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Abstract

Cover-free families have been investigated by many researchers, and several variations of these
set systems have been used in diverse applications. In this paper, we introduce a generalization
of cover-free families which includes as special cases all of the previously used de3nitions. Then
we give several bounds and some e5cient constructions for these generalized cover-free families.
c© 2003 Elsevier B.V. All rights reserved.

Keywords: Cover-free family; Probabilistic method

1. Introduction

Cover-free families were 3rst introduced in 1964 by Kautz and Singleton [13] in
the context of superimposed binary codes. These structures have been discussed in
several equivalent formulations, in subjects such as information theory, combinatorics
and group testing, by numerous researchers (see, for example, [1,4,7–10,12,18,24,25]).
Recently, cover-free families have been used to solve some new problems in cryp-
tography and communications, including blacklisting, broadcast encryption, broadcast
anti-jamming, source authentication in a network setting, and group key predistribution
(see [2,3,6,11,15,17,19,20–23]). The original de3nition of cover-free families, as given
in [13,9,12], was generalized in various ways, for example, in [5,17].

In this paper, we give a more general de3nition of cover-free families. We then
investigate properties, bounds and constructions of these generalized cover-free families.
All the previous de3nitions of cover-free families are special cases of the new de3nition.

In the rest of this section, we give the de3nitions and notations used in this paper.
In Section 2, we discuss bounds (i.e., necessary conditions) for generalized cover-free
families, which are obtained through two diBerent approaches. In Section 3, we give
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some good explicit constructions of generalized cover-free families, as well as non-
constructive existence results using the probabilistic method.

1.1. De6nitions and notations

A set system is a pair (X;F), where X is a set of points and F is a set of subsets
of X (called blocks). A set system (X;F) is called k-uniform if |F | = k for each
F ∈F. Throughout this paper, we will use N and T to denote the cardinality of X
and F respectively.

Now we give a general de3nition of cover-free families, as follows.

De�nition 1.1. Let w, r and d be positive integers. A set system (X;F) is called a
(w; r;d)-cover-free family (or (w; r;d)-CFF) provided that, for any w blocks B1; : : : ; Bw
∈F and any other r blocks A1; : : : ; Ar ∈F, we have that∣∣∣∣∣∣

(
w⋂
i=1

Bi

)∖
 r⋃
j=1

Aj



∣∣∣∣∣∣¿d:

Less formally, the intersection of any w blocks contains at least d points that are not
in the union of r other blocks.

Sometimes, we will use the notation (w; r;d)-CFF(N; T ) to denote a cover-free fam-
ily in which |X |=N and |F|=T (i.e., there are N points and T blocks). (1; r; 1)-CFF
were de3ned in [13,9,12] for diBerent purposes. (w; r; 1)-CFF were de3ned in [17] for
some cryptographic applications (namely, to permit the construction of certain key dis-
tribution schemes). (1; r;d)-CFF were de3ned in [5] in connection with superimposed
distance codes. (w; r;d)-CFF for general w; r and d were 3rst considered in [20]; how-
ever, the equivalent dual version of cover-free families (disjunct families; see below)
was used in that paper, and (w; r;d)-CFF were not explicitly de3ned there.

A set system can be described by an incidence matrix. Let (X;B) be a set system
where X = {x1; x2; : : : ; xN} and B = {B1; B2; : : : ; BT}. The incidence matrix of (X;B)
is the N × T matrix A= (aij), where

aij =

{
1 if xi ∈Bj;
0 if xi �∈ Bj:

Conversely, given an incidence matrix, we can de3ne an associated set system in an
obvious way.

Disjunct systems and cover-free families are dual incidence structures. If A is an
incidence matrix of a cover-free family, then AT, the transpose of A, is an incidence
matrix of a disjunct system. We have the following de3nition of (generalized) disjunct
systems.

De�nition 1.2. A set system (X;B) is a (w; r;d)-disjunct system provided that, for any
P;Q ⊆ X such that |P|6w, |Q|6 r and P∩Q=∅, there exist at least d blocks B∈B
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such that P ⊆ B and Q∩B= ∅. A (w; r;d)-disjunct system, (X;B), will be denoted as
a (w; r;d)-DS(N; T ) if |X | = N and |B| = T .

From the above discussion, we have the following theorem.

Theorem 1.1. There exists a (w; r;d)-CFF(N; T ) if and only if there exists a (w; r;d)-
DS(T; N ).

2. Bounds for cover-free families

It is easy to see that there is a tradeoB between the values of N and T in a cover-free
family. We want to maximize the value of T or minimize the value of N in the case
that the other parameters are given. For given values w; r; d and T , let N ((w; r;d); T )
denote the minimum value of N such that a (w; r;d)-CFF(N; T ) exists. Similarly, let
T ((w; r;d); N ) denote the maximum value of T such that a (w; r;d)-CFF(N; T ) exists.

2.1. Bounds from coverings of hypergraphs

Engel proved some bounds for (w; r; 1)-CFF in [7]. Now we generalize these results
to (w; r;d)-CFF for general d.

Denote [n]={1; : : : ; n}. De3ne Pn;l;u={X ⊆ [n] : l6 |X |6 u}, where 0¡l¡u¡n,
in which the sets in Pn;l;u are ordered by inclusion. De3ne a class of order-interval
hypergraphs Gn;l;u = (P; E) as follows. Let the set of points be P = Pn;l;u, and let the
set of edges E be the maximal intervals, i.e., for any X; Y ⊆ [n] such that |X |= l and
|Y | = u, de3ne

I(X; Y ) = {C ⊆ [n] :X ⊆ C ⊆ Y};
and then de3ne

E = {I(X; Y ) : |X | = l; |Y | = u; X; Y ⊆ [n]}:

De�nition 2.1. A point d-cover, or simply a d-cover, of a hypergraph is a subset of
points C such that each edge of the hypergraph contains at least d points of C.

The following theorem shows the equivalence of CFF and a certain covering of a
Gn;l;u. The result is phrased in terms of disjunct systems.

Theorem 2.1. There exists a d-cover of Gn;l;u of size b if and only if there exists an
(l; n− u;d)-DS(n; b).

Proof. C is a d-cover of Gn;l;u if and only if, for any X; Y ⊆ [n] such that |X | = l
and |Y | = u, there are d points C ∈C such that X ⊆ C ⊆ Y . Equivalently, for any
X; Z ⊆ [n] such that |X |= l and |Z |= n− u, there are d points C ∈C such that X ⊆ C
and Z ∩ C = ∅. This is the same thing as a (l; n− u;d)-DS(n; b).
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Let �dn;l;u = min{|C| :C is a point d-cover of Gn;l;u}. Then we have the following
corollary.

Corollary 2.2. N ((w; r;d); T ) = �dT ;w;T−r .

We need some tools from graph theory. A fractional d-cover is a function
g :P → R+, such that, for any I(X; Y )∈E, it holds that∑

Z∈I(X¡Y )

g(Z)¿d;

where R+ is the set of nonnegative real numbers.
De3ne the fractional d-covering number (�∗)dn;l;u as follows:

(�∗)dn;l;u = min

{∑
Z∈P
g(Z) : g is a fractional d-cover of Gn;l;u

}
:

When d = 1, we write (�∗)n;l;u instead of (�∗)1
n;l;u. The following lemma gives the

relationship of �dn;l;u and (�∗)dn;l;u.

Lemma 2.3. �dn;l;u¿ (�∗)dn;l;u.

Proof. Suppose C is a d-cover of Gn;l;u. De3ne

g(Z) =

{
1 if Z ∈C;

0 otherwise:

Then g is a fractional d-cover. Therefore |C|¿ (�∗)dn;l;u.

The paper [7] only considered the case d= 1. For d¿ 1, we can use the following
lemma.

Lemma 2.4. (�∗)dn;l;u = d× (�∗)n;l;u.

Proof. Suppose that g is a fractional 1-cover of size (�∗)n;l;u. De3ne

g′(Z) = d× g(Z)
for all Z ∈P. Then g′ is a fractional d-cover. Hence we have

(�∗)dn;l;u6d× (�∗)n;l;u:

In a similar way, we can prove that

(�∗)n;l;u6
1
d
× (�∗)dn;l;u:

Now we can give a formula for the fractional-covering numbers, as follows:
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Lemma 2.5.

(�∗)dn;l;u = d× min

{(
n

m

)/(
u− l
m− l

)
: l6m6 u

}
:

Proof. It is proved that

(�∗)n;l;u = min

{(
n

m

)/(
u− l
m− l

)
: l6m6 u

}

in [7]. The conclusion follows from Lemma 2.4.

Therefore, from Lemmas 2.3 and 2.5, we have the following bound for cover-free
families.

Corollary 2.6.

N ((w; r;d); T )¿min

{
d

(
T

m

)/(
T − r − w
m− w

)
:w6m6T − r

}
:

The following two theorems are generalizations of [7, Proposition 3].

Theorem 2.7. For "¡l and #¿u, it holds that �dn;l;u¿ (�∗)dn;";# × (�∗)#−";l−";u−".

Proof. Let C be an optimal d-cover of Gn;l;u. Since "¡l and #¿u, C is also a set
of points in Gn;";#. In Gn;";# de3ne

g(Z) =




1
(�∗)#−";l−";u−"

if Z ∈C;

0 otherwise:

We are going to prove that g is a fractional d-cover of Gn;";#. Suppose I(Y1; Y2) is an
edge of Gn;";#; then |Y1| = " and |Y2| = #. So

I(Y1; Y2) ∩ Pn;l;u = {Z :Y1 ⊆ Z ⊆ Y2; l6 |Z |6 u};
which is isomorphic to P#−";l−";u−". It is obvious that C ∩ I(Y1; Y2) gives rise to a
d-cover of G#−";l−";u−" by deleting the elements of Y1 from every point C ∈C ∩
I(Y1; Y2). Therefore, we have∑

Z∈I(Y1 ;Y2)

g(Z) =
|C ∩ I(Y1; Y2)|
(�∗)#−";l−";u−"

¿
(�∗)d#−";l−";u−"
(�∗)#−";l−";u−"

= d;

where the last equality comes from Lemma 2.4. Now, since

(�∗)dn;";#6
∑
Z∈Pn;";#

g(Z) =
∑
Z∈Pn;l;u

g(Z) =
�dn;l;u

(�∗)#−";l−";u−"
;

the conclusion follows.
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We now prove a bound for cover-free families using Theorem 2.7.

Theorem 2.8. For 0¡"1¡w; 0¡"2¡r, we have that

N ((w; r;d); T )¿d

(
T
m1

)(
T−w−r+"1+"2

m2

)
(
T−w−r+"1+"2
m1−w+"1

)(
T−w−r
m2−"1

) ;
where m1 and m2 are chosen such that the right side of the above inequality attains
its minimum value, subject to the constraints that w−"16m16T−r+"2, "16m26
T − w − r + "1, and m1 and m2 are integers.

Proof. Apply Theorem 2.7, letting n=T; l=w; u=T−r, "=w−"1 and #=T−r+"2.

The following theorem gives a recursive method to bound the value of �.

Theorem 2.9. For "¡l and #¿u, it holds that �dn;l;u¿ (�∗)n;";# × �d#−";l−";u−".

Proof. The proof is similar to that of Theorem 2.7. In this proof, we de3ne

g(Z) =




1
�d#−";l−";u−"

if Z ∈C;

0 otherwise:

Then it can be shown that g is a fractional 1-cover of Gn;";#.

As a corollary of the above theorem, we obtain the following result by applying
Lemma 2.5.

Theorem 2.10. For 0¡"1¡w; 0¡"2¡r, it holds that

N ((w; r;d); T )¿

( T
m

)(
T−w−r+"1+"2
m−w+"1

) N (("1; "2;d); T − w − r + "1 + "2);

where m is chosen such that the right side of the above inequality attains its minimum
value, subject to the constraints that w − "16m6T − r + "2 and m is an integer.

Now set "1 = w − 1 and "2 = r − 1 in the above theorem. Then it is easy to check
that the right side of the inequality attains its minimum value when m = T=2. So we
have the following result.

Lemma 2.11.

N ((w; r;d); T )¿ 4
(

1 − 1
T

)
N ((w − 1; r − 1;d); T − 2):

In [5,26], the following bound for (1; r;d)-CFF was proven:
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Theorem 2.12. If r ¿ 1 and d¿ 1 are integers, then

N ((1; r;d); T )¿ c
(
r2

log r
log T + (d− 1)r

)
;

where c is some constant.

Combining Theorem 2.12 and Lemma 2.11, we are able to prove the following
bound.

Theorem 2.13. Suppose r; w and d are integers, r ¿w¿ 1, and d¿ 1. Then

N ((w; r;d); T )¿ c4w−1
(

1 − 1
T

)(
1 − 1
T − 2

)
· · ·
(

1 − 1
T − 2w + 2

)

×
(

(r − w + 1)2

log(r − w + 1)
log(T − 2w) + (d− 1)(r − w + 1)

)

for some constant c.

Proof. Iterate Lemma 2.11 w − 1 times, and then apply Theorem 2.12.

2.2. Bound from recursive methods

Recently, two bounds for (w; r; 1)-CFF were proven in [24]. We use the same tech-
niques to give bounds on (w; r;d)-CFF, for general d. The following two simple lem-
mas can be proven in a similar way as the corresponding lemmas in [24].

Lemma 2.14.

N ((w; r;d); T )¿N ((w; r − 1;d); T − 1) + N ((w − 1; r;d); T − 1):

Lemma 2.15.

N ((w; r;d); T ) = N ((r; w;d); T ):

To discuss the 3rst bound, we de3ne

g(w; r; T ) =

(w+r
w

)
log T

log(w + r)
:

The function g satis3es the following property (see [24]):

Lemma 2.16. For w; r¿ 2 and T¿w + r, it holds that

g(w; r; T )6 g(w; r − 1; T − 1) + g(w − 1; r; T − 1):

We need a simple numerical lemma, which was also proven in [24].
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Lemma 2.17. For r¿ 2, it holds that

r2

log r
¿

2r + 2
log(r + 1)

:

Our bound is as follows.

Theorem 2.18. For w; r¿ 1 and T¿w + r ¿ 2, it holds that

N ((w; r;d); T )¿ 2c

(w+r
w

)
log(w + r)

log T +
1
2
c

(
w + r

w

)
(d− 1);

where c is the same constant as in Theorem 2.12.

Proof. First, consider the case w = 1. From Theorem 2.12, we have

N ((w; r;d); T )¿ c
r2

log r
log T +

1
2
c(r + 1)(d− 1):

In this case, the conclusion follows from Lemma 2.17. Also, the case r= 1 is similar,
in view of Lemma 2.15.

For the general case, where r; w¿ 2, we prove the bound by induction on w+ r, as
follows:

N ((w; r;d); T )¿N ((w − 1; r;d); T − 1) + N ((w; r − 1;d); T − 1)

¿ 2cg(w − 1; r; T − 1) +
1
2
c

(
w + r − 1

w − 1

)
(d− 1)

+ 2cg(w; r − 1; T − 1) +
1
2
c

(
w + r − 1

r − 1

)
(d− 1)

¿ 2cg(w; r; T ) +
1
2
c

(
w + r

w

)
(d− 1):

Here, the 3rst inequality comes from Lemma 2.14, the second one comes from an
induction assumption, and the third one comes from Lemma 2.16.

Another bound for (w; r; 1)-CFF from [24] can also be generalized to d¿ 1. The
proof is similar to that of [24, Theorem 4.4], and we omit the details here.

Theorem 2.19. For any integers w; r¿ 1, there exists an integer Tw;r such that

N ((w; r;d); T )¿ 0:7c

(w+r
w

)
(w + r)

log
(w+r
w

) log T +
1
2
c

(
w + r

w

)
(d− 1)

for all T ¿Tw;r , where c is the same constant as in Theorem 2.12.
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Finally, we note that explicit upper bounds on the above-mentioned constants Tw;r
are given by Ma [16].

3. Constructions of cover-free families

It is easy to construct a (w; r;d)-CFF(dN; T ) from a (w; r; 1)-CFF(N; T ). In fact,
if (X;F) is a (w; r; 1)-CFF(N; T ), then we can construct a (w; r;d)-CFF(dN; T ) on
X ×{0; 1; : : : ; d− 1} by taking d copies of every point in every block. In this section,
we discuss several more e5cient constructions for (w; r;d)-CFF(N; T ).

3.1. Combinatorial constructions

Several types of codes and combinatorial designs have been used to construct CFF.
For example, t-designs were used in [8,13,23] to construct (1; r; 1)-CFF. Orthogonal ar-
rays have also been used, in [23,26], to construct CFF. The following result is obtained
from orthogonal arrays (see [26] for the details).

Theorem 3.1. For any prime power q, and any integer t such that 26 t ¡q, there
exists a (1; 
(q− d)=(t − 1)�;d)-CFF(q2 + q; qt).

The following construction is a generalization of Sperner’s Theorem.

Lemma 3.2.

T ((1; 1;d)N )¿

( 
Nd �

 N2d�

)
:

Proof. Let S1; S2; : : : ; S�N=d� be a partition of the set {0; 1; : : : ; N −1}, such that |Si|=d
for i = 1; : : : ; 
N=d�. De3ne blocks as follows:

Fi1 ;:::;ik =
k⋃
j=1

Sij ;

for all k-subsets of {1; 2; : : : ; 
N=d�}. Then it is easy to check that the resulting system
is a (1; 1;d)-CFF. Therefore it holds that

T ((1; 1;d)N )¿

( 
Nd �
k

)

and the conclusion follows.

When d= 1, the above construction is optimal. In fact, it is just a Sperner system.
In [22], separating hash families are used to construct (w; r; 1)-CFF. We now gen-

eralize this method to construct (w; r;d)-CFF.
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De�nition 3.1. An (n; m; {w1; w2})-d-separating hash family is a set of functions F,
such that |Y |=n, |X |=m, f :Y → X for each f∈F, and for any C1; C2 ⊆ {1; 2; : : : ; n}
such that |C1|= w1, |C2|= w2 and C1 ∩C2 = ∅, there exist at least d functions f∈F
such that

{f(y) :y∈C1} ∩ {f(y) :y∈C2} = ∅:

The notation d-SHF(N ; n; m; {w1; w2}) will be used to denote an (n; m; {w1; w2})-d-
separating hash family with |F| = N .

A d-SHF(N ; n; m; {w1; w2}) can be depicted as an N × n matrix with entries from
{1; 2; : : : ; m}, such that in any two disjoint sets C1 and C2 of w1 and w2 columns
(respectively), there exist at least d rows such that the entries in the columns C1 are
distinct from the entries in the columns C2.

Now suppose that A is the n × N transposed matrix which is derived from a
d1-SHF(N ; n; m; {w; r}). The elements in A are denoted 1; 2; : : : ; m. Suppose that B is
the incidence matrix of a (w; r;d2)-CFF(v; m). Denote the rows of B by b1; b2; : : : ; bm.
We construct an Nv×n matrix A′ by replacing every element i in the array A by the row
vector bi. It can be veri3ed that A′ is the incidence matrix of a (w; r;d1d2)-CFF(vN; n).
Thus we have the following.

Theorem 3.3. If there exists a (w; r;d1)-CFF(v; m) and a d2-SHF(N ; n; m; {w; r}), then
there exists a (w; r;d1d2)-CFF(vN; n).

The function log∗ is de3ned recursively as follows:

log∗(1) = 1;

log∗(n) = log∗(�log n�) + 1 if n¿ 1:

Using orthogonal arrays that are easily constructed from Reed-Solomon codes, and
a recursive method based on Theorem 3.3, the following result is proven in [24].

Theorem 3.4. Let m;w1 and w2 be positive integers. Then there exists an in6nite class
of 1-SHF(N ; n; m; {w1; w2}), for which N is O((w1w2)log∗(n)(log n)).

Note that, for any w; r and d, we can construct a w+r by d
(w+r
w

)
matrix by taking d

copies of every possible 0−1 column vector having hamming weight equal to w. Then
we obtain a (w; r;d)-CFF

(
d
(w+r
w

)
; w + r

)
. From Theorems 3.4 and 3.3, we obtain the

following result.

Theorem 3.5. For any positive integers w; r and d, there exists a (w; r;d)-CFF(
d
(w+r
w

)
N; T

)
, where N is O((w1w2)log∗(T )(log T )).

Another well-known combinatorial object known as a perfect hash family can also
be used to construct CFF.
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De�nition 3.2. An (n; m; w)-d-perfect hash family is a set of functions F, such that
|Y | = n, |X | = m, f :Y → X for each f∈F, and for any C ⊆ {1; 2; : : : ; n} such that
|C| = w, there exist at least d functions f∈F such that f is one-to-one on C. The
notation d-PHF(N ; n; m; w) will be used to denote an (n; m; w)-d-perfect hash family
with |F| = N .

Since any d-PHF(N ; n; m; w + r) is automatically a d-SHF(N ; n; m; {w; r}), we can
apply Theorem 3.3 using PHF as ingredients. There are many papers providing explicit
constructions of PHF. For example, we can use a construction of PHF from algebraic
curves over 3nite 3elds, which was described in [25].

Theorem 3.6. For any positive integers m¿w, there exists an explicit construction
for an in6nite family of 1-PHF(N ; n; m; w) such that N is O(log n).

From Theorems 3.6 and 3.3, we have the following result.

Theorem 3.7. For any positive integers w; r and d, there exists an explicit construc-
tion for an in6nite family of (w; r;d)-CFF

(
d
(w+r
w

)
N; T

)
, where N is O(log T ).

3.2. Non-constructive existence results

Probabilistic methods have been used by many researchers to establish the existence
of “good” cover-free families. Here we consider the existence of generalized CFF.

We will construct an N × T matrix which satis3es the conditions of De3nition 1.2.
Let A be an N × T 0 − 1 matrix whose columns are labelled 1; : : : ; T . Suppose that
C1; C2 ⊆ {1; : : : ; T}, |C1|=w, |C2|= r and C1 ∩C2 = ∅. De3ne XA(C1; C2) = 0 if there
exist at least d rows of A such that the entries in the columns in C1 are all “1”s and
the entries in the columns in C2 are all “0”s, and de3ne XA(C1; C2) = 1, otherwise.

Suppose A is an N × T matrix in which each entry is de3ned to be a “1” with
probability -. (The value of - will be chosen a bit later.) We say that a row is “good”
if the entries in the columns in C1 are all “1” and the entries in the columns in C2

are all “0”. The probability that a particular row is good is

p= -w(1 − -)r :
To maximize the value of p, we let

-=
w
w + r

:

We will make use of the following “tail inequality” (see [14, p. 106]) which can be
seen as a special case of the ChernoB Bound.

Lemma 3.8. Suppose X1;X2; : : : ;Xn are independent random variables such that
Pr[Xi = 1] = p and Pr[Xi = 0] = 1 − p for 16 i6 n. Let X = X1 + X2 + · · · + Xn.
Then for any a¿ 0, it holds that

Pr[X6 n(p− a)]6 e−a
2n=2p:
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In order to apply Lemma 3.8, de3ne

Xi =

{
1 if the ith row of A is good;

0 otherwise;

for 16 i6N , and de3ne n= N . Then we have that

Exp[XA(C1; C2)] = Pr[X6d− 1]:

Let a= p=2 and N = 2(d− 1)=p. Then N (p− a) = d− 1, and applying Lemma 3.8,
we have that

Exp[XA(C1; C2)]6 e−pN=8:

Now, if we de3ne the random variable

XA =
∑

{C1 ;C2⊆{1;:::;T} : |C1|=w;|C2|=r;C1∩C2=∅}
XA(C1; C2);

then it is easy to see that

Exp[XA]6

(
T

w

)(
T − w
r

)
e−pN=8

¡
Tw+r

w!r!
e−pN=8:

If Exp[XA]¡ 1, then a CFF exists. Therefore, we obtain the following theorem about
the existence of generalized CFF.

Theorem 3.9. Suppose that T; w and r are positive integers. De6ne

p=
wwrr

(r + w)r+w
:

If

N ¿
8
p

((w + r)log T − logw! − log r!)

then there exists a (w; r;d)-CFF(N; T ) for

d=
pN
2

+ 1:

Proof. Suppose

N ¿
8
p

((w + r)log T − logw! − log r!):
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Then

Tw+r

w!r!
e−pN=8¡ 1;

which implies that Exp[XA]¡ 1, and hence the desired CFF exists.

By instead considering the inequality

Tw+r

w!r!
e−pN=8¡ e−t

in the above proof, we obtain the following result.

Theorem 3.10. Suppose that T; w and r are positive integers. De6ne

p=
wwrr

(r + w)r+w
:

If

N ¿
8
p

((w + r)log T + t − logw! − log r!);

then the probability that the matrix A is not a (w; r;d)-CFF(N; T ), for

d=
pN
2

+ 1;

is at most e−t .

Next, we use the probabilistic method to prove an existence result for k-uniform
(r; w;d)-CFF. We adapt a similar method which was used in [15]. Fix an integer
‘¿ 2, and let N = k‘. As before, let A be an N × T 0− 1 matrix whose columns are
labelled 1; : : : ; T . Suppose that C1; C2 ⊆ {1; : : : ; T}, |C1|=w, |C2|= r and C1 ∩C2 = ∅.
Also, de3ne XA(C1; C2) as before.

Suppose that A is partitioned into k disjoint ‘ × T subarrays which are denoted Ai,
16 i6 k. Each column of each Ai is chosen to be a random 0 − 1 column vector of
length ‘ having hamming weight equal to 1. We say that a subarray Ai is “good” if
there exists a row of Ai such that the entries in the columns in C1 are all “1” and the
entries in the columns in C2 are all “0”. (Notice that every Ai can contain at most one
such row.) The probability that a particular Ai is good is

p=
(

1
‘

)w−1(
1 −

(
1
‘

))r
=

(‘ − 1)r

‘w+r−1 :

De3ne

Xi =

{
1 if Ai is good;

0 otherwise;

for 16 i6 k, and de3ne n= k (i.e., X = X1 + X2 + · · · + Xk). Then, we have that

Exp[XA(C1; C2)] = Pr[X6d− 1]:
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Let a= p=2 and k = 2(d− 1)=p. Applying Lemma 3.8, we have that

Exp[XA(C1; C2)]6 e−pk=8:

Now, if we de3ne the random variable

XA =
∑

{C1 ;C2⊆{1;:::;T} : |C1|=w;|C2|=r;C1∩C2=∅}
XA(C1; C2);

then it is easy to see that

Exp[XA]6

(
T

w

)(
T − w
r

)
e−pk=8¡

Tw+r

w!r!
e−pk=8:

We obtain the following theorem about the existence of k-uniform generalized CFF.

Theorem 3.11. Suppose that T; w; r and ‘ are positive integers. De6ne

p=
(‘ − 1)r

‘w+r−1 :

If

k ¿
8
p

((w + r)log T − logw! − log r!)

then there exists a k-uniform (w; r;d)-CFF(k‘; T ) for

d=
pk
2

+ 1:

The following variation is proved in a similar fashion.

Theorem 3.12. Suppose that T; w; r and ‘ are positive integers. De6ne

p=
(‘ − 1)r

‘w+r−1 :

If

k ¿
8
p

((w + r)log T + t − logw! − log r!)

then the probability that the matrix A is not a k-uniform (w; r;d)-CFF(k‘; T ), for

d=
pk
2

+ 1;

is at most e−t .
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