Compactifications of quasi-uniform hyperspaces

Salvador Romaguera a,*, Miguel A. Sánchez-Granero b,1

a Escuela de Caminos, Departamento de Matemática Aplicada, Universidad Politécnica de Valencia, 46071 Valencia, Spain
b Área de Geometría y Topología, Facultad de Ciencias Experimentales, Universidad de Almería, 04120 Almería, Spain

Received 6 February 2002; received in revised form 26 February 2002

Abstract

Several results on compactification of quasi-uniform hyperspaces are obtained. For instance, we prove that if \(C_0(X) \) denotes the family of all nonempty closed subsets of a quasi-uniform space \((X, \mathcal{U})\) and \(\mathcal{U}_H \) the Bourbaki quasi-uniformity of \(\mathcal{U} \), then \((C_0(X), \mathcal{U}_H)\) is *-compactifiable if and only if \((X, \mathcal{U})\) is closed symmetric and *-compactifiable and \(\mathcal{U}^{-1} \) is hereditarily precompact. We deduce that for any normal Hausdorff space \(X \), \(2^\beta X \) is equivalent to the *-compactification of \((C_0(X), \mathcal{P}_N \mathcal{U}_H)\), where \(\mathcal{P}_N \) denotes the Pervin quasi-uniformity of \(X \).

© 2002 Elsevier Science B.V. All rights reserved.

MSC: 54B20; 54E15; 54D35

Keywords: Bourbaki quasi-uniformity; *-compactification; Hereditarily precompact; Closed symmetric; Point symmetric; Bicompletion; Vietoris topology

1. Introduction

As usual we denote by \(\beta X \) the Stone–Čech compactification of a Tychonoff space \(X \) and by \(2^X \) the hyperspace of nonempty closed subsets of \(X \) with the Vietoris topology.

Compactification of hyperspaces has been investigated by several authors. In particular, Keesling [10] and Ginsburg [9] independently stated that if \(X \) is a normal Hausdorff space such that \(\beta(2^X) = 2^\beta X \), then \(2^X \) is pseudocompact. Recently, and solving a question posed in [9], Natsheh [17] proved that the converse of this result is true. We are concerned

* Corresponding author.
E-mail addresses: sromague@mat.upv.es (S. Romaguera), misanche@ual.es (M.A. Sánchez-Granero).
1 The authors acknowledge the support of the Spanish Ministry of Science and Technology, grant BFM2000-1111.
here with compactifications of quasi-uniform hyperspaces; more precisely, with the *
-compactification of the Bourbaki quasi-uniformity—a question which seems of interest
in the light of the recent contributions to the fields of quasi-uniform hyperspaces and quasi-
uniform compactifications, respectively (see Section 9 of \[12\], and \[19\]).

Terms and undefined concepts on quasi-uniform spaces may be found in \[7\] and in \[12\].

If \(U \) is a quasi-uniformity on a set \(X \), then \(U^{-1} = \{ U^{-1} : U \in U \} \) is also a quasi-
uniformity on \(X \) called the conjugate of \(U \). The uniformity \(U \vee U^{-1} \) will be denoted by
\(U^* \). If \(U \in \mathcal{U} \), the entourage \(U \cap U^{-1} \) of \(U^* \) will be denoted by \(U^* \).

Each quasi-uniformity \(U \) on \(X \) induces a topology \(\tau(U) \) on \(X \), defined as follows:
\[
\tau(U) = \{ A \subseteq X : \text{ for each } x \in A \text{ there is } U \in \mathcal{U} \text{ such that } U(x) \subseteq A \}.
\]

A quasi-uniform space \((X, U)\) is called precompact if for each \(U \in \mathcal{U} \) there is a finite
subset \(F \) of \(X \) such that \(U(F) = X \). \((X, U)\) is called totally bounded if the uniform
space \((X, U^*)\) is totally bounded. It is well known that, for quasi-uniform spaces, total
boundedness implies hereditary precompactness and hereditary precompactness implies
precompactness. However, the converses do not hold, in general.

A quasi-uniform space \((X, U)\) is called point symmetric if \(\tau(U) \subseteq \tau(U^{-1}) \).

The Pervin quasi-uniformity of any \(T_1 \) topological space provides an interesting
example of a point symmetric totally bounded quasi-uniformity (see \[7\]). Let us recall
that the Pervin quasi-uniformity of a topological space \(X \) is the quasi-uniformity \(\mathcal{P}N \) on
\(X \) which is generated by all sets of the form \((A \times A) \cup ((X \setminus A) \times X) \), where \(A \) is open
in \(X \).

Following \[8\] (see also \[7\]), a compactification of a \(T_1 \) quasi-uniform space \((X, U)\)
is a compact \(T_1 \) quasi-uniform space \((Y, V)\) that has a \(\tau(V) \)-dense subspace quasi-
isomorphic to \((X, U)\). If \((Y, \tau(V))\) is a Hausdorff space we say that \((Y, V)\) is a Hausdorff
compactification of \((X, U)\) and \((X, U)\) is said to be Hausdorff compactifiable.

It is proved in \[8\] that a totally bounded \(T_1 \) quasi-uniform space has a compactification
if and only if it is point symmetric.

In \[19\] the authors introduce and study the notion of an *
-compactification of a \(T_1 \) quasi-uniform space. While a point symmetric totally bounded \(T_1 \) quasi-uniform space may have
many totally bounded compactifications (see \[8, p. 34\]), an *
-compactifiable quasi-uniform space has an (up to quasi-isomorphism) unique *
-compactification as it is proved in \[19\]. This fact justifies in great part the interest in constructing *
-compactification(s) rather than compactifications of (totally bounded) \(T_1 \) quasi-uniform spaces.

Since the construction of the *
-compactification of a *
-compactifiable quasi-uniform space is based on the theory of bicompletion, we recall some concepts and results in order
to help the reader.

A quasi-uniform space \((X, U)\) is said to be bicomplete if each Cauchy filter on \((X, U^*)\)
converges with respect to the topology \(\tau(U^*) \), i.e., if the uniform space \((X, U^*)\) is
complete \[7,20\].

A bicompletion of a quasi-uniform space \((X, U)\) is a bicomplete quasi-uniform space
\((Y, V)\) that has a \(\tau(V^*) \)-dense subspace quasi-isomorphic to \((X, U)\).

Each \(T_0 \) quasi-uniform space \((X, U)\) has an (up to quasi-isomorphism) unique \(T_0 \)
bicompletion, which will be denoted by \((\tilde{X}, \tilde{U})\).

The construction of \((\tilde{X}, \tilde{U})\) is described in detail in Chapter 3 of \[7\] (see also \[20\]). For
our purposes here it suffices to recall that the family \(\{ \tilde{U} : U \in \mathcal{U} \} \) is a base for \(\mathcal{U} \), where
for each \(U \in \mathcal{U} \), \(\tilde{U} = \{(\mathcal{F}, \mathcal{G}) : \mathcal{F} \text{ and } \mathcal{G} \text{ are minimal Cauchy filters on } (X, \mathcal{U}^*) \) such that \(F \times G \subseteq U \) for some \(F \in \mathcal{F} \) and some \(G \in \mathcal{G} \).

A *-compactification of a \(T_1 \) quasi-uniform space \((X, \mathcal{U})\) is a compact \(T_1 \) quasi-uniform space \((Y, \mathcal{V})\) that has a \(\tau(\mathcal{V}^*) \)-dense subspace quasi-isomorphic to \((X, \mathcal{U})\). We say that a \(T_1 \) quasi-uniform space is *-compactifiable if it has a *-compactification.

Let \((X, \mathcal{U})\) be a \(T_1 \) quasi-uniform space and \((\tilde{X}, \tilde{\mathcal{U}})\) its bicompletion. We will denote by \(G(X) \) the set of closed points of \((\tilde{X}, \tau(\tilde{\mathcal{U}}))\). Clearly \(G(X) = \tilde{X} \) whenever \((\tilde{X}, \tilde{\mathcal{U}})\) is a \(T_1 \) quasi-uniform space.

It is proved in [19] that if a \(T_1 \) quasi-uniform space \((X, \mathcal{U})\) has a *-compactification, then any *-compactification of \((X, \mathcal{U})\) is quasi-isomorphic to \((G(X), \tilde{\mathcal{U}}_{|G(X)})\).

In the sequel the quasi-uniformity \(\tilde{\mathcal{U}}_{|G(X)} \) will be simply denoted by \(\tilde{\mathcal{U}} \) if no confusion arises. Thus, if the \(T_1 \) quasi-uniform space \((X, \mathcal{U})\) is *-compactifiable, \((G(X), \tilde{\mathcal{U}})\) will be called the *-compactification of \((X, \mathcal{U})\). If the *-compactification of a *-compactifiable quasi-uniform space \((X, \mathcal{U})\) is Hausdorff, we say that \((X, \mathcal{U})\) is Hausdorff *-compactifiable.

For a topological space \(X \), let \(\mathcal{P}_0(X) \) be the family of nonempty subsets of \(X \), \(\mathcal{C}_0(X) \) the family of nonempty closed subsets of \(X \), \(\mathcal{K}_0(X) \) the family of nonempty compact subsets of \(X \) and \(\mathcal{F}_0(X) \) the family of nonempty finite subsets of \(X \).

The Bourbaki quasi-uniformity (or the Hausdorff quasi-uniformity) of a quasi-uniform space \((X, \mathcal{U})\) is defined as the quasi-uniformity \(\mathcal{U}_H \) on \(\mathcal{P}_0(X) \) which has as a base the family of sets of the form

\[
\mathcal{U}_H = \{(A, B) \in \mathcal{P}_0(X) \times \mathcal{P}_0(X) : B \subseteq U(A) \text{ and } A \subseteq U^{-1}(B)\},
\]

whenever \(U \in \mathcal{U} \) [1,16].

The restriction of \(\mathcal{U}_H \) to \(\mathcal{C}_0(X), \mathcal{K}_0(X) \) and \(\mathcal{F}_0(X) \), respectively, is also denoted by \(\mathcal{U}_H \) if no confusion arises.

Here we prove that if \((X, \mathcal{U})\) is a \(T_1 \) quasi-uniform space, then \((\mathcal{C}_0(X), \mathcal{U}_H)\) is *-compactifiable if and only if \((X, \mathcal{U})\) is closed symmetric and *-compactifiable and \(\mathcal{U}^{-1} \) is hereditarily precompact. The notion of a closed symmetric quasi-uniform space is here used in the sense of [4] (see Section 3). Furthermore, we show that if \((\mathcal{C}_0(X), \mathcal{U}_H)\) is *-compactifiable, then its *-compactification is quasi-isomorphic to \((\mathcal{C}_0(G(X)), \tilde{\mathcal{U}}_{|G(X)})\). The corresponding situation for \((\mathcal{K}_0(X), \mathcal{U}_H)\) and \((\mathcal{F}_0(X), \mathcal{U}_H)\), respectively, is also explored. In particular, we prove that for a quasi-uniform space \((X, \mathcal{U}), (\mathcal{K}_0(X), \mathcal{U}_H)\) is Hausdorff *-compactifiable if and only if \((X, \mathcal{U})\) is Hausdorff *-compactifiable and \(\mathcal{U}^{-1} \) is hereditarily precompact. From our methods and results we deduce the following description of \(2^B_X \) in terms of *-compactifications: if \(X \) is a Tychonoff space, then \(2^B_X \) is equivalent to the *-compactification of \((\mathcal{C}_0(X), \mathcal{P}_{\mathcal{N}_H})\) if and only if \(X \) is normal.

2. Preliminary results

In this section we state several facts which will be useful to prove our main results.

Lemma 2.1 [19]. A \(T_1 \) quasi-uniform space \((X, \mathcal{U})\) is *-compactifiable if and only if it is point symmetric and its bicompletion is compact.
Lemma 2.2. Let \((X, \mathcal{U})\) be a \(T_1\) quasi-uniform space such that \(\mathcal{U}^{-1}\) is hereditarily precompact. Then \((X, \mathcal{U})\) is \(^*\)-compactifiable if and only if it is point symmetric and precompact.

Proof. The statement follows immediately from the preceding lemma and the corollary of Theorem 6 in [19], because every quasi-uniform space \((X, \mathcal{U})\) such that \(\mathcal{U}^{-1}\) is hereditarily precompact, is Smyth completable (see Example 6 of [11]). ✷

As an immediate consequence of the above lemma we obtain the easy but useful fact that every point symmetric totally bounded \(T_1\) quasi-uniform space is \(^*\)-compactifiable [19]. In particular, for each \(T_1\) topological space \(X\), \((X, \mathcal{P}(X))\) is \(^*\)-compactifiable.

The proof of the following result is straightforward, so it is omitted.

Lemma 2.3. Let \((X, \mathcal{U})\) be a quasi-uniform space and let \(M\) be such that \(F_0(X) \subseteq M \subseteq \mathcal{P}_0(X)\). If \((M, \mathcal{U}_H)\) is point symmetric, then \((X, \mathcal{U})\) is point symmetric.

Lemma 2.4. Let \((X, \mathcal{U})\) be a \(T_1\) quasi-uniform space and let \(M\) be such that \(F_0(X) \subseteq M \subseteq \mathcal{P}_0(X)\). If \((M, \mathcal{U}_H)\) is compact, then \((X, \mathcal{U})\) is compact and \(\mathcal{U}^{-1}\) is hereditarily precompact.

Proof. Let \((x_\lambda)_{\lambda \in \Lambda}\) be a net in \(X\). Since \((M, \mathcal{U}_H)\) is compact, the net \((\{x_\lambda\})_{\lambda \in \Lambda}\) has a cluster point \(C \in M\). It is easy to see that for each \(c \in C\), \(c\) is a cluster point of \((x_\lambda)_{\lambda \in \Lambda}\). We conclude that \((X, \mathcal{U})\) is compact. The proof that \(\mathcal{U}^{-1}\) is hereditarily precompact follows similarly to the first part of the proof of Proposition 5 of [15]. ✷

Lemma 2.5. Let \((X, \mathcal{U})\) be a \(T_1\) quasi-uniform space. Then the following statements are equivalent.

(1) \((\mathcal{P}_0(X), \mathcal{U}_H)\) is compact.
(2) \((\mathcal{C}_0(X), \mathcal{U}_H)\) is compact.
(3) \((\mathcal{K}_0(X), \mathcal{U}_H)\) is compact.
(4) \((X, \mathcal{U})\) is compact and \(\mathcal{U}^{-1}\) is hereditarily precompact.

Proof. (1) ⇔ (4). Corollary 2 of [15].

(1) ⇔ (3). This is Remark 1 of [14].

(2) ⇒ (4). Lemma 2.4.

(1) ⇒ (2). The proof follows similarly to the proof of Remark 1 of [14]. ✷

Let \((X, \mathcal{U})\) be a quasi-uniform space. In Proposition 1 of [16] and Remark 2 of [14] it was proved that \((\mathcal{P}_0(X), \mathcal{U}_H)\) is precompact if and only if \((X, \mathcal{U})\) is precompact, and that \((\mathcal{K}_0(X), \mathcal{U}_H)\) is precompact if and only if \((X, \mathcal{U})\) is precompact, respectively. A slight modification of the proofs of these results gives the following.

Lemma 2.6. Let \((X, \mathcal{U})\) be a quasi-uniform space and let \(M\) be such that \(F_0(X) \subseteq M \subseteq \mathcal{P}_0(X)\). Then \((M, \mathcal{U}_H)\) is precompact if and only if \((X, \mathcal{U})\) is precompact.
Proposition 2.7. Let \((X, \mathcal{U})\) be a quasi-uniform space and let \(\mathcal{M}\) be such that \(\mathcal{F}_0(X) \subseteq \mathcal{M} \subseteq \mathcal{P}_0(X)\). If \((\mathcal{M}, \mathcal{U}_{\mathcal{M}})\) is *-compactifiable, then \((X, \mathcal{U})\) is *-compactifiable and \(\mathcal{U}^{-1}\) is hereditarily precompact.

Proof. By Lemma 2.1, \((\mathcal{M}, \mathcal{U}_{\mathcal{M}})\) is a point symmetric \(T_1\) quasi-uniform space and \((\mathcal{M}, \mathcal{U}_{\mathcal{M}})\) is compact. Hence \((X, \mathcal{U})\) is a \(T_1\) quasi-uniform space and by Lemma 2.3, it is point symmetric. Moreover \(\mathcal{U}_{\mathcal{M}}\) is precompact, so \(\mathcal{U}_{\mathcal{M}}\) is precompact by Proposition 4(c) of [13]. Thus \(\mathcal{U}\) is precompact by Lemma 2.6.

Now suppose that \(\mathcal{U}^{-1}\) is not hereditarily precompact. Then there exist \(A \subseteq X\), \(U_0 \in \mathcal{U}\) and a sequence \((a_n)_{n \in \mathbb{N}}\) in \(A\) such that \(a_{n+1} \not\in \bigcup_{i=1}^{n} U_0^{-1}(a_i)\) for all \(n \in \mathbb{N}\). For each \(n \in \mathbb{N}\), put \(A_n = \{a_i : i \leq n\}\).

By assumption, the sequence \((A_n)_{n \in \mathbb{N}}\) clusters to some point \(\hat{x}\) in \((G(\mathcal{M}), \mathcal{U}_{\mathcal{M}})\). (Note that \(x\) is a (minimal) \((\mathcal{U}_{\mathcal{M}})^*\)-Cauchy filter on \(\mathcal{M}\).)

Choose \(U \in \mathcal{U}\) with \(U^2 \subseteq U_0\) and let \(k \in \mathbb{N}\) be such that \(A_k \subseteq \mathcal{U}_{\mathcal{M}}(\hat{x})\). Thus, there is \(F \in \mathcal{U}\) with \(F \times \{A_k\} \subseteq \mathcal{U}_{\mathcal{M}}\). Hence \((f, A_k) \in \mathcal{U}_{\mathcal{M}}\) for all \(f \in F\), so in particular \(f \subseteq U^{-1}(A_k)\) for all \(f \in F\). (Observe that \(F \subseteq \mathcal{M}\), and thus each \(f \in F\) is a nonempty subset of \(X\).)

Now consider the point \(a_{k+1}\). Since \(\mathcal{U}\) is point symmetric, \(V^{-1}(a_{k+1}) \subseteq U(a_{k+1})\) for some \(V \in \mathcal{U}\). Moreover, there is \(n \geq k + 1\) such that \(A_n \subseteq \mathcal{U}_{\mathcal{M}}(\hat{x})\). So there is \(G \in \mathcal{U}\), with \(G \subseteq F\), such that \(G \times \{A_n\} \subseteq \mathcal{U}_{\mathcal{M}}(\hat{x})\). Fix \(g \in G\). Then \(A_n \subseteq V(g)\). Since \(a_{k+1} \in A_n\), \(a_{k+1} \in V(g)\), so \(a_{k+1} \in U^{-1}(g)\). Since \(g \in F\), \(a_{k+1} \in U^{-1}(A_k)\). Hence \(a_{k+1} \in U_0^{-1}(A_k) = \bigcup_{i=1}^{k} U_0^{-1}(A_i)\), a contradiction. Therefore \(\mathcal{U}^{-1}\) is hereditarily precompact.

We have shown that \((X, \mathcal{U})\) is a point symmetric precompact \(T_1\) quasi-uniform space such that \(\mathcal{U}^{-1}\) is hereditarily precompact. By Lemma 2.2, \((X, \mathcal{U})\) is *-compactifiable. □

Lemma 2.8. Let \((X, \mathcal{U})\) be a point symmetric quasi-uniform space. Then \((C_0(X), \mathcal{U}_{\mathcal{M}})\) is a \(T_1\) quasi-uniform space.

Proof. Let \(A, B \in C_0(X)\) with \(A \neq B\). Suppose that there exists \(x \in B \setminus A\). By assumption there exists \(U \in \mathcal{U}\) such that \(U(x) \cap A = \emptyset\) and \(U^{-1}(x) \cap A = \emptyset\). It follows that \(x \not\in U^{-1}(A)\) and \(x \not\in U(A)\) and hence \(A \not\in \mathcal{U}(A)\) and \(B \not\in \mathcal{U}(B)\). We conclude that \((C_0(X), \mathcal{U}_{\mathcal{M}})\) is a \(T_1\) quasi-uniform space. □

Lemma 2.9. Let \((X, \mathcal{U})\) be a \(T_1\) quasi-uniform space such that \(\mathcal{U}^{-1}\) is hereditarily precompact and each closed subset of \((X, \mathcal{U})\) is precompact. If \(A\) is dense in \((X, \mathcal{U}^*)\), then \(\mathcal{F}_0(A)\) is dense in \((C_0(X), (\mathcal{U}_{\mathcal{M}})^*)\).

Proof. We first note that \(\mathcal{F}_0(A)\) is a subset of \(C_0(X)\) because \((X, \mathcal{U})\) is assumed to be a \(T_1\) quasi-uniform space.

Let \(C \in C_0(X)\) and \(U \in \mathcal{U}\). Choose \(V \in \mathcal{U}\) such that \(V^2 \subseteq U\). By assumption there are \(x_1, \ldots, x_n \in C\) such that \(C \subseteq \bigcup_{i=1}^{n} V^{-1}(x_i)\). Moreover, by precompactness of \(\mathcal{U}(C)\), there are \(y_1, \ldots, y_m \in C\) such that \(C \subseteq \bigcup_{i=1}^{m} V(y_i)\).

Let \(a_1, \ldots, a_n\), and \(b_1, \ldots, b_m\), be points of \(A\) such that \(a_i \in V^*(x_i), i = 1, \ldots, n\), and \(b_i \in V^*(y_i), i = 1, \ldots, m\). Put \(F = \{a_1, \ldots, a_n\} \cup \{b_1, \ldots, b_m\}\). Then \(F \in \mathcal{F}_0(A)\).
We wish to show that $F \in (U_H)^*(C)$. Indeed, the inclusions $F \subseteq U(C)$ and $F \subseteq U^{-1}(C)$ are clear because $F \subseteq V^*(C)$. Furthermore, given $x \in C$ we have $x \in V^{-1}(x_i)$ for some $i \in \{1, \ldots, n\}$, and $x \in V(y_j)$, for some $j \in \{1, \ldots, m\}$, so $x \in V^{-2}(a_i)$ and $x \in V^2(b_j)$. Therefore $C \subseteq U^{-1}(F)$ and $C \subseteq U(F)$. Hence $F \in (U_H)^*(C)$. We conclude that $F_0(A)$ is dense in $(C_0(X), (U_H)^*)$. □

Proposition 2.10. Let (X, \mathcal{U}) be a *-compactifiable quasi-uniform space such that \mathcal{U}^{-1} is hereditarily precompact. Then $(C_0(G(X)), \tilde{U}_H)$ is a compact T_1 quasi-uniform space that contains $F_0(X)$ as a $\tau((\tilde{U}_H)^*)$-dense subset.

Proof. By assumption $(G(X), \tilde{U})$ is a compact T_1 quasi-uniform space. Moreover, by Proposition 4(b) of [13], \tilde{U}^{-1} is hereditarily precompact. Hence $(C_0(G(X)), \tilde{U}_H)$ is compact by Lemma 2.5. Furthermore $(C_0(G(X)), \tilde{U}_H)$ is a T_1 quasi-uniform space by Lemma 2.8.

Finally, since each closed subset of $(G(X), \tilde{U})$ is compact, it follows from Lemma 2.9 that $F_0(X)$ is dense in $(C_0(G(X)), (\tilde{U}_H)^*)$. □

3. *-compactification of $(C_0(X), U_H)$

Following Deák [4], a quasi-uniform space (X, \mathcal{U}) is closed symmetric provided that whenever A and B are closed subsets of (X, \mathcal{U}) and there is $U \in \mathcal{U}$ such that $U(A) \cap B = \emptyset$, then there is $V \in \mathcal{U}$ such that $V(B) \cap A = \emptyset$. In this case, we say that \mathcal{U} is closed symmetric.

Clearly, every equinormal quasi-uniformity is closed symmetric, so the Pervin quasi-uniformity of any topological space is closed symmetric.

Closed symmetric quasi-uniform spaces were originally called semi-symmetric. This property was introduced in [3] (see also [6]), to study the equivalence between several notions of quasi-uniform completeness.

Proposition 3.1. A quasi-uniform space (X, \mathcal{U}) is closed symmetric if and only if for each $A \in C_0(X)$ and each $U \in \mathcal{U}$ there exists $V \in \mathcal{U}$ with $V^{-1}(A) \subseteq U(A)$.

Proof. Suppose that for each $A \in C_0(X)$ and each $U \in \mathcal{U}$ there exists $V \in \mathcal{U}$ with $V^{-1}(A) \subseteq U(A)$.

Let $A, B \in C_0(X)$ and $U \in \mathcal{U}$ such that $U(A) \cap B = \emptyset$. Let $V \in \mathcal{U}$ such that $V^{-1}(A) \subseteq U(A)$. Then $B \cap V^{-1}(A) = \emptyset$, and hence $V(B) \cap A = \emptyset$.

Conversely, suppose that (X, \mathcal{U}) is closed symmetric and let $A \in C_0(X)$ and $U \in \mathcal{U}$ (we can suppose, without loss of generality, that $U(x)$ is open for each $x \in X$). Since $(X \setminus U(A)) \cap U(A) = \emptyset$, there exists $V \in \mathcal{U}$ with $V(X \setminus U(A)) \cap A = \emptyset$. It follows that $V^{-1}(A) \subseteq U(A)$. ■

Proposition 3.2. Let (X, \mathcal{U}) be a quasi-uniform space such that $(C_0(X), (U_H)^*)$ is point symmetric. Then (X, \mathcal{U}) is closed symmetric.
Proof. Let $A \in C_0(X)$ and $U \in \mathcal{U}$. Then there is $V \in \mathcal{U}$ such that $V^{-1}(A) \subseteq U_H(A)$. Let $W \in \mathcal{U}$ with $W^2 \subseteq V$. Then $\text{Cl}_{\tau(U)}(W^{-1}(A)) \subseteq W^{-2}(A) \subseteq V^{-1}(A)$, and hence $\text{Cl}_{\tau(U)}(W^{-1}(A)) \subseteq V^{-1}(A) \subseteq U_H(A)$. In particular $W^{-1}(A) \subseteq \text{Cl}_{\tau(U)}(W^{-1}(A)) \subseteq U(A)$, so (X, \mathcal{U}) is closed symmetric by Proposition 3.1. □

Proposition 3.3. Let (X, \mathcal{U}) be a closed symmetric and *-compactifiable quasi-uniform space. Then for each $A \in C_0(X)$, it holds $\text{Cl}_{\tau(\tilde{\mathcal{U}})} A = \text{Cl}_{\tau(\tilde{\mathcal{U}}^{-1})} A$, where closures are taken in $G(X)$.

Proof. Since $(G(X), \tilde{\mathcal{U}})$ is point symmetric, then $\text{Cl}_{\tau(\tilde{\mathcal{U}}^{-1})} A \subseteq \text{Cl}_{\tau(\tilde{\mathcal{U}})} A$. Let $\tilde{x} \in \text{Cl}_{\tau(\tilde{\mathcal{U}})} A$ and $U_0 \in \mathcal{U}$. By Proposition 3.1, there is $V \in \mathcal{U}$ with $V \subseteq U$ and $V^{-1}(A) \subseteq U(A)$. Let $W \in \mathcal{U}$ with $W^2 \subseteq V$. There is $x \in X$ such that $x \in \tilde{W}^*(\tilde{x})$. Since $\tilde{x} \in \text{Cl}_{\tau(\tilde{\mathcal{U}})} A$, $\tilde{W}(\tilde{x}) \cap A \neq \emptyset$, and hence $\tilde{V}(x) \cap A \neq \emptyset$. Then $x \in V^{-1}(A) \subseteq U(A)$ and hence $U^{-1}(x) \cap A \neq \emptyset$. It follows that $\tilde{U}_0^{-1}(\tilde{x}) \cap A \neq \emptyset$. Therefore $\tilde{x} \in \text{Cl}_{\tau(\tilde{\mathcal{U}}^{-1})} A$, so $\text{Cl}_{\tau(\tilde{\mathcal{U}})} A = \text{Cl}_{\tau(\tilde{\mathcal{U}}^{-1})} A$. □

Proposition 3.4. Let (X, \mathcal{U}) be a closed symmetric and *-compactifiable quasi-uniform space. Then the map $\phi : (C_0(X), \mathcal{U}_H) \to (\hat{C_0}(G(X)), \hat{\mathcal{U}}_H)$, defined by $\phi(A) = \text{Cl}_{\tau(\tilde{\mathcal{U}})} A$, is a quasi-isomorphism between $(C_0(X), \mathcal{U}_H)$ and $(\hat{C_0}(G(X)), \hat{\mathcal{U}}_H)$.

Proof. Let $A, B \in C_0(X)$ with $\phi(A) = \phi(B)$. Then $X \cap \phi(A) = A$ and $X \cap \phi(B) = B$, and hence $A = B$. Thus ϕ is injective.

Let $U \in \mathcal{U}$ and choose $V \in \mathcal{U}$ with $V^2 \subseteq U$. Let $A, B \in C_0(X)$ such that $B \in V_H(A)$. Then $B \subseteq V(A) \subseteq \tilde{V}(\phi(A))$ and $A \subseteq V^{-1}(B) \subseteq \tilde{V}^{-1}(\phi(B))$. By Proposition 3.3, $\phi(B)$ is closed in $(G(X), \tilde{\mathcal{U}}^{-1})$, so $\phi(B) \subseteq \tilde{V}(\phi(A))$ and $\phi(A) \subseteq \tilde{V}^{-1}(A) \subseteq \tilde{U}^{-1}(\phi(B))$. Therefore $\phi(B) \subseteq \tilde{U}_H(\phi(A))$.

Let $U \in \mathcal{U}$ and choose $V \in \mathcal{U}$ with $V^2 \subseteq U$. Let $A, B \in C_0(X)$ such that $\phi(B) \subseteq \tilde{V}_H(\phi(A))$. Then $B \subseteq \phi(B) \subseteq \tilde{V}(\phi(A))$ and $\phi(A) \subseteq \tilde{V}^{-1}(\phi(B)) \subseteq \tilde{U}^{-1}(B) \subseteq \tilde{U}(B)$. Since $\phi(A)$ is closed in $(G(X), \tilde{\mathcal{U}}^{-1})$, $B \subseteq \tilde{V}(\phi(A)) \subseteq \tilde{V}^2(A) \subseteq \tilde{U}(A)$. Therefore $B \in U_H(A)$.

We conclude that ϕ is a quasi-isomorphism. □

Theorem 3.5. Let (X, \mathcal{U}) be a T_1 quasi-uniform space. Then the following statements are equivalent.

1. $(C_0(X), \mathcal{U}_H)$ is *-compactifiable and the *-compactification $(G(C_0(X)), \hat{\mathcal{U}}_H)$ is quasi-isomorphic to $(C_0(G(X)), \hat{\mathcal{U}}_H)$.
2. $(C_0(X), \mathcal{U}_H)$ is *-compactifiable.
3. (X, \mathcal{U}) is closed symmetric and *-compactifiable and \mathcal{U}^{-1} is hereditarily precompact.

Proof. (1) \Rightarrow (2). Obvious.

(2) \Rightarrow (3). Suppose that $(C_0(X), \mathcal{U}_H)$ is *-compactifiable. Since by assumption (X, \mathcal{U}) is a T_1 quasi-uniform space, $\mathcal{F}_0(X) \subseteq C_0(X)$, so by Proposition 2.7, (X, \mathcal{U}) is
*-compactifiable and U^{-1} is hereditarily precompact. Moreover, (X, U) is closed symmetric by Proposition 3.2.

(3) \Rightarrow (1). Suppose that (X, U) is closed symmetric and *-compactifiable and U^{-1} is hereditarily precompact. By Proposition 2.10, $(C_0(G(X)), \tilde{U}_H)$ is a compact T_1 quasi-uniform space such that $F_0(X)$ is dense in $(C_0(G(X)), \tilde{U}_H^*)$. Now, if ϕ is the map of Proposition 3.4, we have $F_0(X) \subseteq \phi(C_0(X)) \subseteq C_0(G(X))$, and so $\phi(C_0(X))$ is dense in $(C_0(G(X)), \tilde{U}_H^*)$. By Proposition 3.4, $(C_0(G(X)), \tilde{U}_H)$ is *-compactifiable and $(C_0(G(X)), \tilde{U}_H)$ is quasi-isomorphic to the *-compactification of $(C_0(X), U_H)$. □

Next we give a characterization of those quasi-uniform spaces (X, U) for which $(C_0(X), U_H)$ is Hausdorff *-compactifiable. The following observation will be useful.

Remark 3.6. If (X, U) is a compact Hausdorff quasi-uniform space, then 2^X is a compact Hausdorff space, so $(K_0(X), U_H)$ is Hausdorff by Proposition 2.1 of [2]. Of course, $K_0(X) = C_0(X)$ in this case.

Lemma 3.7. Let (X, U) be a Hausdorff *-compactifiable quasi-uniform space. Then $(K_0(G(X)), \tilde{U}_H)$ is Hausdorff and $K_0(G(X)) = C_0(G(X))$ by Remark 3.6. □

Theorem 3.8. Let (X, U) be a T_1 quasi-uniform space. Then the following statements are equivalent.

1. $(C_0(X), U_H)$ is Hausdorff *-compactifiable and the *-compactification $(G(C_0(X)), \tilde{U}_H)$ is quasi-isomorphic to $(C_0(G(X)), \tilde{U}_H)$.
2. $(C_0(X), U_H)$ is Hausdorff *-compactifiable.
3. (X, U) is closed symmetric and Hausdorff *-compactifiable and U^{-1} is hereditarily precompact.

Proof. (1) \Rightarrow (2). Obvious.

(2) \Rightarrow (3). Suppose that $(C_0(X), U_H)$ is Hausdorff *-compactifiable. By Theorem 3.5, (X, U) is closed symmetric and *-compactifiable and U^{-1} is hereditarily precompact. So, by applying Theorem 3.5 again, $(G(C_0(X)), \tilde{U}_H)$ is quasi-isomorphic to $(C_0(G(X)), \tilde{U}_H)$. Therefore $(C_0(G(X)), \tilde{U}_H)$ is Hausdorff and thus $(G(X), U)$ is Hausdorff. Consequently (X, U) is Hausdorff *-compactifiable.

(3) \Rightarrow (1). By Theorem 3.5, $(C_0(X), U_H)$ is *-compactifiable and its *-compactification is quasi-isomorphic to $(C_0(G(X)), \tilde{U}_H)$. Since, by assumption, $(G(X), U_H)$ is Hausdorff, Lemma 3.7 shows that $(C_0(G(X)), \tilde{U}_H)$ is Hausdorff. This completes the proof. □

Next we give an example of a totally bounded Hausdorff *-compactifiable quasi-uniform space (X, U) such that $(C_0(X), U_H)$ is not *-compactifiable.
Recall (Proposition 7 of [19]), that a point symmetric totally bounded T_1 quasi-uniform space (X, \mathcal{U}), is Hausdorff *-compactifiable if and only if it satisfies the following condition (introduced in [8]):

$$(\ast) \text{ if } A \text{ and } B \text{ are subsets of } X \text{ such that } U^{-1}(A) \cap U^{-1}(B) = \emptyset \text{ for some } U \in \mathcal{U}, \text{ then there is } V \in \mathcal{U} \text{ such that } V(A) \cap V(B) = \emptyset.$$

Example 3.9. Let X be the set of natural numbers and let d be the quasi-metric on X given by $d(n, m) = 1/n + 1/m$ if n is even and $n \neq m$, $d(n, m) = 1/n + 1/m$ if n and m are odd and $n \neq m$, $d(n, n) = 0$ for all natural n, and $d(n, m) = 1$ otherwise. Clearly both $\tau(\mathcal{U}_d)$ and $\tau(\mathcal{U}_{d-1})$ are the discrete topology on X, and (X, \mathcal{U}_d) is totally bounded. Moreover, it is routine to check that (X, \mathcal{U}_d) satisfies condition (\ast), so it is Hausdorff *-compactifiable. In fact, the bicompletion of (X, \mathcal{U}_d) is the pair $(\tilde{X}, \mathcal{U}_{d-1})$, where $\tilde{X} = X \cup \{a, b\}$, with $a, b \notin X$, $a \neq b$, and \tilde{d} is the quasi-pseudo-metric on \tilde{X} such that $d_{\tilde{X} \times \tilde{X}} = d$, $\tilde{d}(a, a) = \tilde{d}(b, b) = 0$, $\tilde{d}(a, n) = \tilde{d}(n, a) = 1/n$ if n is even, $\tilde{d}(b, n) = \tilde{d}(n, b) = 1/n$ if n is odd, $\tilde{d}(a, n) = 1/n$ if n is odd, $\tilde{d}(a, b) = 0$, and $\tilde{d}(x, y) = 1$ otherwise. Thus $G(X) = X \cup \{a\}$ and hence $(G(X), \mathcal{U}_{d-1})$ is a compact Hausdorff quasi-uniform space.

However, \mathcal{U}_d is not closed symmetric because for $A = \{2n - 1 : n \in X\}$ and $B = \{2n : n \in X\}$, we have $d(A, B) = 1$ but $d(B, A) = 0$. Therefore $(C_0(X), (\mathcal{U}_d)_H)$ is not *-compactifiable by Theorem 3.5.

At the end of this section we shall describe the hyperspace $2^{\beta X}$ of a normal Hausdorff space X in terms of the *-compactification of $(C_0(X), \mathcal{P}N_H)$.

Proposition 3.10. Let X be a topological space. Then $(X, \mathcal{P}N)$ satisfies condition (\ast) if and only if X is normal.

Proof. Suppose that $(X, \mathcal{P}N)$ satisfies condition (\ast). Let A and B be two disjoint nonempty closed subsets of X. Let $U = ((X \setminus A) \times (X \setminus A)) \cup (A \times X)$ and $V = ((X \setminus B) \times (X \setminus B)) \cup (B \times X)$. Then U and V are entourages of $\mathcal{P}N$, and it immediately follows that $(U \cap V)^{-1}(A) \cap (U \cap V)^{-1}(B) = \emptyset$. By assumption, there is $W \in \mathcal{P}N$ such that $W(A) \cap W(B) = \emptyset$. Hence X is a normal topological space.

Conversely, let A and B be two nonempty subsets of X such that $U^{-1}(A) \cap U^{-1}(B) = \emptyset$. By Proposition 1.7 of [7], $\overline{A} \cap \overline{B} = \emptyset$, so there exist two disjoint open subsets G and H of X, such that $\overline{A} \subseteq G$ and $\overline{B} \subseteq H$. Since $(X, \mathcal{P}N)$ is equinormal, there is $V \in \mathcal{U}$ such that $V(\overline{A}) \subseteq G$ and $V(\overline{B}) \subseteq H$. Therefore $V(A) \cap V(B) = \emptyset$. We conclude that $(X, \mathcal{P}N)$ satisfies condition (\ast). \square

The following auxiliary result was proved in [18].

Lemma 3.11. Let (X, \mathcal{U}) be a T_1 quasi-uniform space. Then \mathcal{U}_H is compatible with the Vietoris topology of $(X, \tau(\mathcal{U}))$ on $C_0(X)$ if and only if \mathcal{U} is equinormal and U^{-1} is hereditarily precompact.
Theorem 3.12. Let \(X \) be a Tychonoff space. Then \(2^\beta X \) is equivalent to the *-compactification of \((\mathcal{C}_0(X), \mathcal{P}^N_H)\) if and only if \(X \) is normal.

Proof. Suppose that \(X \) is normal. By Proposition 3.10 and Proposition 7 of [19] cited above, \((X, \mathcal{P}^N)\) is Hausdorff *-compactifiable, so \((\mathcal{C}_0(X), \mathcal{P}^N_H)\) is Hausdorff *-compactifiable and its *-compactification is quasi-isomorphic to \((\mathcal{C}_0(G(X)), \overline{\mathcal{P}}^N_H)\) by Theorem 3.8. Moreover, \((G(X), \tau(\overline{\mathcal{P}}^N))\) is equivalent to the Stone–Čech compactification \(\beta X \) of \(X \) (Theorem 3.8 of [8]). Since by Proposition 4(a) of [13], \((G(X), \mathcal{P}^N)\) is totally bounded, it follows from Lemma 3.11 that \(\overline{\mathcal{P}}^N_H \) is compatible with the Vietoris topology on \(\mathcal{C}_0(G(X)) \). We conclude that \(2^\beta X \) is equivalent to \((\mathcal{C}_0(G(X)), \tau(\overline{\mathcal{P}}^N_H))\), and thus it is equivalent to the *-compactification of \((\mathcal{C}_0(X), \mathcal{P}^N_H)\).

Conversely, if \(2^\beta X \) is equivalent to the *-compactification of \((\mathcal{C}_0(X), \mathcal{P}^N_H)\), it follows that \((\mathcal{C}_0(X), \mathcal{P}^N_H)\) is Hausdorff *-compactifiable. So, by Theorem 3.8, \((X, \mathcal{P}^N)\) is Hausdorff *-compactifiable, and thus, it satisfies condition (⋆). Therefore, \(X \) is normal by Proposition 3.10.

From Theorem 3.12 and the results of [9,10,17], cited in Section 1, we deduce the following.

Corollary 3.13. Let \(X \) be a normal Hausdorff space. Then the Stone–Čech compactification of \(2^X \) is equivalent to the *-compactification of \((\mathcal{C}_0(X), \mathcal{P}^N_H)\) if and only if \(2^X \) is pseudo-compact.

It seems interesting to note that one can construct examples of point symmetric totally bounded Hausdorff quasi-uniform spaces \((X, \mathcal{U})\) that are not Hausdorff *-compactifiable but \((\mathcal{C}_0(X), \mathcal{U}_H)\) is *-compactifiable.

Example 3.14. Let \(X \) be the set of natural numbers and let \(d \) be the quasi-metric on \(X \) given by \(d(n,m) = 1/m \) if \(n \neq m \), and \(d(n,n) = 0 \) for all natural \(n \). Denote by \(\mathcal{U}_d \) the quasi-uniformity induced by \(d \). Then \(\tau(\mathcal{U}_d) \) is the cofinite topology on \(X \). Clearly \((X, \mathcal{U}_d)\) is compact and totally bounded. Now let \(A = X \) and \(B = X \setminus \{1\} \). Then \(A, B \in \mathcal{K}_0(X) \), \(A \neq B \) but \(B \in \bigcap_{U \in \mathcal{U}_H} U_H(A) \). So \((\mathcal{K}_0(X), \mathcal{U}_d(H))\) is not a \(T_1 \) quasi-uniform space.

4. *-compactification of \((\mathcal{K}_0(X), \mathcal{U}_H)\)

We start this section with an example of a compact totally bounded \(T_1 \) quasi-uniform space \((X, \mathcal{U})\) such that \((\mathcal{K}_0(X), \mathcal{U}_H)\) is not a \(T_1 \) quasi-uniform space, and hence it is not *-compactifiable.

Example 4.1. Let \(X \) be the set of natural numbers and let \(d \) be the quasi-metric on \(X \) given by \(d(n,m) = 1/m \) if \(n \neq m \), and \(d(n,n) = 0 \) for all natural \(n \). Denote by \(\mathcal{U}_d \) the quasi-uniformity induced by \(d \). Then \(\tau(\mathcal{U}_d) \) is the cofinite topology on \(X \). Clearly \((X, \mathcal{U}_d)\) is compact and totally bounded. Now let \(A = X \) and \(B = X \setminus \{1\} \). Then \(A, B \in \mathcal{K}_0(X) \), \(A \neq B \) but \(B \in \bigcap_{U \in \mathcal{U}_H} U_H(A) \). So \((\mathcal{K}_0(X), \mathcal{U}_d(H))\) is not a \(T_1 \) quasi-uniform space.
However, it is possible to obtain a satisfactory characterization of those Hausdorff quasi-uniform spaces \((X, \mathcal{U})\) for which \((\mathcal{K}_0(X), \mathcal{U}_H)\) is \(*\)-compactifiable. We will need the following concept.

Definition 4.2. A quasi-uniform space \((X, \mathcal{U})\) is said to be **compact symmetric** if for each \(A \in \mathcal{K}_0(X)\) and \(B \in \mathcal{C}_0(X)\) such that there is \(U \in \mathcal{U}\) with \(U(A) \cap B = \emptyset\), then there is \(V \in \mathcal{U}\) with \(V(B) \cap A = \emptyset\).

Clearly, each closed symmetric Hausdorff quasi-uniform space is compact symmetric and each compact symmetric quasi-uniform space is point symmetric.

Proposition 4.3. A quasi-uniform space \((X, \mathcal{U})\) is compact symmetric if and only if for each \(A \in \mathcal{K}_0(X)\) and each \(U \in \mathcal{U}\) there exists \(V \in \mathcal{U}\) with \(V^{-1}(A) \subseteq U(A)\).

Proof. Suppose that for each \(A \in \mathcal{K}_0(X)\) and each \(U \in \mathcal{U}\) there exists \(V \in \mathcal{U}\) with \(V^{-1}(A) \subseteq U(A)\).

Let \(A \in \mathcal{K}_0(X)\) and \(U \in \mathcal{U}\) such that \(U(A) \cap B = \emptyset\). Let \(V \in \mathcal{U}\) such that \(V^{-1}(A) \subseteq U(A)\). Then \(B \cap V^{-1}(A) = \emptyset\) and hence \(V(B) \cap A = \emptyset\).

Conversely, suppose that \((X, \mathcal{U})\) is compact symmetric and let \(A \in \mathcal{K}_0(X)\) and \(U \in \mathcal{U}\) (we can suppose, without loss of generality, that \(U(x)\) is open for each \(x \in X\)). Since \((X \setminus U(A)) \cap U(A) = \emptyset\), there exists \(V \in \mathcal{U}\) with \(V(X \setminus U(A)) \cap A = \emptyset\). It follows that \(V^{-1}(A) \subseteq U(A)\). \(\Box\)

Proposition 4.4. Let \((X, \mathcal{U})\) be a quasi-uniform space such that \((\mathcal{K}_0(X), \mathcal{U}_H)\) is point symmetric. Then \((X, \mathcal{U})\) is compact symmetric.

Proof. Let \(A \in \mathcal{K}_0(X)\) and \(U \in \mathcal{U}\). Then there is \(V \in \mathcal{U}\) such that \(V^{-1}(A) \subseteq U_H(A)\). Let \(x \in V^{-1}(A)\) and \(B = A \cup \{x\}\). Then \(B \in \mathcal{K}_0(X)\) and \(B \in V^{-1}(A) \subseteq U_H(A)\). In particular \(B \subseteq U(A)\) and hence \(x \in U(A)\). It follows that \(V^{-1}(A) \subseteq U(A)\), so \((X, \mathcal{U})\) is compact symmetric by Proposition 4.3. \(\Box\)

Proposition 4.5. Let \((X, \mathcal{U})\) be a compact symmetric and \(*\)-compactifiable quasi-uniform space. If \((X, \mathcal{U})\) is Hausdorff, then for each \(A \in \mathcal{K}_0(X)\), it holds \(\overline{\text{Cl}_t(\mathcal{U}))} A = \overline{\text{Cl}_t(\mathcal{U}^{-1})} A\), where closures are taken in \(G(X)\).

Proof. The proof is analogous to the proof of Proposition 3.3, but using Proposition 4.3 instead of Proposition 3.1. \(\Box\)

Proposition 4.6. Let \((X, \mathcal{U})\) be a compact symmetric and \(*\)-compactifiable quasi-uniform space. If \((X, \mathcal{U})\) is Hausdorff, then the map \(\phi: (\mathcal{K}_0(X), \mathcal{U}_H) \rightarrow (\mathcal{C}_0(G(X)), \overline{\mathcal{U}_H})\) defined by \(\phi(A) = \overline{\text{Cl}_t(\mathcal{U}))} A\) is a quasi-isomorphism between \((\mathcal{K}_0(X), \mathcal{U}_H)\) and \((\mathcal{C}_0(G(X)), \overline{\mathcal{U}_H})\).

Proof. Let \(A, B \in \mathcal{K}_0(X)\) with \(\phi(A) = \phi(B)\). By Hausdorffness of \((X, \mathcal{U})\), \(X \cap \phi(A) = A\) and \(X \cap \phi(B) = B\). Hence \(A = B\), and thus \(\phi\) is injective. The rest of the proof is analogous to the proof of Proposition 3.4. \(\Box\)
Theorem 4.7. Let \((X, \mathcal{U})\) be a Hausdorff quasi-uniform space. Then the following statements are equivalent.

1. \((K_0(X), \mathcal{U}_H)\) is *-compactifiable and the *-compactification \((G(K_0(X)), \tilde{\mathcal{U}}_H)\) is quasi-isomorphic to \((C_0(G(X)), \tilde{\mathcal{U}}_H)\).
2. \((K_0(X), \mathcal{U}_H)\) is *-compactifiable.
3. \((X, \mathcal{U})\) is compact symmetric and *-compactifiable and \(\mathcal{U}^{-1}\) is hereditarily precompact.

Proof. (1) \(\Rightarrow\) (2). Obvious.

(2) \(\Rightarrow\) (3). Suppose that \((K_0(X), \mathcal{U}_H)\) is *-compactifiable. Since \(F_0(X) \subseteq K_0(X)\), it follows from Proposition 2.7 that \((X, \mathcal{U})\) is *-compactifiable and \(\mathcal{U}^{-1}\) is hereditarily precompact. Moreover, \((X, \mathcal{U})\) is compact symmetric by Proposition 4.4.

(3) \(\Rightarrow\) (1). Suppose that \((X, \mathcal{U})\) is compact symmetric and *-compactifiable and \(\mathcal{U}^{-1}\) is hereditarily precompact. By Proposition 2.10, \((C_0(G(X)), \tilde{\mathcal{U}}_H)\) is a compact \(T_1\) quasi-uniform space such that \(F_0(X)\) is dense in \((C_0(G(X)), \tilde{\mathcal{U}}_H)^*\). Now, if \(\phi\) is the map of Proposition 4.6, we have \(F_0(X) \subseteq \phi(K_0(X)) \subseteq C_0(G(X))\). So \(\phi(K_0(X))\) is dense in \((C_0(G(X)), (\tilde{\mathcal{U}}_H)^*\), and hence \((K_0(X), \mathcal{U}_H)\) is *-compactifiable and its *-compactification is quasi-isomorphic to \((C_0(G(X)), \tilde{\mathcal{U}}_H)\). □

Our next result characterizes those quasi-uniform spaces \((X, \mathcal{U})\) for which \((K_0(X), \mathcal{U}_H)\) is Hausdorff *-compactifiable.

Theorem 4.8. Let \((X, \mathcal{U})\) be a quasi-uniform space. Then the following statements are equivalent.

1. \((K_0(X), \mathcal{U}_H)\) is Hausdorff *-compactifiable and the *-compactification \((G(K_0(X)), \tilde{\mathcal{U}}_H)\) is quasi-isomorphic to \((K_0(G(X)), \tilde{\mathcal{U}}_H)\).
2. \((K_0(X), \mathcal{U}_H)\) is Hausdorff *-compactifiable.
3. \((X, \mathcal{U})\) is Hausdorff *-compactifiable and \(\mathcal{U}^{-1}\) is hereditarily precompact.

Proof. (1) \(\Rightarrow\) (2). Obvious.

(2) \(\Rightarrow\) (3). Suppose that \((K_0(X), \mathcal{U}_H)\) is Hausdorff *-compactifiable. Clearly \((X, \mathcal{U})\) is Hausdorff. So, by Theorem 4.7, \((X, \mathcal{U})\) is *-compactifiable, \(\mathcal{U}^{-1}\) is hereditarily precompact and \((G(K_0(X)), \tilde{\mathcal{U}}_H)\) is quasi-isomorphic to \((K_0(G(X)), \tilde{\mathcal{U}}_H)\). Therefore \((C_0(G(X)), \tilde{\mathcal{U}}_H)\) is Hausdorff and thus \((G(X), \tilde{\mathcal{U}})\) is Hausdorff. We conclude that \((X, \mathcal{U})\) is Hausdorff *-compactifiable.

(3) \(\Rightarrow\) (1). Suppose that \((X, \mathcal{U})\) is Hausdorff *-compactifiable and \(\mathcal{U}^{-1}\) is hereditarily precompact. By Proposition 2.10 and Lemma 3.7, \((K_0(G(X)), \tilde{\mathcal{U}}_H)\) is a compact Hausdorff quasi-uniform space such that \(F_0(X)\), and hence \(K_0(X)\), is dense in \((K_0(G(X)), (\tilde{\mathcal{U}}_H)^*)\). Therefore \((K_0(X), \mathcal{U}_H)\) is *-compactifiable and its *-compactification is quasi-isomorphic to \((K_0(G(X)), \tilde{\mathcal{U}}_H)\). □

By Theorems 3.5, 4.7 and 4.8 it follows that if \((X, \mathcal{U})\) is a Hausdorff quasi-uniform space such that \((C_0(X), \mathcal{U}_H)\) is (Hausdorff) *-compactifiable, then \((K_0(X), \mathcal{U}_H)\) is Hausdorff *-compactifiable.
is (Hausdorff) *-compactifiable. The converse does not hold in general, even for totally bounded quasi-uniform spaces, as the non closed symmetric Hausdorff *-compactifiable quasi-uniform space \((X, \mathcal{U}_d)\) of Example 3.9 shows. Indeed \((K_0(X), (\mathcal{U}_d)_H)\) is Hausdorff *-compactifiable by Theorem 4.8.

On the other hand, note that if \((X, \mathcal{U})\) is a Hausdorff *-compactifiable quasi-uniform space such that \(\mathcal{U}^{-1}\) is hereditarily precompact, then \((X, \mathcal{U})\) is compact symmetric by Theorem 4.8 and Proposition 4.4. We shall show that actually each Hausdorff *-compactifiable quasi-uniform space is compact symmetric.

Let us recall [7] that a quasi-uniform space \((X, \mathcal{U}, d)\) is locally symmetric provided that for each \(x \in X\), \([U^{-1}(U(x)): U \in \mathcal{U}]\) is a base for the \(\tau(\mathcal{U})\)-neighborhood filter of \(x\).

It was shown in [3] that each closed symmetric regular quasi-uniform space is locally symmetric, and hence it is metrizable by Theorem 2.32 of [7].

Proposition 4.9. Each locally symmetric quasi-uniform space is compact symmetric.

Proof. Let \((X, \mathcal{U})\) be a locally symmetric quasi-uniform space. Let \(A \in K_0(X)\) and \(U \in \mathcal{U}\) such that \(V^{-1}(A) \subsetneq U(A)\) for each \(V \in \mathcal{U}\). Given \(V \in \mathcal{U}\), let \(x_V \in V^{-1}(A) \setminus U(A)\) and \(a_V \in V(x_V)\). Let \(a \in A\) be a cluster point of the net \((a_V)_{V \in \mathcal{U}}\). Since \(U\) is locally symmetric, there exists \(V \in \mathcal{U}\) with \(V^{-1}(V(a)) \subseteq U(a)\). Let \(aw\) with \(W \subseteq V\) such that \(aw \in V(a)\). Then \(x_W \in W^{-1}(aw) \subseteq V^{-1}(V(a)) \subseteq U(a)\), a contradiction. Therefore there exists \(V \in \mathcal{U}\) with \(V^{-1}(A) \subseteq U(A)\), and hence \((X, \mathcal{U})\) is compact symmetric by Proposition 4.3. \(\square\)

Since each compact Hausdorff quasi-uniform space is locally symmetric and local symmetry is a hereditary property we have the following.

Corollary 4.10. Each Hausdorff *-compactifiable quasi-uniform space is compact symmetric.

Remark 4.11. It is not difficult to show that each compact symmetric regular quasi-metric space is locally symmetric, and hence it is metrizable by Theorem 2.32 of [7].

In [2] it was introduced the notion of a compactly symmetric quasi-uniform space in order to study completeness properties of the Bourbaki quasi-uniformity. It is easy to see that each compactly symmetric quasi-uniform space is compact symmetric. However, Example 2.3 and Proposition 2.2 of [2] show that there exists a compact Hausdorff quasi-metric space, hence compact symmetric, that is not compactly symmetric.

We conclude this section with an example of a totally bounded compact symmetric (perfectly normal) Hausdorff quasi-uniform space that is not locally symmetric.

Example 4.12. Let \(X = \{0, 0\} \cup (\bigcup_{i \in \mathbb{N}} X_i\), where \(X_i = \{\frac{1}{2^i}, \frac{1}{2^i}; k \in \mathbb{N}\}\).

Let \(P\) be all points \(p\) of the form \(p = ((j_1, \ldots, j_n), ((F_i)_{i \in \mathbb{N}}))\) where \(n \in \mathbb{N}\) and \(F_i\) is a finite subset of \(\mathbb{N}\) for all \(i \in \mathbb{N}\).

For each \(p \in P\) define:

- \(U_p((0, 0)) = X \setminus ((X_{j_1} \cup \cdots \cup X_{j_n}) \cup \{(\frac{1}{2^i}, \frac{1}{2^i}; i \neq j_1, \ldots, j_n; k \in F_i\})\),
- \(U_p((\frac{1}{2^i}, \frac{1}{2^i})) = U_p((0, 0)) \setminus \{(0, 0)\}\) if \(k \neq j_1, \ldots, j_n\), and \(i \neq F_k\).
For each $k \in F_k$, let $U_p^i = \{ (x, y) \in X \times X : d(x, y) < 1/2k \}$. Then U_p^i is a quasi-uniform base for X, and X is a compact subset of X. Therefore, X is hereditarily precompact.

Next we show that each compact subset of X is finite. Let A be a compact subset of X. If there exists an infinite number of k's such that $x_k \in A \cap X_k$, then the sequence $(x_k)_{k \in \mathbb{N}}$ converges to an adherent point, and by compactness of A, $A \cap X_k \neq \emptyset$ only for a finite number of k's. Similarly, $A \cap X_k$ must be finite, and hence A is finite. Since (X, U) is point symmetric, we conclude that (X, U) is compact symmetric.

Finally, we note that (X, U) is totally bounded and thus $(K_0(X), U_H)$ is \ast-compactifiable by Theorem 4.7.

Hence, this example shows that "compact symmetric" cannot be replaced by "locally symmetric" in the statement of Theorem 4.7.

5. \ast-compactification of $(F_0(X), U_H)$

We conclude the paper by studying the \ast-compactification of $(F_0(X), U_H)$.

Theorem 5.1. Let (X, U) be a quasi-uniform space. Then the following statements are equivalent.

1. $(F_0(X), U_H)$ is (Hausdorff) \ast-compactifiable and the \ast-compactification $(G(F_0(X)), U_H)$ is quasi-isomorphic to $(C_0(G(X)), U_H)$.
2. $(F_0(X), U_H)$ is (Hausdorff) \ast-compactifiable.
3. (X, U) is (Hausdorff) \ast-compactifiable and U^{-1} is hereditarily precompact.

Proof. (1) \Rightarrow (2). Obvious.

(2) \Rightarrow (3). Suppose that $(F_0(X), U_H)$ is \ast-compactifiable. By Proposition 2.7, (X, U) is \ast-compactifiable and U^{-1} is hereditarily precompact.

Now suppose that, in addition, $(G(F_0(X)), U_H)$ is Hausdorff. Since by Proposition 2.10, $(C_0(G(X)), U_H)$ is a compact T_1 quasi-uniform space such that $F_0(X)$ is dense in $(C_0(G(X)), U_H)$, it follows that $(G(F_0(X)), U_H)$ is quasi-isomorphic to $(C_0(G(X)), U_H)$. Hence $(C_0(G(X)), U_H)$, and thus $(G(X), U_H)$, is Hausdorff.
(3) \Rightarrow (1). Suppose that (X, \mathcal{U}) is *-compactifiable and \mathcal{U}^{-1} is hereditarily precompact. From Proposition 2.10 it follows that $(F_0(X), \mathcal{U}_H)$ is *-compactifiable and $(C_0(G(X)), \tilde{\mathcal{U}}_H)$ is quasi-isomorphic to the *-compactification of $(F_0(X), \mathcal{U}_H)$.

Finally, suppose that, in addition, $(G(X), \tilde{\mathcal{U}})$ is Hausdorff. Thus $(C_0(G(X)), \tilde{\mathcal{U}}_H)$ is Hausdorff by Lemma 3.7. We conclude that then $(F_0(X), \mathcal{U}_H)$ is Hausdorff *-compactifiable. \blacksquare

Corollary 5.2. Let (X, \mathcal{U}) be a compact T_1 quasi-uniform space with \mathcal{U}^{-1} hereditarily precompact. Then $(F_0(X), \mathcal{U}_H)$ is *-compactifiable and its *-compactification is quasi-isomorphic to $(C_0(X), \mathcal{U}_H)$.

References