes, we consider the appli-
cation of skip | abort to a refinement cell . Applying skip only yields one result,
the finite list r : [|. When moving to infinite lists, we however have to consider all
approximations, here that is { L, : L, r : []}. The result of applying abort, on the
other hand, is L, and the chain of approximations is the singleton set { L }.

The semantic function [...] for tactics is further parametrised in terms of law
and tactic environments which record the declared laws and tactics. Its type is
TacExpr — LEnv — TEnv — Tactic, where TacEzpr is the set of tactic expressions.

The semantics of basic tactics is then given as follows.
[skip] T T r = [r] [fail] T T r = [] [abort] T T'rr = L

Here, I';, and I' 7 denote the law and tactic environments under which application
is considered, and r the refinement cell to which the tactic is applied.

The semantics of law name(args) is a singleton list with the refinement cell
containing the transformed program and possibly additional proof obligations, or
otherwise an empty list if application fails. The law definition is inferred from the
law environment. Similarly, tactic name(args) executes the tactic name by inferring
its definition from the tactic environment.

For sequential composition, we have the following definition.

[[tl; tgﬂ FL FT r = 9‘O/ ([[tg]] FL PT)* ([[tl]] FL PT 7")

Here, OfQ/ is the distributed concatenation of pfi lists. The operator * is a mapping
function: (fx) s applies f to all elements of a pfi list s. Informally, we apply # to
all cells obtained by applying ¢;, and flatten the resulting list of lists.

We omit a discussion of the semantics of the remaining tacticals and structural
combinators [12]. Recursive tactics are defined using Kleene’s fixed-point theorem.

pX e f(X) =||{i:Nefi(abort)}

This requires a complete partial ordering on tactics with respect to which the tactic
operators must be continuous. It is defined by ¢y Ty to = Vr: RCell @ t; r Ep to 1
where T, is the generalised prefix ordering on infinite lists. Intuitively, if # is
refined by # then # can at least produce as many outcomes as o if applied to some
arbitrary program. Moreover, whenever ¢; guarantees to terminate, o must also
be guaranteed to terminate under the same conditions. The notion of equivalence
and refinement of tactics provides opportunities for specifying and proving algebraic
laws about the tactic language. In the context of our work, they additionally allow
us to test the correctness of the implementation to be developed.

2.2  ProofPower and Standard ML

ProofPower is a mechanical theorem prover that resulted from a re-engineering of the
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Cambridge HOL proof system. The latter is itself a descendant of LCF, and hence
ProofPower shares various commonalities with the LCF prover; for example, it uses
Standard ML (SML) as its implementation language and takes advantage of ML’s
type system to ensure that theorems can be constructed only by means of logical
inference, and hence must be valid. This level of assurance is achieved by introducing
an abstract data type THM for proved theorems whose exposed constructor functions
invariably correspond to valid inferences in the logic.

A design objective of ProofPower was to facilitate the semantic embedding of
other languages. In particular, the Z language has been embedded and formalised,
producing the ProofPower-Z package and dialect. It is in essence an extension of
ProofPower that provides additional syntactic constructs, parsing facilities, rules,
theorems and tactics specific to transforming and proving theorems about Z expres-
sions. The open architecture and flexibility of ProofPower encouraged the develop-
ment of several tools that promoted its use on industrial-scale projects [4,2].

Our implementation of ArcAngel integrates with ProofPower by supplying a
database of additional SML constants and function definitions. Although much
of it needs to use lower-level functions of ProofPower for dissecting syntactic ex-
pressions, manipulating type information, and so on, none of this poses a risk in
terms of soundness, neither can potential bugs lead to unsound inferences.

Standard ML is a strongly-typed, strict and impure functional language. It is a
modern descendant of the ML programming language that was used in implementing
the Edinburgh LCF proof system. Being impure it permits the use of global mutable
data structures by means of reference types. A comprehensive account of the ML
language and its facilities can be found in [15] and http://www.smlnj.org.

3 Fundamental Design

In this section we discuss some of the core features of the design integrating ArcAngel
into ProofPower. We first explain how we encode tactics, secondly address some
implementation issues of operator encodings, and lastly show how ArcAngel tactics
are used together with the standard backward proof facilities of ProofPower.

3.1 FEncoding of ArcAngel Tactics

As already hinted, encoding ArcAngel tactics directly by virtue of ProofPower tactics
is problematic. First, ProofPower tactics do not exhibit backtracking behaviour, and
secondly ProofPower tactics solve (or reduce) proof goals whereas ArcAngel tactics
transform program expressions. To bridge this gap, we first introduce the notion of
a refinement theorem. It is a theorem of the form I' - A C B, where I' is a list of
assumptions (provisos), and both A and B are program expressions. The operator
C is assumed to represent refinement in Morgan’s calculus. We later highlight that
it may indeed be any reflexive and transitive relation.

Because refinement theorems are of central importance, we introduce a type ab-
breviation REF_THM for them. In fact, REF_THM is equated with THM, but it allows us
to indicate when functions expect or return refinement theorems, and we implicitly
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assume that such theorems will always be of the correct shape.

ArcAngel tactics in ProofPower apply to refinement theorems rather than pro-
gram expressions. Their application results in transformation of the second program
of a refinement theorem. For example, if we have a tactic ¢ which refines z := x4y
into z := y + z, applying it to the theorem F z: [z =129+ y] C z :=z + y yields
the refinement theorem Fz:[x =29+ y] C 2 :=y+ z.

In general, the successful application of a single law to a refinement theorem
I't = A C B delivers a theorem I'1,I's = A C B’ where B’ is a valid refinement of B
under the additional provisos I's, which contribute to those of the resulting theorem.
It is obtained by first matching the left-hand program of the refinement law against
B. This gives an instantiation I's H B C B’ of the law which, by transitivity of
refinement, permits the prover to conclude I'y,I's - A C B’

The above design unifies ArcAngel’s approach to program transformation with
the design of ProofPower which is centred on theorem-generating functions. The
application of an ArcAngel tactic to a program X can be simulated by first creating
an initial refinement theorem F+ X C X that is trivially proved by reflexivity of
refinement. To it, we apply the encoding of the ArcAngel tactic. If successful, it
returns a theorem I' H X C Y encapsulating the transformation of X to Y. The
validity of the refinement is established by the soundness of primitive inferences of
ProofPower’s core logic; for that reason it is independent of our actual implementa-
tion of ArcAngel which merely drives the prover. This protection we do not get in
an implementation of ArcAngel based on rewrite systems such as Gabriel [14], since
in those the validity of rules and laws are not independently verified.

Nondeterminism and Infinite Behaviours

To accommodate nondeterminism, which surfaces when the application of a tactic
can produce more than one possible result, we have to keep track of all possible
outcomes of tactic behaviours. For example, ¢; | t; can have two possible outcomes
if both tactics are applicable to the program. In order to determine which execution
path leads to success and realise backtracking, if necessary, we have to keep track of
both outcomes. We therefore characterise tactics as functions mapping refinement
theorems to lists of refinement theorems. This characterisation closely resembles
the semantic model of ArcAngel presented in Section 2.1 that modelled tactics by
functions mapping refinement cells to (infinite) lists of refinement cells.

This design is obviously suitable for tactics with finite behaviours, but extra
care is required to cater for tactics that potentially generate an infinite number
of outcomes, or otherwise fail to produce any result due to nontermination. To
illustrate this case, consider the following recursive tactical.

EXHAUST(t) = puX o (t; X) | skip

It entails the possibility of applying ¢ once, twice, or in fact an arbitrary number
of times. If ¢ repetitively shows to be applicable, the tactic has an infinite number
of potential outcomes. Operationally, this results in an infinite list p ~ t(p) ™
t2(p) " t3(p) ... to be computed when EXHAUST(¢) is applied to some program
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p. From a computational point of view this evaluation cannot succeed, however
EXHAUST(¢) is distinct from abort and its behaviour is perfectly well-defined
as long as we are not attempting to utilise (evaluate) all outcomes.

A similar situation arises with ! (¢ | © X e X). The tactic u X e X is equivalent
to abort. On the other hand, if ¢ does not fail, the behaviour of ! (¢ | © X e X) is
determined by the first result delivered by ¢. The application of (¢ | X e X) then
relies on the result of applying only ¢ eluding the abortive recursion.

We, therefore, adopt lazy evaluation when computing the outcomes of tactic
applications. Specifically, we introduced a datatype lazylists that allows us to
defer evaluation of tactics until we actually require their results. Since evaluation
in SML is strict, lazy evaluation must be simulated by means of additional layers
of functions with a spurious argument. For example, evaluation of t is deferred in
(fn () => t p) until we apply the function to an empty tuple. (The construction
(fn args => body) is generally used in Standard ML for anonymous functions.)

In particular, lazylists, defined below, gives us explicit control over which
elements have their evaluation deferred. As an extreme case, it also permits deferred
evaluation of the entire list. This is important to represent L.

datatype ’a lazylist = LazyNil |
LazyAtom of ’a |
LazyJoin of (’a lazylist) * (’a lazylist) |
LazyDefer of (unit -> ’a lazylist);

This datatype provides four constructor functions. LazyNil is used to construct
empty lazy lists, LazyAtom to construct atomic (non-lazy) elements, LazyJoin to
concatenate two lazy lists, and LazyDefer to explicitly defer evaluation. This list
model, being a lazy variant of the join list model, was tailored to provide the
flexibility and expressiveness to implement ArcAngel operators in a correct, concise,
and efficient way, in particular, the tactic combinators for alternation and recursion.

To support parametrised tactics and the appliesto p do ¢ operator, it is nec-
essary to incorporate a special notion of environment that binds (meta)variables to
expressions. They are represented by a list of pairs of ProofPower terms, where the
first component gives the variable, and the second component the bound expression.
We introduce the type abbreviation ENV to represent the set of such lists.

To conclude, ArcAngel tactics are encoded by functions that map environments
and refinement theorems to lazy lists of refinement theorems.

type AA_TACTIC = ENV -> (REF_THM -> REF_THM lazylist);

Environments are in most cases just propagated to the operands in tactic combi-
nators; the exception is appliesto p do ¢ and law and tactic applications which
need to process them. In the next section we will look at some issues related to the
implementation of the ArcAngel operators.
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Operator ‘ Syntax ‘ Signature of corresponding SML function

Basic Law | law N (args) | fun TLaw (name : string) (args : TERM list);

Tactic tactic N (args) | fun TTactic (name : string) (args : TERM list);

Skip skip val TSkip;
Fail fail val TFail;
Abort abort val TAbort;
Sequence t1; t2 fun (t1 : AA_TACTIC) TSeq (t2 : AA_TACTIC);
Alternation t | t2 fun (t1 : AA_TACTIC) TAlt (t2 : AA_TACTIC);
Cut 1t fun TCut (t : AA_TACTIC);

Recursion nX et(X) fun TRec (tfun : AA_TACTIC -> AA_TACTIC);

Assertion succs t fun TSuccs (t : AA_TACTIC);

Assertion fails ¢ fun TFails (t : AA_TACTIC);

Fig. 4. SML functions that encode ArcAngel operators.

3.2 Operator Implementation

Each operator of ArcAngel is implemented by a designated SML function. They are
listed in Fig.4. The structural combinators are omitted in this table as they can be
added dynamically by virtue of a set of constructor functions.

The implementation of the literal tactics is very simple. TSkip returns a sin-
gleton lazy list containing the program the tactic is applied to, TFail returns an
empty lazy list, and TAbort raises an exception Abort that indicates abortion.

For law applications via TLaw the implementation essentially carries out the
steps discussed in the previous section. It has to do a bit more work, however, to
substitute meta-variables occurring free in the arguments, and move implications
in the conclusion of the law theorem into the assumptions to make them provisos.

For laws to be applicable, they first have to be declared using the TLawDecl
function. It expects the name of the law, its formal arguments as a list of typed
terms, and the corresponding ProofPower theorem. Similarly, we declare a tactic
using the TTacDecl function and apply it using TTactic. The function TTacDecl
corresponds to the Tactic name(args) thody end construct of ArcAngel.

The implementation of tacticals mirrors in most cases the respective semantic
definitions. For example, SML implementation of TSeq is as follows.

fun (tl1 : AA_TACTIC) TSeq (t2 : AA_TACTIC) : AA_TACTIC =
(fn env : ENV => (fn p : REF_THM =>
(lazyflat (lazymap (t2 env) (tl env p)))));

It is a direct literal translation of the semantics where 9\0/ is encoded by lazyflat,
and * is encoded by lazymap. These two SML functions perform operations on
lazy lists similar to the semantic functions on infinite lists. Both functions are
implemented in a way that defers evaluation until an element is requested.

A further interesting function is TRec, which implements the ArcAngel recursion
construct, and whose implementation is given below.
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fun TRec (tfun : AA_TACTIC -> AA_TACTIC) : AA_TACTIC =
(let val rec (trec : AA_TACTIC) =
(fn env => (fn p =>
(defer_tac_eval (tfun trec) env p))) in
trec
end) ;

The tfun argument provides the body of the recursion: a function on ArcAngel
tactics. The local constant trec is introduced as a recursively-defined value which
is used to determine the result of TRec. In defining trec it is vital that the recursive
unfolding takes place incrementally and application of the tactic to the goal is
deferred in each step. This is achieved by the function defer_tac_eval which
defers the application of one unfolding (tfun trec) to the program p.

fun defer_tac_eval (t : AA_TACTIC) (env : ENV) (p : REF_THM) =
LazyDefer (fn () => t env p);

This function takes advantage of the lazy list constructor LazyDefer to create a
deferred list, suppressing the application of t to the environment and program.

In the next section we will clarify the integration of ArcAngel tactics with Proof-
Power’s subgoal package providing the facilities for backward proofs.

3.3 Backward Proofs

The embedding of ArcAngel was developed outside the subgoal package of Proof-
Power. We can, however, support the use of ArcAngel tactics to facilitate the proof
of refinement conjectures in a backward manner. This makes ArcAngel available to
support development of programs correct by construction and verification of pro-
posed refinements. For example, a proof goal of the form A T B can be discharged
by an ArcAngel tactic that is able to transform A into B while possibly generating
some provisos which contribute to the subgoals of the proof. Alternatively, if the
tactic cannot discharge the goal in one step, it may still be able to reduce it to some
intermediate refinement which may be discharged with less effort.

In order to invoke ArcAngel tactics within backward proofs, we provide a function
(aa_tac atac) that lifts an ArcAngel tactic atac into a corresponding ProofPower
tactic. The behaviour of the ProofPower tactic for a proof goal of the form A C B is
as follows. First, the ArcAngel tactic is applied to the first program of the refinement
conjecture. If the application of the ArcAngel tactics fails, this also results in failure
of the wrapping ProofPower tactic. Otherwise we take the first element of the list
of generated refinement theorems; it will always be of the foorm I' - A C A’.

By adding the provisos I' as subgoals to the current proof tree, we can justify the
addition of A C A’ to the goal hypotheses. ProofPower’s default asm_tac achieves
this for assumptionless theorems, and we have a more general version that also
handles assumptions. The additional hypothesis either immediately discharges the
goal if A’ = B, or can be used to reduce the goal to A’ C B. This is justified by
transitivity of refinement since A C A’ and A’ C B imply the initial goal A C B.
The low-level steps of this reduction are automatically carried out by aa_tac.
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We also provide an alternative implementation (aa_solve_tac atac) that eval-
uates all outcomes of tactic applications to A, and selects one that discharges the
goal or otherwise fails if none exists. Such a behaviour is faithful to the angelic
interpretation of nondeterminism at the top level since the notion of success is
clearly defined here as discharging the proof goal. This is also compatible with the
mechanics of Angel which explores all possible paths of tactic executions.

In the next section we illustrate our implementation using takeConjAsInv.

4 Tactic Example

The tactic takeConjAslnv was presented in Fig.2 in Section 2.1.1. It invokes four
laws, strPost, seqComp, assign and iter. Each law is first formulated as a ProofPower-
Z theorem, and afterwards declared and registered using the TLawDecl function. For
example, the law strPost (see Fig. 3) is formalised by the theorem

FYu: MORGAN_UNIVERSE; f :seq M_VAR_NAME;
preC : MORGAN_CONDITION; postC, postC' : MORGAN_POSTCOND |
(u, f, preC, postC) € WF_SpecStmiy N
(u, f,preC, postC") € WF_SpecStmty N Tautology (postC' =p postC') e
SpecStmty (u, f, preC, postC) T SpecStmiy (u, f, preC, postC")

The law is specified in the context of a semantic encoding of Morgan’s calculus based
on a mechanisation of the Unifying Theories of Programming (UTP), tailored for
ProofPower-Z [13,17]. That mechanisation, and within it the semantic characteri-
sation of Morgan’s calculus, is for space considerations not discussed in detail. The
functions SpecStmt); and =p encode the specification statement and the implication
operator, and Tautology determines whether a given predicate is universally true.
We also have semantic sets used as types: MORGAN _UNIVERSE contains all valid
type constraints on the variables (universes), M_VAR_NAME the set of permis-
sible frame variables, and MORGAN_CONDITION and MORGAN_POSTCOND
the semantic domain for the pre and postconditions of a specification statement;
the latter two are restricted forms of predicates. Lastly, the set WF_SpecStmiy,
encapsulates well-definedness constraints for applying the SpecStmit;; function.

The quantified variables u, f, preC and postC of the theorem are matched
against the program when the law is instantiated. As already explained, the program
is obtained as the right-hand side of the refinement conjecture to which the law is
applied, and the matching is needed to instantiate the law so that its left-hand
side equals the program to be refined. The variable postC’, on the contrary, is a
parameter of the law. It is not matched but substituted by the actual argument
when the law is invoked through TLaw with a specific list of arguments.

The antecedents of the law establish well-formedness constraints as well as the
provisos of the law. The former here ensure that SpecStmty (u, f, preC, postC') and
SpecStmiy (u, f, preC, postC’) are well-defined expressions in the semantic model.
The only genuine proviso is Tautology (postC’ =p postC'). The theorem thus is a
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faithful encoding of the abstractly specified law.
The law is configured to be used by the implementation with the following
command which identifies its formal parameters.

TLawDecl "strPost" [} postC’ & ALPHA_PREDICATE™] strPost_thm;

We assume that the SML constant strPost_thm has been initialised to hold the law
theorem. The first argument "strPost" specifies the name of the declared law in
ArcAngel, and the second argument supplies the list of quantified variables used as
parameters. The variables are given as (ProofPower) variable terms whose type must
be explicitly specified by virtue of the ‘G’ operator. The presence of type information
in formal arguments is exploited to inject possibly missing type information into
the actual arguments when the law is applied; this makes the application of laws
altogether more robust since a lack of type information in arguments might cause
technical problems, like argument substitution to fail because of a discrepancy in
types between substituting and substituted terms. It also allows for run-time type
checks on parameters when the law is invoked.

Our implementation supports law theorems that are either given in pure HOL
or the Z sub-language of ProofPower-Z. It also permits laws to have free variables
(which are just treated as quantified ones, so that the outer universal quantification
is optional), and finally enables the law theorems to contain provisos and assump-
tions. A general form for a law theorem is thus

PEYo Ty v Ty oo [ Dt APIA...oquAN@AN...=ALCB

where I' as well as the p; and ¢; collectively contribute as assumptions of the law.
The responsibility of proving theorems for laws resides with the user, and the proofs
are formally justified within our semantic model of the Morgan calculus.

We omit the encoding of the remaining laws seqComp, assign and iter. The
encoding of the iter law (see Fig. 3) is challenging as it is parametrised by a sequence
of guarded commands, and the implementation in its present form can only support
individual instances of this law with a fixed number of guarded commands.

We now declare the compound tactic whose body invokes the four laws.

TTacDecl "takeConjAsInv" [
CinvBound & ALPHA_PREDICATE" , lstVar & seqg M_VAR_NAME™,
ClstVal & seg EXPRESSION™ , LvariantEzp & EXPRESSIONT] (
TAppliesTo §SpecStmt_M (u, w, preC, invConj Ap (—p guard))’ TDo (
(TLaw "strPost" [} (invBound Ap invConj) Ap (—p guard)’1) TSeq
(TLaw "seqComp" [}invBound A, invConj']) TSeq

((TLaw "assign" [[istVar™, [istVal™])
TSCSeq (TLaw "iter_unary" [FwvariantExp™1))));

As with law declarations, tactic declarations have to provide a name for the tactic
and a list of terms for the formal arguments, each being a variable with fully-qualified
type information. The third argument specifies the body of the tactic. The transla-
tion that encodes the tactic is very direct, simply replacing ArcAngel operators and
structural combinators by their corresponding ML functions. Fig. 4 may be used as
a reference here, and a similar list of functions exists for the structural combinators
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of ArcAngel. For instance, TSCSeq encodes the structural combinator for sequential
composition as an infix operator on tactics.

Variables introduced in a tactic declaration via TTacDecl or the TAppliesTo
construct become local and can be used in its body. For example, the local variable
invBound is introduced by the tactic declaration, and used in specifying the argu-
ments for the law applications of strPost and seqComp. To illustrate the application
of the tactic, we first create a program that encodes the specification statement

¢, r:[a>0ANb>0,a=qgxb+rA-7r>Db

It calculates the quotient and remainder of two positive numbers a and b; they are
respectively recorded in the variables ¢ and r. Its encoding in the semantic model
is slightly tedious, but inherently not difficult. We associate it to a constant prog.

We apply the tactic takeConjAslnv now to the above program. For this pur-
pose, we use the function aa_rule. It expects an ArcAngel tactic and a program
expression, and automatically creates an initial refinement theorem - P C P to
which it applies the tactic. Here, all this takes place outside the subgoal package of
ProofPower, although, as we explained in Section 3.3, ArcAngel tactics may also be
directly used within the standard backward proof engine.

aa_rule (TTactic "takeConjAsInv"

C Truep u™, Y {(q, r)7, L (Val(Int(0)), Var(a))™, & Var(r)71)

prog
Analogous to TLaw, TTactic supports the application of a declared tactic. The
parameters given are Truep u for invBound, (q,r) for IstVar, (Val(Int(0)), Var(a))
for IstVal, and Var(r) for variantEzp. The invBound parameter is used to provide
an additional predicate to strengthen the invariant, for example to encapsulate some
boundary conditions on indexed variables. It is not relevant here, hence set to be
true. The IstVar and [stVal parameters determine how the variables altered by the
loop are to be initialised. Here we want to carry out the initialisation ¢, r := a,0
before entering the loop. Further, variantExrp provides a variant. The result of the
tactic application is the following refinement theorem, which we obtained as a result
of applying the tactic in ProofPower-Z and type-setting the output.

.. F
SpecStmty (u, (g, ), Relp (u, (- >y ), Var a, Val(Int 0)) Ap Relp (u, (= >v —), Var b, Val(Int 0)),
(=p (u, Var(dash a), Funa((— +v ), Funa((— *v —), Var g, Var b), Var r)) Ap
Relp (u, (- <y -), Val(Int 0), Var r)) Ap —p (Relp (u, (= >y ), Var r, Var b)))
C
Assignu (u, (q,7), (Val(Int 0), Var a)) ;)
dom ({Relp (u, (— >y ), Var r, Var b)),
(SpecStmtn (u, (q, ),
(Truep w Ap =p (u, Var(dash a), Funa((— +v ), Funa((— *v _), Var g, Var b), Var r)) Ap
Relp (u, (- <y ), Val(Int 0), Var r)) Ap Relp (u, (= >y ), Var r, Var b),
(Truep w Ap =p (u, Var(dash a), Funa((— +v ), Funa((— *v _), Var g, Var b), Var r)) Ap
Relp (u, (- <y -), Val(Int 0), Var r)) Ap Relp (u, (= <y ), Val(Int 0), Var r) Ap
Relp (u, (- <v -), Var r, Substg (Var r, zero)))) odu
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The above theorem encodes the program refinement

¢, m:[a>0ANb>0,a=qgxb+1rAN—-1r >0
C

q,7:=0,a;
a=qxb+rN0O<rAr>b,

d
a=qxb+rNO<rAr>bAr<n ©

dor>b—gq,r:

For readability, the assumptions of the theorem have been omitted. Most of them
carry constraints regarding the well-definedness of operator applications which were
accumulated through application of the laws and monotonicity theorems. In prac-
tice, we anticipate that most of these assumptions are provable automatically with-
out any user intervention. The remaining assumptions encapsulate the provisos of
the laws. For example, we find the following assumption encoding the first proof
obligation of the law, that is, the provisos of the strPost law.

Tautology(Truep u Ap =p (u, Var(dash a), Funz((—+v—), Funa((—xv_), Var ¢, Var b), Var r))
Ap Relp (u, (- <y -), Val(Int 0), Var r)) A = (Relp(u, (- <y —), Var r, Var b)))
=5 (=p (u, Var(dash a), Funz((— +v ), FPuna((— *v =), Var q, Var b), Var r)) Ap
Relp (u, (= <y _), Val(Int 0), Var r)) Ap = (Relp (u, (= >y -), Var v, Var b)))

The proof of provisos like the above is expected in most cases to require hu-
man interaction and knowledge, although automation for restricted domains of
application has been successful even in industry [1]. Here we have to show that
true Na' = qxb+rANO<rA-r<b=ad=qxb+rAN0<rA-r>b This
can be trivially proved by using true A P = P = true.

When applying ArcAngel tactics outside the subgoal package of ProofPower as
above, tactic applications usually increase the number of assumptions of the gen-
erated refinement theorem. In backward proofs we use the refinement theorem to
simplify a refinement goal, and in this case the assumptions contribute as addi-
tional subgoals of the proof and need to be discharged separately. Fortunately,
ProofPower offers a lot of flexibility in implementing programming utilities and tac-
tics to automate proofs, and for this purpose we have already developed a collection
of specialised (ProofPower) tactics that can automatically discharge most of the
well-definedness constraints encountered so far so that the only real proof effort
that has to be invested is in discharging the provisos of the laws.

We applied the takeConjAsinv tactic to several other examples to calculate the
product, exponentiation and factorial. The corresponding source code for the ex-
amples, including the semantic embedding of Morgan’s refinement calculus, can
be found at http://www.cs.york.ac.uk/circus/tp/tools.html. The tactic was
originally used as an example in [14] and [11], and we did in fact encode the other
tactics given in those publications too.

5 Conclusions

In this paper we have presented an implementation of the ArcAngel tactic language
for the ProofPower theorem prover. We discussed several aspects of the implementa-
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tion as well as decisions made in its design, and illustrated it by virtue of an example.
Notably, we managed to realise a very direct translation of the ArcAngel semantics
in which refinement cells in the semantic model are identified with refinement theo-
rems in the implementation model. A faithful representation of partial and infinite
lists was achieved through the use of lazy evaluation, and recursive ArcAngel tac-
tics are directly supported through recursive ML functions on tactics. Hence, the
encoding of particular tactics is mostly trivial and amenable to automation.

To verify that the design correctly reflects the semantics of ArcAngel, we con-
ducted a series of tests in which we verified (in specific pathological cases) that
tactics which can be proved equal in the semantics also exhibit similar behaviours
in the implementation. This provided some empirical evidence for the correctness of
the implementation and indeed revealed deficiencies in earlier designs, which have
been gradually refined to culminate into the one presented in this paper.

The implementation has suggested several extensions and generalisation that due
to space limitations could not be discussed in the paper. A first extension we realised
is to simultaneously deal with the proof of equivalences and genuine refinements
in the application of ArcAngel tactics. Conceptually, ArcAngel is oblivious to the
interpretation of the underlying refinement relation — it is at core a method for
transforming programs. In ProofPower, the application of ArcAngel tactics results in
the generation of refinement theorems, making the refinement relation explicit. This
offers the possibility to deal with various kinds of relations at once, namely A C B
and A = B. This feature was implemented as to always generate the strongest
theorem that can be asserted based on the shape of the applied laws.

A second extension ventured a step further by isolating the program model from
the core implementation of ArcAngel and thereby making it dynamically config-
urable. We hereby unified the application of ArcAngel tactics to various kinds of
objects (not just Morgan computations) by identifying what the minimal require-
ments are for the equivalence and refinement relations necessary for the mechanics
of the implementation to work. In particular, the essence of an ArcAngel model can
be captured in a small number of theorems about the equivalence and refinement
relations whilst their actual definitions and types are irrelevant. Factoring out the
program model retains ArcAngel’s flexibility as a general method for transforming
terms, and provides future opportunities for the implementation to be applied in
different scenarios. It also constitutes a unification with ArcAngelC [11] and in parts
with Angel as both can be obtained as derivatives by means of suitable models.

A third extension that we provided addresses the problem of nontermination in
tactics. Tactics that get trapped in a nonterminating loop are not uncommon in
theorem provers, for example, if repetitive rewrites of expressions continually suc-
ceed. In our implementation it is possible to concisely deal with nontermination
because the only point where it may occur is in recursive tactics. We do this by
imposing a limit on the number of recursive calls, and give a semantic interpreta-
tion of bounded recursion in terms of an approximation to the exact meaning of
the recursive tactic as a fixed point respective to the refinement ordering on tactics.
Although the bounded recursive tactic ‘loses’ some behaviour of the respective un-



242 F. Zeyda et al. / Electronic Notes in Theoretical Computer Science 259 (2009) 225-243

bounded one, in practice the limit on the recursive calls may be set to a sufficiently
high value to justify the use of the former in place of the latter.

Related work apart from REFINE and Gabriel is the implementation of Angel in
Ergo [16,9], a theorem prover developed in Prolog. A major difference between Ergo
and ProofPower is that Ergo does not have a core object logic, whereas ProofPower
is based upon a formalisation of HOL logic. The implementation of Angel in Ergo
is more general in that it allows tactics to be applied not just to single goals, but
sequences of goals that in turn may result from the application of tactics. This in
particular would be an interesting extension to our implementation as it might allow
us to define tactics that specify how provisos should be handled in the generation
of refinement theorems. For example, they could in some cases be further subject
to proof through application of (Arc)Angel tactics.

Future work first consists of enhancing and extending the implementation. An
issue that has been pointed out in the previous section relates to specifying the iter
law in its general form. To do so, we require certain pre and post-processing steps
in the application of the law, namely to rewrite instantiated theorems to carry
out possible syntactic operations in processing the law application. ProofPower’s
conversion mechanism may be conveniently used for that.

A second crucial area of improvement is the handling of provisos generated by
tactic applications. These can amount to a considerable number of assumptions
which all need to be proved when the generated refinement theorem is used, for
example, as part of some standard backward proof. To reduce these assumptions, a
number of approaches may be considered. First, we may try to prove them in-line
using specialised tactics. Additionally, rules may be specified that compress the
assumptions of refinement theorems by attempting to prove individual assumptions
from the residual ones, and using the cut rule to eliminate them. Features in the
interface are required to first identify which provisos should be proved in-line, and
secondly what ProofPower or even ArcAngel tactic should be used to discharge them.

A final area for future work is the development of case studies for realistic ap-
plications. Here, we anticipate to formulate the refinement strategy for control
laws presented in [3] as a collection of ArcAngel tactics and thereby automate the
application of the refinement strategy to arbitrary and sizable examples.
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