the remaining 27% who never returned to pre-hospital ESA dose, an additional 266K U of epoetin were utilized.

The majority of hospitalizations (~2/3) had considerable post-hospital Hb drops (mean > 1 g/dL), with > 50% permanently reduced. ~1.5 months were needed to recover Hb, with elevated ESA doses for > 2 months. ESA dose was permanently elevated in 27% of hospitalizations that recovered Hb. Strategies to address post-hospital anemia may mitigate the protracted recovery time and increased ESA use.

Many previous studies of renal transplant recipients have demonstrated that weight gain post kidney transplantation (KT) is frequent and may predispose to co morbidity. The aim of this prospective study was to evaluate changes in body composition (BC) during the first two years post KT and to determine predictors of these changes, with a special focus on pre KT parameters.

When listed for a KT, 41 patients (14 women - 27 men) were included between 2007 and 2008 in a longitudinal study of evaluation of BC. Fat Free Mass (FFM) and Fat Mass (FM) were estimated by Dual-energy X-ray absorptiometry. At the same time, Extracellular Water (ECW) was measured by bio impedance spectroscopy. Celluar Active Mass (CAM) was defined as FFM – ECW. Energy and protein intake (EI – PI), physical activity (PA), biochemical and nutritional parameters were also recorded. Patients were evaluated every 6 months before KT, and 15 days, 1, 3, 6, 12 and 24 months after KT. During the first 2 years post KT, FM increase 0.09 kg/month (p<0.007), FFM by 0.06/kg/month (p<0.0556) and CAM by 0.04/kg/month (p=0.04). Univariate analysis showed that during the first 30 days post KT, FFM is strongly influenced by male gender, higher BMI, higher PIBefore KT, higher PA before KT and lower CRP post KT. During the first 2 years, FFM evolution is associated with male gender, higher EI and PI post KT. Early post KT evolution of FFM is related to high BMI and high cumulative dose of corticosteroids. Long term evolution is associated with EI and use of corticosteroids. Pre KT EI and PI, as well as male gender and BMI influenced significantly the early evolution of CAM. In adjusted analyses, BMI and gender remained independently associated with FMM and CAM. Furthermore, higher FFM level was associated with higher EI.

We confirm that successful KT is associated with BC modifications; which can be detected very early post KT. These very early changes are strongly associated with energy, protein intake and physical activity level pre KT. Management of post KT weight gain should be anticipated with a special care on nutritional intake and physical activity in patients waiting kidney transplantation.

http://dx.doi.org/10.1016/j.krcp.2012.04.632

306 ESTIMATION OF PEGINESATIDE UTILIZATION REQUIRES PATIENT-LEVEL DATA
Alex Yang, Will Harrison
ZS Associates, San Francisco, CA
Post hoc analysis of two Phase 3 pivotal trials (EMERALD 1,2) of peginesatide vs epoetin for anemia due to chronic kidney disease in hemodialysis patients on stable epoetin showed that for increasing doses of baseline epoetin, relatively less peginesatide was needed to achieve similar Hb levels (Fishbane et al, ASN 2011). Estimation of peginesatide should therefore be dictated by underlying epoetin dose distribution rather than total volume or mean epoetin dose in a population. This analysis compared representing relative differences of up to 35% (Figure) to monthly peginesatide dose for each facility.

Due to the nonlinear dose relationship between peginesatide and epoetin, facilities with similar epoetin use (same median epoetin dose) to monthly peginesatide dose for each facility.

In contrast, calculations based on mean epoetin doses resulted in 41-184% overestimation of peginesatide use. Dependent models were developed for baseline epoetin, cumulative dose of corticosteroids. Long term evolution is associated with EI and use of corticosteroids. Pre KT EI and PI, as well as male gender and BMI influenced significantly the early evolution of CAM. In adjusted analyses, BMI and gender remained independently associated with FMM and CAM. Furthermore, higher FFM level was associated with higher EI.

We confirm that successful KT is associated with BC modifications; which can be detected very early post KT. These very early changes are strongly associated with energy, protein intake and physical activity level pre KT. Management of post KT weight gain should be anticipated with a special care on nutritional intake and physical activity in patients waiting kidney transplantation.

http://dx.doi.org/10.1016/j.krcp.2012.04.631

307 EARLY AND LONG TERM BODY COMPOSITION EVOLUTION POST KIDNEY TRANSPLANTATION INFLUENCED BY THE PRE TRANSPLANT NUTRITIONAL CHARACTERISTICS: RESULTS OF THE CORPOS STUDY
Karine Moreau, Aurelie Desseix, Thomas Bachelet, Lionel Couzi, Helene Savel, Rodolphe Thiebaut, Philippe Chauveau
Renal Transplant Unit and USMR, Pellegrin Hospital, Bordeaux, France

I/3 months were needed to recover Hb, with elevated ESA doses for > 2 months. ESA dose was permanently elevated in 27% of hospitalizations that recovered Hb. Strategies to address post-hospital anemia may mitigate the protracted recovery time and increased ESA use.

Many previous studies of renal transplant recipients have demonstrated that weight gain post kidney transplantation (KT) is frequent and may predispose to co morbidity. The aim of this prospective study was to evaluate changes in body composition (BC) during the first two years post KT and to determine predictors of these changes, with a special focus on pre KT parameters.

When listed for a KT, 41 patients (14 women - 27 men) were included between 2007 and 2008 in a longitudinal study of evaluation of BC. Fat Free Mass (FFM) and Fat Mass (FM) were estimated by Dual-energy X-ray absorptiometry. At the same time, Extracellular Water (ECW) was measured by bio impedance spectroscopy. Celluar Active Mass (CAM) was defined as FFM – ECW. Energy and protein intake (EI – PI), physical activity (PA), biochemical and nutritional parameters were also recorded. Patients were evaluated every 6 months before KT, and 15 days, 1, 3, 6, 12 and 24 months after KT. During the first 2 years post KT, FM increase 0.09 kg/month (p<0.007), FFM by 0.06/kg/month (p<0.0556) and CAM by 0.04/kg/month (p=0.04). Univariate analysis showed that during the first 30 days post KT, FFM is strongly influenced by male gender, higher BMI, higher PIBefore KT, higher PA before KT and lower CRP post KT. During the first 2 years, FFM evolution is associated with male gender, higher EI and PI post KT. Early post KT evolution of FFM is related to high BMI and high cumulative dose of corticosteroids. Long term evolution is associated with EI and use of corticosteroids. Pre KT EI and PI, as well as male gender and BMI influenced significantly the early evolution of CAM. In adjusted analyses, BMI and gender remained independently associated with FMM and CAM. Furthermore, higher FFM level was associated with higher EI.

We confirm that successful KT is associated with BC modifications; which can be detected very early post KT. These very early changes are strongly associated with energy, protein intake and physical activity level pre KT. Management of post KT weight gain should be anticipated with a special care on nutritional intake and physical activity in patients waiting kidney transplantation.

http://dx.doi.org/10.1016/j.krcp.2012.04.632