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Abstract A numerical investigation on jet interaction in supersonic laminar flow with a compres-

sion ramp is performed utilizing the AUSMDV scheme and a parallel solver. Several parameters

dominating the interference flowfield are studied after defining the relative increment of normal

force and the jet amplification factor as the evaluation criterion of jet control performance. The

computational results show that most features of the interaction flowfield between the transverse

jet and the ramp are similar to those between a jet and a flat plate, except that the flow structures

are more complicated and the low-pressure region behind the jet is less extensive. The relative force

increment and the jet amplification factor both increase with the distance between the jet and the

ramp shortening till quintuple jet diameters. Inconspicuous difference is observed between the

jet-before-ramp and jet-on-ramp cases. The variation of the injection angle changes the extent of

the separation region, the plateau pressure, and the peak pressure near the jet. In the present com-

putational conditions, 120� is indicated relatively optimal among all the injection angles studied.

For cold gas simulations, although little influence of the jet temperature on the pressure distribution

near the jet is observed under the computation model and the flow parameters studied, reducing jet

temperature somehow benefits the improvement of the normal force and the jet efficiency. When the

pressure ratio of jet to freestream is fixed, the relative force increment varies little when increasing

the freestream Mach number, while the jet amplification factor increases.
ª 2013 Production and hosting by Elsevier Ltd. on behalf of CSAA & BUAA.

Open access under CC BY-NC-ND license.
1. Introduction

Aerodynamic control surfaces and transverse jets are two ma-
jor strategies of attitude control for modern high-speed vehi-
cles.1 For instance, the advanced hypersonic glider vehicle
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HTV-2 takes use of both body flaps and reaction control sys-
tem (RCS). Well-designed control surfaces are employed

widely on airplanes and tactical missiles due to their high effi-
ciency at low and modest altitudes. However, conventional
control surfaces are ineffective for an extremely fast-moving

vehicle maneuvering at high altitudes where dynamic pressures
are rather low. Instead, transverse jets are ideal for enhancing
the control performance of such an advanced concept because

of their rapid response time as well as their ability to perform
over a wide range of speeds and altitudes.2,3 Furthermore, a
combination of both aerodynamic surfaces and transverse jets
satisfies all the control needs at various conditions,4 making it

the most potential scheme for future vehicle control.
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The study of transverse jet control has received significant
amount of interests for years owing to its complicated flow fea-
tures, which consist of shock waves, boundary layer separa-

tions, shear layers, vortical structures, and complex
interactions between them.5–7 The surface pressure induced
by the interference flowfield leads to an alteration in effective

jet thrust force and, consequently, in control performance.
Although a great deal of research has been performed,8 there
remain problems unresolved both in the context of flow mech-

anisms and engineering applications.
The flow feature of a jet injected into a cross flow is con-

trolled by numerous parameters, such as the location of the
jet, the flow conditions imposed on the jet and the freestream,

and the geometric characteristics. Letko9 investigated experi-
mentally the effects of sonic and supersonic jets injected nor-
mally into a turbulent boundary layer over a flat plate under

different pressure ratios. The freestream Mach number was
set to be 4.5. Following the surface pressure mappings on
the flat plate and the computed thrust augmentation, he

claimed that a supersonic nozzle was more effective than a so-
nic nozzle as a control thruster, and an amount of 12% in-
crease in effectiveness, after cutting the zone of negative

pressure coefficient Cp behind the injector, could be attained.
The experimental work conducted by Zukoski and Spaid10 em-
ployed nitrogen, helium, and argon as working media injected
normally with sonic speed into the boundary layer over a flat

plate. The tests were run under different freestream Mach
numbers, states of the boundary layer, pressure ratios, as well
as injector diameters. An analytical model was developed by

correlating those flow parameters with a dimensionless scaling
parameter characterizing the forces acting on the flat plate.
The model was partially successful, since the proposed correla-

tion could work well only for a very restricted number of cases
in certain regions and in turbulent boundary layers.

Clark and Chan11 used the two-dimensional data provided

by Aso et al.12 to validate their numerical code, and then per-
formed a parametric study on the influences of the injection
angle to the wall pressure distribution and the normal force.
Their results showed that, canting the injector 60� forward,

i.e., against the freestream, would produce a normal force of
15% greater than that produced by a normal injector with
the same jet mass flow rate. Byun et al.13 attempted to utilize

a three-dimensional ramp located downstream from an injec-
tor to alleviate the undesirable nose-down pitching moment
typical in a jet interaction problem. The tests were conducted

at a freestream Mach number of 4 with a sonic jet at a stagna-
tion pressure ratio of 532. They finally concluded that the
pitching moment coefficient of the jet-plus-ramp case was re-
duced by almost 70% with respect to the jet-only case without

a net force loss. The advantage of this configuration exposes a
promising technique for improving flight control perfor-
mances. Nevertheless, a comprehensive investigation involving

the effects of jet locations and flow parameters remains to be
done so as to optimize the design and obtain the maximum
control efficiency.

Most experimental studies are for turbulent jet interaction
problems and corresponding computational simulations em-
ploy various turbulence models from algebraic models to the

Reynolds stress models. Inadequate turbulence modeling has
often been held responsible for disagreement between experi-
ments and computations. While in theory higher-order turbu-
lence modeling should perform better than lower-order one,
some research has reported inconsistent results. For example,
Clark and Chan14 observed no improvement in using the k-e
model as compared with the Baldwin–Lomax algebraic model

but significant changes of results against streamwise grid reso-
lution. Viti et al.15 tested the Spalart–Allmaras model, the Wil-
cox k-x model, and the Reynolds stress model in the Mach 4

flowfield created by a ramp with sonic transverse injection.
They found that the Reynolds stress computations were unable
to obtain a converged solution, while the other two models

presented differences in the separation region ahead of the
injector. Considering the controversial aspects in turbulence
modeling for this complicated flow problem, it is desirable to
investigate the numerical accuracy of computational simula-

tion of jet interaction to exclude the influence of numerical dis-
sipation on the judgment of different turbulence models.

The purpose of this paper is to investigate the interaction

phenomenon between a transverse jet and the supersonic flow-
field around a control surface, in order to provide a prelimin-
ary understanding of an integrated attitude control technique

based on the coupled reaction control and aerodynamic sur-
face control concept. Laminar calculations are chosen to prove
the capability of the numerical approach to accurately describe

the jet interaction flowfield without any added computational
burden and added complication of a turbulence model. In spite
of the low possibility of encountering a laminar boundary
layer in practical applications of jet thrusters, laminar condi-

tions are reasonable when a vehicle is flying at high altitudes
where the atmospheric density is low enough to reduce the
Reynolds number below transition. The problem of a deflected

aero-control surface is simplified and simulated as a three-
dimensional flow over a compression ramp formed by the
intersection of a flat plate and a wedge in the present study.

The transverse jet can be located either upstream from the
ramp or on the ramp. A numerical code based on the AUS-
MDV scheme with a parallel computing capability is devel-

oped and validated using a jet/flat-plate interaction case,
whose experimental data readily exist. Based on the criterion
for evaluating jet control effectiveness, the prominent features
of the jet/ramp interaction flowfield are then studied systemat-

ically, and parameters governing the features are identified.

2. Numerical method

Laminar calculations are chosen in the present simulation for
the reasons aforementioned. The Navier–Stokes equations
neglecting body forces can be written in a conservational form

as follows:
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where q, p and T denote flow density, pressure, and tempera-
ture, respectively; uj is the velocity component along the Carte-

sian coordinate xj; E and H are the total energy and the total
enthalpy per unit volume, respectively; sij is the molecular vis-
cous stress tensor; k is the heat transfer coefficient, and dij is
the Kronecker delta. The equation of state of perfect gas is
introduced to close the system.
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The convective flux vectors in Eq. (1) are computed using
the AUSMDV scheme in conjunction with the MUSCL proce-
dure to achieve second-order accuracy. The viscous terms are

discretized using the standard second-order central difference
scheme. The implicit LU-SGS (Lower–Upper Symmetric
Gauss–Seidel) method is employed for time integration. The

boundary conditions are set as follows: all the dependent vari-
ables are assigned their respective freestream values on the en-
try plane, and are extrapolated from interior flowfield on the

top, the side, and the exit planes; non-slip and adiabatic wall
conditions for the velocity and temperature fields, respectively,
are applied to the solid surface; the parameters of jet exit,
namely, the Mach number, the injection angle, the static tem-

perature, and the jet-to-freestream pressure ratio are directly
imposed at the cells simulating the circular injector. A parallel
computing code is constructed to accomplish the simulation on

multi-block grids. At the interface of each block, data is trans-
ferred using an message passing interface (MPI) protocol. The
details of the numerical method with its additional applica-

tions are available in Ref. 16.

3. Code validation

3.1. Case description

The numerical code developed is validated through the classic
experiment of a sonic circular jet on a flat plate in supersonic
flows performed by Cubbison et al.17 The numerical results
(a) Near the injector

Fig. 2 Global grid and det

Fig. 1 Schematic layout of experimental setup.

Table 1 Flow conditions for Cubbison’s test case.

Flow conditions Ma p (kPa) T (K)

Freestream 2.92 1.05 107.6

Normal jet 1.0 357.4 280
computed by the present code are also compared with those
computed by Viti.18 A schematic layout of the experimental
setup is shown in Fig. 1, together with the characteristic

dimensions of both the flat plate and the injector. The distance
from the leading edge to the center of the injector, L0, was ta-
ken as a reference length for characterizing the dimensionless

scales of the interacting flowfield. In the present case, the ratio
of the reference length to the injector diameter d was fixed to
be L0/d= 40. Air was used as the working gas in the experi-

ment and the boundary layer state was reported to be laminar.
Flow conditions for both the freestream and the jet are listed in
Table 1.

Since the flowfield is symmetric about the xOy plane, only

half the model is simulated in the present case. A structural
grid system composed of seven blocks and 278833 points in to-
tal is utilized in the computations. Fig. 2 displays the global

grid topology and the details of grid points clustering near
the injector and the wall.

3.2. Computational results

The Mach number contours on the plane of symmetry de-
picted in Fig. 3 reveal globally the prominent features in the

flowfield of the jet/plate interaction. When a jet is injected
through a circular sonic nozzle into the supersonic freestream
at a much higher static pressure, the gas immediately forms a
Prandtl–Meyer expansion fan and is bended downstream by

the incoming cross flow. The over-expanded gas is recom-
pressed through a barrel shock wave and a Mach disk, and
trails in the jet plume far downstream from the injection loca-

tion. The barrel shock acts as a blunt obstacle to the free-
stream. A region of separated flow is created by the pressure
rise as the cross flow stagnates ahead of the jet, where it in-

duces a separation shock. An extensive low-pressure, separated
region also forms in the jet wake, as shown in Fig. 4. The sep-
aration and reattachment lines are the tracks showing the exis-

tences of the horse-shoe vortex and secondary separation
vortex in the recirculation zone upstream from the jet.

Fig. 5 presents the comparison of pressure coefficient distri-
butions on the flat plate surface given by a previous experi-

ment17 (upper half) and the present computation (bottom
half), which shows an overall good agreement. The distribu-
tion of Cp along the centerline is compared in Fig. 6 with the

experiment data as well as the numerical results given by Viti.18
(b) Near the wall

ails around the injector.



Fig. 3 Mach number contours on the symmetric plane for

validation case.

Fig. 4 Separation and reattachment lines superimposed on

pressure contours of the plate surface.

Fig. 5 Comparison of pressure coefficient contour lines on the

flat plate surface for validation case.

Fig. 6 Comparison of pressure coefficient distributions along the

centerline for validation case.
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It is noticeable that the present results agree well with Viti’s
computational results, whereas both underpredict the pressure
close to the jet. The discrepancy is probably caused by compu-

tation model, grid quality, or experimental uncertainty. Viti
attributed it to the unsatisfactory grid cells used in the separa-
tion region, and introduced a more complex grid topology.18

Due to the complexity of jet interaction flowfield, more grid
cells are needed in the separation region to obtain a precise
simulation. Considering that the total number of grid points
in the validation computation is just 1/3 of that adopted by
Viti,18 the present code appears more capable of capturing
jet interaction flow structures.

In summary, the above comparisons and analysis demon-
strate that the developed numerical method can well capture
both shock structures and wall pressure distributions of a jet
interaction flowfield. This ensures that reliable conclusions

can be drawn in the following research on jet control
performance.

4. Evaluation criterion

The jet amplification factor K has been widely adopted to eval-
uate the force augmentation of the interaction between the

transverse jet and the cross flow. However, its definition was
not unified in different work. Spaid and Cassel19 defined the
amplification factor as KF = (Fi + Tj)/TjSV, where Fi and Tj

are the interaction force and the jet thrust, respectively, and
TjSV is the vacuum thrust of a sonic jet having the same stag-
nation conditions and mass flow rate as an actual jet. Mostly,

Tj was used directly as the denominator to give another expres-
sion as KF = (Tj + DTj)/Tj = (Fjeton � Fjetoff)/Tj,

20 where Fje-

ton and Fjetoff represented the aerodynamic force with and
without the jet, respectively, and DTj is the induced force,

respectively. The same value could be obtained using aerody-
namic coefficients instead. However, Cheng et al.21,22 named
it the jet efficiency, and defined their own augmentation factor

as KCn = Cnwj/(Cnw0 + Cn0j), where the subscripts wj, w0, and
0j denote the cases of wind-plus-jet, wind-only, and jet-only,
respectively.

In practical applications, the amount of the induced force
added to the initial case, as well as the ratio of the induced
force to direct jet thrust, are two key design parameters. To
make the procedure convenient, the former is called the rela-

tive force increment denoted by V, and the latter the jet ampli-
fication factor denoted by K in this study. The two parameters
together can evaluate comprehensively the performances of the

jet/cross flow interaction. Their expressions are written in
dimensionless forms as follows:

V ¼ Cnwj � Cnw0

Cnw0

ð2Þ

K ¼ Cnwj � Cnw0

Tj=ðq1SÞ
ð3Þ

where Cnwj and Cnw0 are the normal force coefficients for the
cases of wind-plus-jet and wind-only, respectively; q1 and S



Table 2 Flow conditions for jet/ramp interaction.

Flow conditions Ma p (kPa) T (K)

Freestream 4.0 0.575 236.5

Jet 1.0 28.75 236.5

(a)  Jet/ramp case

(b)  Jet/plate case

Fig. 8 Comparison of Mach number contours on the symmetric

plane between jet/ramp and jet/plate cases.

Fig. 9 Comparison of pressure coefficient along the centerline

between jet/ramp and jet/plate cases.
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the dynamic pressure and the reference area, respectively. Tj is

calculated using jet exit conditions as follows:

Tj ¼ mjvj þ ðpj � p1ÞAj ð4Þ

where mj, vj, and Aj are the jet mass flow rate, jet exit velocity,
and jet exit area, respectively; pj and p1 are the jet exit pressure
and freestream pressure, respectively.

For different geometric configurations, V and K change
with the jet strength, which can usually be predicted by pres-
sure ratio, mass flow ratio, momentum ratio, etc. In this work,

the pressure ratio PR = pj/p1 is preferred, since the gas spe-
cific heat ratio, the jet exit Mach number, and the nozzle diam-
eter all remain constant.

5. Jet interaction with a ramp

The flowfield over a ramp formed by an intersection of a flat

plate with a wedge, usually referred as a compression corner,
is a simplified model representing the flow around a deflected
aerodynamic control surface. When a transverse jet is intro-
duced, the interaction between them causes the initial pressure

distributions change, leading to a variation of overall forces
loaded on the surface. A parametric study is performed on this
model by varying the location of the jet, the injection angle, the

jet temperature, and the freestream Mach number.

5.1. Comparison between jet/ramp and jet/plate cases

The configuration is sketched in Fig. 7 together with character-
istic dimensions denoted. The injector has a diameter of
d= 1 mm. The distance from the jet exit to the hinge line of

the ramp is L = 5d. The ramp with a length of Lr = 20d is de-
flected at an angel of b = 10�. The atmospheric conditions at
an altitude of 35 km are chosen for the incoming flow. The
pressure ratio of the normal jet to the freestream is

PR = 50. The flow conditions of both the freestream and the
jet are listed in Table 2. A half model in z direction is also cho-
sen in the present simulation due to the flowfield being sym-

metric about the xOy plane. The grid generation follows the
same approach as that in Section 3.1. The model of the jet/
plate interaction case is easily obtained when b = 0�, while
other flow parameters remain the same.

Mach number contours on the symmetric planes of both
cases are compared in Fig. 8(a) and (b). Both cases show similar
flow features characterized by barrel shock, Mach disk, lambda

shock, and separation region. However, the shape of the shock
structure for the jet/ramp case differs from that for the jet/plate
case, demonstrating that a more complicated interaction occurs

between the ramp and the shock. The characteristics can also be
observed from Cp distributions in Fig. 9, where along the center-
Fig. 7 Configuration for a jet/ramp interaction case.
line, the magnitude of the high pressure upstream from the jet

for the jet/ramp case shows slightly greater than that for the
jet/plate case, while the low pressure downstream from the jet
becomes substantially higher. Fig. 10 helps in understanding

the pressure distributions over the whole surface. The high-pres-
sure region moves more upstream from the jet in the jet/ramp
case (upper half), meanwhile the extent of the low-pressure re-

gion downstream from the jet in the jet/ramp case is much smal-
ler than that in the jet/plate case (lower half).



(a) Jet before ramp at L=2d

(b) Jet before ramp at L=5d

(c) Jet before ramp at L=10d
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5.2. Influences of jet location

5.2.1. Problem description

The configuration for the present test case follows the model

shown in Fig. 7. All parameters are chosen to be the same as
those considered in the previous test case, except for L. Here,
the computations are performed for different L, i.e., the circu-
lar jet is placed at the location of L = 2d, 5d, and 10d before

the ramp, respectively, and additionally at L = 5d on the
ramp. Parametric study is also performed for different pressure
ratios to observe the variations of the relative force increment

and the jet amplification factor with respect to different as-
signed conditions.

5.2.2. Results and analysis

Mach number contours on the planes of symmetry and
pressure coefficient contours on the solid surface for different
locations of the jet at a pressure ratio of 100 are compared in

Figs. 11 and 12, respectively. As seen in the plots, the bulk
characteristics of the interaction flowfield, such as Mach disk,
bow shock, and separation shock remain the same as in the

previous cases. For the cases of jet-before-ramp, the separated
region extends more upstream as L increases, while the low-
pressure region aft of the jet extends more downstream. Com-
paring Fig. 11(b) with Fig. 11(d), and Fig. 12(b) with

Fig. 12(d), it is evident that the onset locations of the separated
region in the x direction are almost the same for the cases of
jet-before-ramp and jet-on-ramp, despite their shock strengths

and separation lengths are different.
The variation of relative force increments, with given pres-

sure ratios at different locations before the ramp, is depicted in

Fig. 13. In all cases, V increases nonlinearly with increasing
PR, but more rapidly with lower pressure ratios than with
the higher ones. In addition, the distribution of V for

L = 10d lies beneath those of the remaining two cases which
are close to each other. The decreasing of the jet amplification
factor illustrated in Fig. 14 possesses a similar trend, i.e., the
whole level of K for L = 10d falls under those of the remaining

cases, whose differences are negligible.
Figs. 15 and 16 compare, respectively, the relative force

increment and the jet amplification factor of the jet-on-ramp
Fig. 10 Comparison of pressure coefficient contours on the wall

between jet/ramp and jet/plate cases.

(d) Jet on ramp at L=5d

Fig. 11 Mach number contours on the symmetric planes at

PR = 100.
case with those of the jet-before-ramp case. Their variations
with respect to the pressure ratios share a similar trend. For
the former case, both parameters are smaller when pressure ra-

tio is less than 100, whereafter they exceed their latter counter-
parts. However, the differences between these two cases are not
significant enough to distinguish them apart.

In summary, both the relative force increment and the jet
amplification factor increase as the distance between the jet
exit and the hinge line of the ramp is shortened till five times

of the injector diameter, and then keep nearly unchanged.
Within parametric ranges considered in the present para-

metric study, minor differences are observed between the cases
of jet-on-ramp and jet-before-ramp. As a consequence, it is



(a) Jet before ramp at L=2d

(b) Jet before ramp at L=5d

(c) Jet before ramp at L=10d

(d) Jet on ramp at L=5d

Fig. 12 Pressure coefficient contours on the walls at PR = 100.

Fig. 13 Variations of relative force increments with given

pressure ratios for different jet locations before the ramp.

ig. 14 Variations of jet amplification factor with given pressure

atios for different jet locations before the ramp.
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Fig. 15 Comparison of relative force increments between jet-

before-ramp and jet-on-ramp cases.

Fig. 16 Comparison of jet amplification factor between jet-

before-ramp and jet-on-ramp cases.
preferred in the following computations to utilize the model

with the jet located at L = 5d before the ramp.

5.3. Influences of jet injection angle

5.3.1. Problem description

The influences of the jet injection angle are studied on the
jet-before-ramp configuration, as aforementioned, with all



Fig. 19 Comparison of jet amplification factor with pressure

ratios for different injection angles.
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geometric and flow conditions remaining the same as in Sec-
tion 5.1. The injection angle is defined as the angle of the axis
of the jet exit inclining from the direction of the freestream, de-

picted in Fig. 7. It is precisely, in the current coordinate sys-
tem, the supplementary angle of that defined in Ref. 11. Five
injection angles, i.e., 60�, 90�, 105�, 120�, and 135�, together
with different pressure ratios are computed.

In Eq. (3), the denominator representing the jet thrust is
calculated for the injection normal to the exit cross section.

Under the same exit Mach number and pressure ratio, the
change of the injection angle leads to an alteration on vector-
ing thrust. Hence, it is more reasonable to take the jet thrust in
the injection angle of 90� as the baseline for predicting the jet

amplification factor. The values of K in this section are deter-
mined under such considerations.

5.3.2. Results and analysis

Fig. 17 depicts the pressure coefficient distributions along the
centerlines for the five injection angles at a pressure ratio of
100. The separation region ahead of the jet extends progres-

sively upstream, and the peak of the pressure distribution also
rises with the injection angle ranging from 60� to 120�. Then,
the peak of the pressure distribution declines, e.g., the value

for the injection angle of 135� drops even lower than the one
for the injection angle of 105�. The tendency on achieving a
maximum interaction mechanism in the vicinity of 120� seems

in consistent with the existing observations on jet/plate interac-
tion cases given in Refs. 11,23.
Fig. 17 Comparison of pressure coefficient along the centerlines

for different injection angles at PR = 100.

Fig. 18 Comparison of relative force increment with pressure

ratios for different injection angles.

Fig. 20 Variations of relative force increment and jet amplifica-

tion factor with injection angles at PR = 100.
Figs. 18 and 19 compare the variations of the relative force
increment and the jet amplification factor under various pres-

sure ratios, respectively. The relative force increments increase
while the jet amplification factors decrease with increasing PR
for all the five injection angles. At a fixed pressure ratio, both
parameters increase gradually with the injection angle varying

from 60� to 120�, and then decrease. The trend can be more
clearly seen in Fig. 20, which gives the variations of the relative
force increment and the jet amplification factor with jet injec-

tion angles at a pressure ratio of 100.
The analysis presented above indicates that 120� is the opti-

mal injection angle to accomplish the most effective jet/ramp

interactions. This injection angle can thus be selected as the
thrust vectoring angle for controlling the aerodynamic forces
of compression ramps within the parametric ranges specified

in the present parametric study.

5.4. Influences of jet temperature

5.4.1. Problem description

There are two types of commonly employed reaction control
systems, namely, one with hot gas created by the combustion

of propellant as the working medium, and the other with com-
pressed cold gas. The present study focuses on the latter, with-
out considering high-temperature effects or multi-species

flows. The computational model and flow parameters chosen
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in the present test case are still the same as those chosen in Sec-
tion 5.1, except for the jet exit temperature ranging from 80 K
to 300 K.

5.4.2. Results and analysis

Fig. 21 exhibits the pressure coefficients along the centerlines
for different jet temperatures. No obvious differences in the

distributions ahead of the jet are observed by increasing the
jet exit temperature. Although Cp behind the jet changes nota-
Fig. 21 Comparison of pressure coefficient along the centerlines

for different jet temperatures at PR = 100.

Fig. 22 Comparison of relative force increment with pressure

ratios for different jet temperatures.

Fig. 23 Comparison of jet amplification factor with pressure

ratios for different jet temperatures.

Fig. 24 Variations of relative force increment and jet amplifica-

tion factor with jet temperatures at PR = 100.
bly, no inherent patterns are observed. As the jet pressure ratio
being raised, the relative force increment shown in Fig. 22 in-
creases, while the jet amplification factor shown in Fig. 23 de-

creases. The results show a similar trend to those given in
Sections 5.1 and 5.2. This is easy to understand for the varia-
tion in the jet temperature in cold gas simulations is just the

variation in the mass flow rate which in essential is the reason
for results of the pressure variation.

As shown in Fig. 24, both parameters decrease with increas-

ing jet temperature when the jet pressure ratio is fixed at
PR = 100, indicating that low jet temperature may benefit
the improvement of the jet control effectiveness. However,
the temperature must not be too low to let a phase change take

place in the jet gas, which may lead to alterations of flow char-
acteristics. Apparently, further study on the influences of the
jet temperature on the reaction control efficiency is needed.

5.5. Influences of freestream Mach number

5.5.1. Problem description

Influences of the freestream Mach number on the interaction
flowfield are discussed in this section. The jet-before-ramp

model shown in Fig. 7 is considered, together with the flow
parameters specified in Section 5.1. A parametric study is con-
ducted for Mach numbers ranging from 2 to 6.

Since the freestream Mach number Ma1 is contained in the

expression of the surface pressure coefficient Cp, in order to
investigate the influences of the Mach number to the interac-
tion flowfield, another dimensionless parameter p/p1 is utilized

to replace Cp for representing the pressure distribution in this
section. Here, p1 is the wall pressure of a flat plate sharing the
same geometric characteristics as the ramp model for a speci-

fied Ma1.

5.5.2. Results and analysis

Fig. 25 shows the centerline pressure distributions for

Ma1= 2, 3, 4, 5, and 6 at PR = 50. All the upstream pressure
distributions exhibit similar patterns, consisting of a pressure
plateau, a peak pressure followed by an expansion fan, then

a small pressure rise, and finally a thin region of over-expan-
sion. There are two significant flow developments observed
in the parametric computations. As Ma1 increases, the peak
pressure increases and moves downstream. Additionally, the



Fig. 25 Comparison of Cp along the centerlines for different

freestream Mach numbers at PR = 50.
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initial pressure rise leading to the pressure plateau moves
downstream as Ma1 increases, but settles to a constant loca-

tion for Ma1 greater than 3.0. The characteristic is analogous
to the hypersonic limit seen in detached shocks on blunted
bodies.24 The downstream pressure distributions exhibit simi-

lar characteristics as well. An initial large over-expansion is
followed by a pressure rise, where in some cases a pseudo-pla-
teau forms, and finally it overshoots the ambient pressure. As

Ma1 increases, the location of the overshoot moves upstream,
representing the low-pressure region behind the jet diminishes
in some extent.
Fig. 26 Variation of relative force increment with freestream

Mach number.

Fig. 27 Variation of jet amplification factor with freestream

Mach number.
Figs. 26 and 27 depict the relative force increment and the
jet amplification factor with freestream Mach number, respec-
tively. Within the range of Ma1 under consideration, no

prominent difference is observed for V at a specified pressure
ratio, which indicates that the interaction force is dominated
mostly by the pressure ratio and insensitive to the freestream

Mach number when other conditions are fixed. At each pres-
sure ratio, the jet amplification factor increases with increasing
Ma1, whose values are lower for higher pressure ratios and

higher for lower ones. The trend is in consistent with the anal-
ysis made above. Incidentally, the separated region extends be-
yond the leading edge of the plate when the pressure ratio
exceeds 100 at Ma1= 2, wherefore the values of V and K

are only available when PR = 50.

6. Conclusion

(1) The bulk characteristics of the interaction flowfield
between jets and high Mach number flows over a ramp
are similar to those exhibited between jets and high
Mach number flows over a flat plate. However, the jet/

ramp interacting flowfield may consist of slightly differ-
ent shock configurations, more complicated flow struc-
tures, higher pressure levels ahead of the jet, and less

extensive low-pressure regions behind the jet.
(2) The relative normal force increment and the jet amplifi-

cation factor both increase as the distance between the

jet and the ramp is shortened till quintuple jet diameters.
The inception locations of the separated region in the x
direction are found to be practically the same for both
jet-before-ramp and jet-on-ramp cases. The differences

in the relative force increment and the amplification fac-
tor between the two cases can be ignored.

(3) The variation of the injection angle changes the extents

of the separation region, the pressure plateau, and the
pressure peak in the vicinity of the jet. The angle of
120� is found to be relatively optimal within the range

of injection angle in conditions studied in this paper.
(4) Little influences of the jet temperature onto the pressure

distribution are observed under the adopted computa-

tion model and the ranges of flow parameters specified
in the present parametric study. Nevertheless, reducing
jet temperature may benefit the improvement of the
combined control effectiveness.

(5) When the jet-to-freestream pressure ratio is fixed, the
normal force is found insensitive to freestream Mach
number with remaining conditions unchanged, while

the jet amplification factor increases notably with
increasing freestream Mach number.
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