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We discuss counting problems linked to finite versions of Cantor’s
diagonal of infinite tableaux. We extend previous results of Brlek
et al. (2004) [2] by refining an equivalence relation that reduces
significantly the exhaustive generation. New enumerative results
follow and allow to look at the sub-class of the so-called bi-
Cantorian tableaux. We conclude with a correspondence between
Cantorian-type tableaux and coloring of hypergraphs having a
square number of vertices.
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1. Introduction

In a celebrated paper, Cantor [3] proved the existence of transcendental numbers using his famous
diagonal argument, based on the comparison of the set of rows of an infinite tableau with its diagonal.
It amounts to fill a countable infinite tableau with a list of algebraic numbers in base 2, and to
compare with a word built such that for each index i, its ith digit is different from the diagonal’s ith
digit. Indeed such a word does not appear on any row of the infinite tableau. Since no assumption
is made on the ordering, any permutation of the rows yields the same conclusion. In fact, it can be
shown that the diagonal itself does not appear in any row of the tableau, provided that each rational
number appears twice, once with trailing 0’s and once with trailing 1’s as shown in Brlek, Mendès
France, Robson and Rubey [2]. They proceed as follows. On a finite alphabet A = {α1,α2, . . . ,αs}, the
permanent of an infinite tableau T : N × N → A is the set of infinite sequences

Perm(T ) =
⋃

π∈SN

a1
π(1)a

2
π(2)a

3
π(3) · · · ,
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where SN is the family of all bijections π : N → N. Therefore, if the set L of row-words of T consists
of all algebraic numbers in the unit interval represented in base 2, then Perm(T ) is exactly the set of
all transcendental numbers in the unit interval [2, Corollary 12], and Perm(T ) ∩ L = ∅. Such a tableau
is called Cantorian and has a natural finite counterpart: the permanent of a square n × n tableau
T = (a j

i ) with a j
i ∈ A is the set of words

Perm(T ) =
⋃

π∈Sn

{
a1
π(1)a

2
π(2) · · ·an

π(n)

}
, (1)

where Sn is the set of all permutations on n elements. Thus, the permanent of a tableau T is nothing
but the set of distinct diagonal-words obtained by permuting the rows of T . Then, a tableau T is
Cantorian if Perm(T ) ∩ L = ∅, where L is the set of distinct row-words of T . This means that no
row-words of T can appear as a diagonal of T by permuting its rows.

In the first part of their paper, they gave a sufficient condition for a tableau to be Cantorian,
and they also designed a polynomial time algorithm to test whether a tableau is Cantorian or not.
Some enumerative results for tableaux of small size were also provided, especially for tableaux of size
smaller than 11 on two letter alphabets, which reveals the computation bottleneck of the problem. In
an attempt to ease the computation, they also introduced a natural equivalence relation on Cantorian
tableaux at the end of their paper.

In this paper, we study this equivalence relation in more detail and its consequences on the classi-
fication of Cantorian tableaux, their enumeration and the study of bi-Cantorian tableaux. In Section 2,
we introduce the combinatorial objects necessary for our purpose with examples. Section 3 con-
tains a class invariant for the equivalence relation and, using group actions, we get a formula for
the cardinality of a class. Section 4 describes the canonical representatives that are useful for com-
putations, with new enumerative results obtained exhaustively, and closed formulas for Cantorian
tableaux as well. Section 5 is devoted to the investigation on bi-Cantorian tableaux. In Section 6, we
study columns and extensions of infinite Cantorian-type tableaux related to number theory. Finally,
in Section 7, we describe a correspondence between Cantorian-type tableaux and colored hyper-
graphs.

2. Preliminaries

We consider a finite and ordered alphabet A = {α1,α2, . . . ,αs} where s � 2 and αi < α j whenever
i < j. Then A� is the set of finite words over A. The lexicographic order on A� is denoted �. The
number of occurrences of the letter α ∈ A in w ∈ A� is denoted |w|α . We write T s

n for the set of all
square n × n tableaux T with entries in A. Recall that given a tableau T , L is the set of row-words
of T . The sequence of column-words of T is denoted by C = (c1, c2, . . . , cn) while the set of distinct
column-words is denoted by C . Then each of the sets L and C clearly contain at most n words.

It is convenient to build the set N� of sequences (or words!) of natural numbers N = {0,1,2,3, . . .}
considered as an infinite alphabet. Elements λ of N� are called compositions (the definition of compo-
sition is loosened by allowing null parts). It can be viewed as a function λ : [0 . . . (m − 1)] → N, with
m ∈ N \ {0}. The weight |λ| ∈ N of a composition λ is the sum of the numbers appearing in it. The
length is �(λ) = m. If λ is a composition of weight n, we say that λ is a partition of weight n if it is
decreasing (not necessarily strictly). We denote by Cn (respectively Pn) the set of compositions (re-
spectively partitions) of weight n. There is a natural projection πn from Cn to Pn defined by ordering
the compositions in decreasing order.

By abuse of notation, we denote the lexicographic order on N� deduced from the natural order
on N also by �. We define a particular total order � on N� , referred to as the composition order.

Definition 1. Let λ,λ′ ∈ N� . We write λ � λ′ if and only if

�(λ) < �
(
λ′) or

(
�(λ) = �

(
λ′) and λ′ � λ

)
.
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Note the inversion in the condition (λ′ � λ), which says that the inverse lexicographic order is
used. To illustrate the composition order, consider the set of positive compositions (without 0) of
length at most 3 and weight 5. It is totally ordered by � as follows

5 � 41 � 32 � 23 � 14 � 311 � 221 � 212 � 131 � 122 � 113.

For computational purposes, the Cantorian representatives, defined later on, are built from partitions
without zeros, therefore having different lengths; this justifies the condition �(λ) < �(λ′) in the defi-
nition of �.

It is useful to encode words A� by using compositions1 of length s.

Definition 2. Let w ∈ A� such that |w| = n. The Parikh composition pw := p(w) of w is a composition
of weight n and length s defined by the map p : A� → N�

w �→ |w|α1 |w|α2 · · · |w|αs .

Example 1. Let A = {1,2,3} and w = 12323, v = 2233 be words in A� , then their Parikh compositions
are pw = 122 and pv = 022.

We use the composition order to define a total order � on A� , called the Parikh composition order
on A� .

Definition 3. Let w, w ′ ∈ A� . We write w � w ′ if and only if

pw ≺ pw ′ or
(
pw = pw ′ and w � w ′).

Example 2. Let A = {1,2,3}. If w = 12323, v = 21233, u = 32121 are words in A� , then pw = 122,
pv = 122, pu = 221 and u � w � v .

The map p is naturally extended to a map P : T s
n → (N�)n . Then, the order � is extended to the

set T s
n by looking at the image P(T ) from left to right.

Definition 4. The Parikh compositions PT := P(T ) = (pc1 ,pc2 , . . . ,pcn ) of a tableau T is the vector of
Parikh compositions of its column-words in C .

Example 3. Here are a few tableaux on the alphabet {1,2,3} with their Parikh compositions.

T1 =
[1 1 3

1 1 2
2 3 1

]
, T2 =

⎡
⎢⎣

2 1 1 2
3 1 2 1
2 1 1 1
2 1 2 1

⎤
⎥⎦ , T3 =

⎡
⎢⎢⎢⎢⎢⎣

1 2 3 1 2 2
2 1 1 2 3 3
3 1 2 1 1 2
2 3 2 1 1 1
3 3 2 1 2 1
1 1 1 1 3 2

⎤
⎥⎥⎥⎥⎥⎦ ,

PT1 = (210,201,111), PT2 = (031,400,220,310),

PT3 = (222,312,231,510,222,231).

1 This is an adaptation of the Parikh map (see Supplementary Lecture H of [4]) sending a word to a composition of length s
in place of a vector.
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3. Structure of equivalence classes

In [2], the authors introduced the following equivalence relation on T s
n .

Definition 5. (See Brlek et al. [2].) Let T ′, T ∈ T s
n . One writes T ′ ∼c T if and only if T ′ can be obtained

from T by a finite combination of the following operations: permutation of rows, permutation of
columns, replacing all entries of a column by their image under any bijection of the alphabet.

Example 4. The following tableaux are all equivalent and ordered in decreasing order according to �.
First, by applying the bijection 1 → 2, 2 → 1, 3 → 3 to the first column and the bijection 1 → 2,
2 → 3, 3 → 1 to the second column. Secondly, by swapping the second and third column. Next, by
swapping the second and third row. Finally, by applying the bijection 1 → 1, 2 → 3, 3 → 2 to the
third column.[2 3 1

2 2 2
2 3 1

]
�
[1 1 1

1 3 2
1 1 1

]
�
[1 1 1

1 2 3
1 1 1

]
�
[1 1 1

1 1 1
1 2 3

]
�
[1 1 1

1 1 1
1 2 2

]
.

Given a tableau T , we denote its equivalence class by [T ] and its class cardinality by #[T ]; it is
clear that #[T ] � n!2(s!)n . By inspection it is often much less, but it is still a sharp bound, as shown
in the next example.

Example 5. Consider the three tableaux of Example 3. We have

#[T1] = 1944 � 7776 = (3!)2(3!)3;
#[T2] = 24186470400 = (6!)2(3!)6;
#[T3] = 186624 � 746496 = 4!2(3!)4.

Given any two tableaux T and T ′ , deciding whether T is equivalent or not to T ′ can be a tedious
task if we inspect all combinations of permutations and bijections. To accelerate this process, we
introduce a class invariant of tableaux. Recall that πn is the projection from the compositions of
weight n to the partitions of weight n. Let πn

n be the Cartesian product πn × πn × · · · × πn︸ ︷︷ ︸
n times

and Inc� :

(Cn)n → (Cn)n the function that reorders vectors in increasing order according to the order �.

Lemma 1. The function Inc� ◦πn
n ◦ P is a class function with respect to the relation ∼c over T s

n .

Proof. Take a tableau T and consider its equivalence class [T ]. First note that any tableau T ′ ∈ [T ] ob-
tained by permuting rows shares the same Parikh compositions as T , i.e. P(T ) = P(T ′). This means
that applying Inc� ◦πn

n ◦ P to both T and T ′ yields the same result. Then, let T ′′ ∈ [T ] be a tableau
obtained by applying some bijections to the columns of T . By permuting the letters of the com-
positions of T along the associated bijections, we get the compositions of T ′′ . Then, applying πn

n
will reorder all compositions in P(T ) and P(T ′′) decreasingly to produce the same Parikh partitions,
hence πn

n ◦ P(T ) = πn
n ◦ P(T ′′). Finally, let T ′′′ be a tableau obtained by a permutation of columns

of T . The Parikh partitions πn
n ◦ P(T ) and πn

n ◦ P(T ′′′) are just a permutation apart. Applying Inc�
reorders the partitions increasingly according to �, thus Inc� ◦πn

n ◦P(T ) = Inc� ◦πn
n ◦P(T ′′′). Finally,

since any tableau equivalent to T is obtained by a finite sequence of permutations of rows, columns
and bijection of columns, the result follows. �
Definition 6. The vector Inc� ◦πn

n (PT ) is called the Parikh compositions representative of T .
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Now, given two tableaux and their Parikh compositions, we have a necessary condition for them
to be equivalent.

Moreover, the cardinality of each class [T ] can be established without actually computing all its
equivalent tableaux by only considering its internal structure. This is of particular interest for gener-
ating the Cantorian tableaux. In order to establish the formula, we need some technical results. Recall
that Sn is the group of permutations on n elements with identical element e.

Lemma 2. The group S := Sn × Sn acts on T s
n by permutation of rows and columns:

Φ : S × T s
n → T s

n ,

(σ , τ , T ) �−→ σ T τ−1.

Proof. The two group axioms are easily verified: Φ(e, e, T ) = eT e = T , for all T ∈ T s
n and Φ(σ1σ2,

τ1τ2, T ) = σ1σ2T (τ1τ2)
−1 = σ1σ2T τ−1

2 τ−1
1 = Φ(σ1, τ1,Φ(σ2, τ2, T )) for all (σ1, τ1), (σ2, τ2) ∈ S and

T ∈ T s
n . �

Lemma 3. The cardinality of the orbit OΦ(T ) of T through the action Φ is

∣∣OΦ(T )
∣∣= |S|

|StabΦ(T )| = (n!)2

η +∏r
j=1 g j!∏q

i=1 f i !
, (2)

where ( f1, f2, . . . , fq) is the vector of multiplicities of row-words of T , (g1, g2, . . . , gr) its column-words
multiplicities, η = |{(σ , τ ) ∈ S | σ T τ−1 = T and σ T �= T }|, q = |L| and r = |C |.

Proof. Using the orbit-stabilizer theorem for group actions, we only need to find the cardinality of
the stabilizer of a tableau T . Indeed, if two or more rows are equal, then any permutation within
these rows does not alter T . The subgroup of row permutations that stabilizes T is a Young subgroup
of cardinality

∏q
i=1 f i !. Similarly for columns, the subgroup of column permutations that stabilizes T

is a Young subgroup of cardinality
∏r

j=1 g j !. Then, it might happen that a combination of column and
row permutations still stabilizes T , without actually fixing T when acting separately. The set of such
pair is {(σ , τ ) ∈ S | σ T τ−1 = T and σ T �= T }. �
Lemma 4. The group B := (Ss)

n acts on the right on T s
n by bijection of columns:

Ψ : T s
n × B → T s

n ,(
T , (β1, . . . , βn)

) �−→ T · (β1, . . . , βn).

Proof. This is straightforward. �
Lemma 5. Let T ∈ T s

n have the Parikh compositions PT = (pc1 ,pc2 , . . . ,pcn ). The cardinality of the or-
bit OΨ (T ) of T under the action Ψ is

∣∣OΨ (T )
∣∣= |B|

|StabΨ (T )| =
n∏

i=1

s!
(s − �+(pci ))!

, (3)

where �+(pci ) is the number of non-zero letters in pci .

Proof. Again, we use the orbit-stabilizer theorem. Consider the ith column-word ci of the tableau T .
We must count the number of bijections on A that fix ci . Then, each letter in ci must remain fixed,
while all other letters might be permuted. This yields (s − �+(pci ))! distinct bijections, where �+(pci )

is the number of distinct letters in ci , i.e. the number of non-zero letters in pci . Then, taking the
product for all 1 � i � n, we get the desired formula. �
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Theorem 6. Let T ∈ T s
n have the Parikh compositions PT = (pc1 ,pc2 , . . . ,pcn ). Let ( f1, f2, . . . , fq),

(g1, g2, . . . , gr), η, q and r be defined as in Lemma 3 and �+(pci ) defined as in Lemma 5. The cardinality
of [T ] is

#[T ] = |OΦ(T )| · |OΨ (T )|
ϑ

= (n!)2∏n
i=1(s!/(s − �+(pci ))!)

(η +∏r
j=1 g j!∏q

i=1 f i !)ϑ
, (4)

where ϑ = |OΨ (T ) ∩ OΦ(T )|.

Proof. The semi-direct product B � S acts on T s
n as follows:

Ω : T s
n × (B � S) → T s

n , (5)(
T , (β,σ )

) �−→ T · (β,σ ) = T βσ .

The action β consists in applying a set of bijections (β1, β2, . . . ,βn) on A respectively on (c1, c2, . . . ,cn).
Writing T βσ means that β acts first, and then σ permutes the rows and columns. It is obvious
that T · (e, e) = T , for all T ∈ T s

n . Then, given (β1, σ1), (β2, σ2) ∈ (B � S), we have

T · ((β1,σ1) ∗ (β2,σ2)
)= T · (β1σ1β2σ

−1
1 ,σ1σ2

)
= T β1σ1β2σ

−1
1 σ1σ2

= T β1σ1β2σ2

= (T β1σ1)β2σ2

= (T · (β1,σ1)
)
β2σ2

= (T · (β1,σ1)
) · (β2,σ2) .

Thus, this is a valid group action. Then, using the orbit-stabilizer theorem, we get∣∣OΩ(T )
∣∣= |B � S|

|StabΩ(T )| = |B| · |S|
|StabΨ (T )| · |StabΦ(T )| · |StabΨ �Φ(T )| ,

where StabΨ �Φ(T ) = {(β,σ ) ∈ B � S|T βσ = T and T β �= T } ∪ {(e, e)}. A simple computation shows
that this last set is in bijection with OΨ (T ) ∩ OΦ(T ), so that

|B| · |S|
|StabΨ (T )| · |StabΦ(T )| · |StabΨ �Φ(T )| = |OΦ(T )| · |OΨ (T )|

|OΨ (T ) ∩ OΦ(T )| ,

and using Eqs. (2) and (3) yields what we claimed. �
Remark. On one hand, this equation leads to a closed formula for Cantorian tableaux of small di-
mensions. On the other hand, the integers η and ϑ still need to be computed. Indeed, it would be
interesting to study the complexity of the computation of these variables in detail, which we suspect
to be a hard problem.

4. Generation of Cantorian tableaux

First, recall that T s
n is totally ordered by the Parikh composition order on A� as each tableau can

be considered as a vector of words of length n in A� .

Definition 7. A tableau T is reduced (or in its reduced form) if its Parikh compositions PT is equal to
its Parikh compositions representative.

Observe that there are many reduced tableaux in a given class. The next definition gives a canoni-
cal representative having convenient properties for computations.
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Definition 8. Let T ∈ T s
n . If T ∼c T ′ implies that T � T ′ for all T ′ ∈ T s

n , then we call T a minimal
reduced tableau and we denote it by T � .

By definition of �, such a tableau is indeed reduced and unique, which justifies its name. Since
reduced tableaux are easy to obtain, their use significantly improves the computation of Cantorian
tableaux. Nevertheless, passing from a reduced tableau to the minimal reduced tableau can be very
costly.

Remark. Since computing the minimal reduced tableau from a reduced tableau can be cumbersome,
it would be interesting to obtain an algorithm that yields the reduced form of a tableau which mini-
mizes the number of reduced tableaux it may possibly produce.

In Section 3, we established a formula for the number of Cantorian tableaux in a given class. It is
also possible to generate all tableaux in a class using the action of B � S on T s

n defined by Eq. (5). All
that remains to do is to find all Cantorian class representatives of T s

n /∼c . To do so, we consider all
Parikh compositions representatives that respect the necessary conditions given in [2]:

Condition 7. (See Corollary 2 of [2].) Let T be an n × n tableau and suppose some letter, say a, occurs
at least n2 − n + 1 times in T . Then T is non-Cantorian. More specifically

an ∈ L ∩ Perm(T ).

If a occurs only n2 − n times, the result need not be true.

To reduce the computations, we also use the following result in the case of a 2-letter alphabet.

Theorem 8. (See Theorem 7 of [2].) The number c(n, p) of Cantorian tableaux over A = {a,b} with exactly p
occurrences of the letter b is

c(n, p) =

⎧⎪⎪⎨
⎪⎪⎩

0 for p < n,

n for p = n � 3,

0 for p = n + 1 and n � 4,

0 for p = n + 2 and n � 5.

For each Parikh compositions representative, we can build the corresponding distinct minimal re-
duced tableaux by using a recursive algorithm on the columns. Then, we test each such minimal
reduced tableau and record the Cantorian ones. Finally, we compute the cardinality of each class us-
ing Eq. (4).

Below we list the Cantorian minimal reduced representatives found for small dimensions and their
class cardinality.

Dimension n = 2 with s � 2:

Rs
2 =
[

1 1
2 2

]
,

∣∣[Rs
2

]∣∣= s2(s − 1)2.

Dimension n = 3, s = 2:

R2
3 =
[1 1 1

1 1 1
2 2 2

]
,

∣∣[R2
3

]∣∣= 24.

Dimension n = 3, s = 3:[1 1 1
1 1 1
2 2 2

]
,

[1 1 1
1 1 2
2 2 3

]
,

[1 1 1
1 2 2
2 3 3

]
,

[1 1 1
1 2 2
1 3 3

]
,

[1 1 1
2 2 2
3 3 3

]
,

|[R ]| = 648, |[R ]| = 1944, |[R ]| = 1944, |[R ]| = 324, |[R ]| = 216.
1 2 3 4 5



662 S. Brlek et al. / Journal of Combinatorial Theory, Series A 119 (2012) 655–667
Table 1
Number of Cantorian classes of size n × n on s letters.

n\s 2 3 4 5 6 · · ·
2 1/1 1/1 1/1 1/1 1/1 · · ·
3 1/3 5/9 5/9 5/9 5/9 · · ·
4 6/21 56/171 107/275 107/275 107/275 · · ·
5 11/165 1873/12 574

Table 2
Number of Cantorian tableaux of size n × n on s letters.

n\s 2 3 4 5 · · ·
2 1 · 22 22 · 32 32 · 42 42 · 52 · · ·
3 3 · 23 47 · 22 · 33 207 · 32 · 43 579 · 42 · 53 • • •
4 109 · 24 25 036 · 22 · 34 803 613 · 32 · 44 9 419 224 · 42 · 54 • • •
5 2765 · 25 16 304 200 · 22 · 35

6 324 781 · 26

7 37 304 106 · 27

8 13 896 810 621 · 28

9 5 438 767 247 337 · 29

10 6 889 643 951 630 251 · 210

11 8 135 113 082 369 752 094 · 211

The following lemma is useful for establishing a formula for Cantorian tableaux of fixed small
dimensions and variable alphabet size.

Lemma 9. If s > n, then the Cantorian minimal reduced forms in T s
n are the Cantorian minimal reduced forms

in T n
n .

Proof. Let ci be the ith column of a tableau T . The maximal number of distinct letters that may
appear in ci is n. Using a bijection on ci , we can always obtain a new column-word c′

i using only
the first n letters of A. Applying this process to all column-words of T , we obtain a new tableau T ′
equivalent to the first one using at most n distinct letters. Thus, every class representative has at
most n letters. �

Table 1 lists the number of Cantorian minimal representatives and the number of tested tableaux
obtained experimentally, thanks to the implementation of our method in the computer algebra system
Sage [6].

Using the cardinality formula given by Eq. (4) in Theorem 6, we are able to extend the enumerative
results listed in Table 2 in [2].

Moreover, once the Cantorian minimal reduced forms of T n
n are computed, we deduce a closed

formula for the number of Cantorian tableaux of dimension n on an alphabet of s letters. The next
proposition extends Theorem 1 of [5].

Proposition 10. The number C(n, s) of Cantorian tableaux for n = 2,3 and 4 is given by the following poly-
nomials

C(2, s) = s2 · (s − 1)2; (6)

C(3, s) = s3 · (s − 1)2 · (s4 + 2s3 − 15s2 + 16s − 1
); (7)

C(4, s) = s4 · (s − 1)2 · (s10 + 2s9 + 3s8 − 92s7 − 43s6 + 1014s5 − 449s4 − 5680s3

+ 12 045s2 − 9406s + 2629
)
. (8)

Proof. By Lemma 9 and Theorem 6, it suffices to compute the representatives for s � n. Eq. (6) was al-
ready established in [5] (Theorem 1, p. 332). Nevertheless, we provide an alternate and much simpler
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proof. For n = s = 2, there is only one Cantorian class represented by the tableau Rs
2. The cardinality

of the Cantorian class is obtained using Eq. (4). It remains to compute that η = 0 and ϑ = 2 which
then yields

(2)2∏2
i=1

s!
(s−2)!

(2 + 0)2
=

2∏
i=1

s!
(s − 2)! = s2(s − 1)2.

For n = 3 and s � 3, there are 5 different representatives denoted previously by R1, R2, R3, R4 and R5.
Again, the cardinalities of Cantorian classes are obtained from Eq. (4) by computing η and ϑ for each
representative:

|[R1]| =
(3!)2 s!s!s!

(s−2)!(s−2)!(s−2)!
(2! · 3! + 0)1

= 3s3(s − 1)3;

|[R2]| =
(3!)2 s!s!s!

(s−2)!(s−2)!(s−3)!
(1 · 2! + 0)2

= 9s3(s − 1)3(s − 2);

|[R3]| =
(3!)2 s!s!s!

(s−2)!(s−3)!(s−3)!
(1 · 2! + 0)2

= 9s3(s − 1)3(s − 2)2;

|[R4]| =
(3!)2 s!s!s!

(s−1)!(s−3)!(s−3)!
(1 · 2! + 0)6

= 3s3(s − 1)2(s − 2)2;

|[R5]| =
(3!)2 s!s!s!

(s−3)!(s−3)!(s−3)!
(1 · 3! + 0)6

= (s(s − 1)(s − 2)
)3

.

The sum of these polynomials yields Eq. (7). For Eq. (8), the reader may proceed similarly with the
107 representatives or use, for instance, the computer algebra system Sage [6]. �
Remark. It would be interesting to exhibit a general recursive construction: indeed, it amounts to de-
termine the distinct minimal representatives of size n×n from its minors of size (n−1)× (n−1). Fur-
thermore, in [5], it is shown that C(n, s) � (sn − s)n which implies that if C(n, s) = sn(s−1)2(sn2−n−2 +
a · sn2−n−3 + · · ·), then necessarily a � 2.

5. Bi-Cantorian tableaux

In Section 7 of [2], the authors introduced the subclass of bi-Cantorian tableaux:

Definition 9. A tableau T ∈ T s
n is bi-Cantorian if Perm(T ) ∩ (C ∪ L) = ∅.

In other words, a tableau is bi-Cantorian if it is Cantorian and if none of the column-words appear
in its permanent. Taking into account that we can generate Cantorian tableaux using the represen-
tatives, we can now compute by brute force the bi-Cantorian tableaux. Table 3 lists the first results.
The property of being bi-Cantorian is not invariant under the relation ∼c . Besides this fact, observe
that given a permutation σ of Sn , the property of being bi-Cantorian is invariant under the action
of σ on both the rows and columns. It is also invariant under the action of pairs (σ , τ ) ∈ S such that
σ · C ∩ Perm(T · τ ) = ∅, and of course, by any bijection on A as well. This defines a new equivalence
relation ∼b on the set T s

n .
Given the relation ∼b , for dimension n = 2, there are three bi-Cantorian classes:[

1 2
2 1

]
,

[
1 2
2 3

]
,

[
1 2
3 4

]
;
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Table 3
Number of bi-Cantorian tableaux of size n × n on s letters.

n\s 2 3 4 5 6 · · ·
2 1 · 2 · 1 2 · 3 · 3 3 · 4 · 7 4 · 5 · 13 5 · 6 · 21 · · ·
3 1 · 2 · 3 2 · 3 · 367 3 · 4 · 6179 4 · 5 · 43 065
4 1 · 2 · 91 2 · 3 · 402 873
5 1 · 2 · 2005

while for n = 3 and s = 2, there is only one class represented by the tableau[1 1 2
1 1 2
2 2 1

]
.

For n = 3 and s = 3, there are 32 classes and for s = 4, there are 173 classes.
The choice for a bi-Cantorian class representative is not as clear as for Cantorian classes because

of the rather complicated relation ∼b . In trying to understand bi-Cantorian tableaux, we relate this
classification with some coloring of a graph.

Let K (s) be the set of s-colored cycle graphs on 4 vertices (labeled v1, v2, v3, v4 clockwise)
such that no edge has the same color on both of its vertices. Moreover, let B(s) be the set of 2×2
bi-Cantorian tableaux on s letters.

Proposition 11. The function ψ : B(s) → K (s) defined by[
α1,1 α1,2
α2,1 α2,2

]
�→ {(v1,α1,1), (v2,α1,2), (v3,α2,2), (v4,α2,1)

}
is a bijection between B(s) and K (s). In particular, we have∣∣K (s)

∣∣= ∣∣B(s)
∣∣= 2

(
s

2

)
+ 12

(
s

3

)
+ 24

(
s

4

)
= s(s − 1)

(
s2 − 3s + 3

)
,

and the 3 bi-Cantorian representatives give the non-isomorphic colorings of the cycle graph.

Proof. First, we prove that the image of a bi-Cantorian tableau gives a proper coloring of the 4-cycle.
So, consider a bi-Cantorian tableau B and its image {(v1,α1,1), (v2,α1,2), (v3,α2,2), (v4,α2,1)}. If the
associated colored 4-cycle has an edge which is monochromatic with color α ∈ A, this means that the
bi-Cantorian tableau B has the word α2 in the set C ∪ L. Now, suppose that α2 is a row-word of B .
The diagonal of B actually appears as the first or second column-word of B , meaning that B is not bi-
Cantorian, which is a contradiction. If α2 is a column-word, the same argument applies verbatim by
interchanging rows and columns. The injectivity of this function is easily verified. It remains to check
that ψ is surjective. Given a proper coloring of the 4-cycle K = {(v1, β1), (v2, β2), (v3, β3), (v4, β4)},
with βi=1,...,4 ∈ A, the inverse image gives the tableau

ψ−1(K ) =
[

β1 β2
β4 β3

]
.

To check that this tableau is indeed bi-Cantorian, we proceed by contradiction and assume that the
tableau is not bi-Cantorian. Then, there is a column-word or row-word w which is either equal to
the diagonal of ψ−1(K ) or its secondary diagonal. Suppose that w is equal to the main diagonal-
word β1β3, since β2 and β4 are not equal to β1 nor to β3, w cannot be equal to the second column
or second row. The same holds for the first row-word and first column-word. Finally, one can see that
if w is equal to the secondary diagonal, the same arguments hold and lead to a contradiction, forcing
the tableau to be bi-Cantorian.

To get the cardinality of K (s), one can easily compute the number of distinct colorings by using 2,
3 and 4 distinct colors, which are 2, 12 and 24 respectively. Finally, starting with s colors, it remains
to count the number of ways to choose 2, 3 and 4 distinct colors within s colors. �
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Looking at the enumeration of bi-Cantorian tableaux, some new questions arise. Denote by B(n, s)
the number of n × n bi-Cantorian tableaux on s letters and by C(n, s) the number of n × n Cantorian
tableaux on s letters. First, in order to obtain asymptotic results similar to Section 5 of [2], one should
find a sufficient condition for not being bi-Cantorian.

Naturally, we can also ask what is the ratio of bi-Cantorian tableaux to Cantorian tableaux, and
whether the limit as n → ∞ exists, if so what is its value? Using the data from Table 2 and Table 3
with s = 2, the first values of this ratio are

B(n,2)

C(n,2)
= 0.5,0.25,0.104,0.045

for respectively n = 2,3,4,5. This strongly suggests that the ratio tends to zero. In the next section,
we attempt to answer this question by using an alternate approach.

6. Variations and extensions of Cantorian tableaux

Consider an infinite tableau formed by listing the algebraic numbers in some base s in rows. Are
there algebraic columns? If yes, how many? In this section, we give results that would suggest the
right answer is no with high probability and discuss further extensions of Cantorian tableaux.

Consider the infinite tableau T ∞ formed by row-words in the set L∞ = A�αω
1 ∪ A�αω

2 ∪· · ·∪ A�αω
s .

Every row in T ∞ finishes with a tail of α1 or a tail of α2, etc. In other words, for every row-word �,
we have

|�|α1 = ∞, |�|α2 < ∞, |�|α3 < ∞, etc.

or |�|α2 = ∞, |�|α1 < ∞, |�|α3 < ∞, etc.

or |�|α3 = ∞, |�|α1 < ∞, |�|α2 < ∞, etc.

· · ·
or |�|αs = ∞, |�|α1 < ∞, |�|α2 < ∞, etc.

Theorem 12. The tableau T ∞ is Cantorian. Moreover, if s = 2, then it is not bi-Cantorian.

Proof. First, we prove that every element p ∈ Perm(T ∞) contains infinitely many times each let-
ter α ∈ A. To prove this, we adapt the proof of Theorem 10 in [2]. By contradiction, assume that
|p|a < ∞ for some a ∈ A. Then, let μ be the morphism without fixed point defined by μ(b) = a for
all b �= a, and μ(a) = c for some c �= a. By Theorem 3 in [2], we have Perm(μT ∞) ∩ L∞ = ∅, which
implies that μ(p) contains infinitely many occurrences of letters a and c. But from some index on, p
does not contain the letter a, so that μ(p) has an infinite tail of a’s. Contradiction. We can therefore
say that L∞ ∩ Perm(T ∞) = ∅ and hence T ∞ is Cantorian.

One can see that there are infinitely many rows beginning with α1, infinitely many rows beginning
with α2, etc. Thus, the first column contains infinitely many times each letter in A. This property is
true for every column of T ∞ . If we suppose that s = 2, then Theorem 11 in [2] says that Perm(T ∞) =
[0,1] \ L∞ = {words with infinitely many α1 and α2}. This latter set is exactly the set Cω of column-
words of T ∞ . Therefore, Perm(T ∞) ∩ Cω = Cω �= ∅ and hence T ∞ is not bi-Cantorian. �

In the statement of Theorem 10 in [2], it is assumed that the set L of row-words contains the
rational numbers Q. The above tableau T ∞ , with s = 2, is the same as the one containing the binary
expansions of the numbers k/2n , with k,n ∈ N and 0 � k/2n < 1, with the convention that every
number should appear twice, once with a tail of 0’s and once with a tail of 1’s. Our last proof implies
that a more general statement of this theorem is true, namely:

Corollary 13. Let the set L of row-words of T ∞ be such that L∞ ∩ [0,1] ⊆ L ⊆ [0,1]. Then, T ∞ is Cantorian.
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Remark. In view of Theorem 13 in [2], Theorem 12 above suggests that there is a very small proba-
bility for a column-word to be algebraic.

When discussing infinite tableaux in previous articles, Brlek et al. [2] and Mendès France [5] were
mostly concerned with real numbers and their expansion in basis s � 2. Other kind of expansions may
be interesting to look at, in particular continued fractions. We discuss for the remaining of this section
the very special case of irrational formal power series

∑
n�1

αn
xn over the field F2 with two elements 0

and 1. It is well known that these series have a continued fraction representation [0, A1(x), A2(x), . . .]
where for all j � 1, A j(x) are polynomials of degrees � 1. In a remarkable paper [1], Baum and Sweet
study those continued fractions where for all j, the degree of A j(x) is 1, i.e. [0, x + a1, x + a2, . . .],
with a j = 0 or 1, which for short we call BS-elements. Baum and Sweet observe that there exist
countably many algebraic BS-elements. We show:

Proposition 14. Let T be the infinite tableau where the rows represent the partial quotients x + a j
i of the

family of algebraic BS-elements. Then, T is Cantorian and more precisely Perm(T ) represents the family of all
transcendental BS-elements.

Proof. Identify x + a j
i with a j

i . The proposition is then a trivial corollary of Theorem 11 of [2]. �
7. Cantorian-type tableaux and colored hypergraphs

In this section, we link the study of Cantorian tableaux to colored hypergraphs with a square
number of vertices. A hypergraph H is a pair (V , B) consisting of a vertex set V and a family B of
subsets of V , called blocks. A hypergraph is regular if each vertex of V appears in the same number of
blocks. Also, a hypergraph is uniform if every block in B contains the same number of vertices. Two
hypergraphs are isomorphic if there is a bijection between their vertex set preserving the blocks.

We now build a hypergraph on n2 vertices. Set V = {vij | 1 � i, j � n} for the vertex set. The
block family consists of two distinct sets of blocks: the first one is L = {{vij | 1 � j � n} | 1 � i � n},
called row blocks; the second block-set is P = {{vπ(i)i | 1 � i � n} | π ∈ Sn}, called diagonal blocks. We
set B = L ∪ P . Thus, H = (V , B) is a ((n − 1)! + 1)-regular and n-uniform hypergraph. Each block of
this hypergraph has a natural linear ordering of its vertices according to the second index. A vertex
coloring χ of H is a map from V to a color set A, with |A| = s. Such a coloring χ of H is intersecting
if there exists a sequence of colors (α1, . . . ,αn), with αi ∈ A, that appears both in a block of L and
in a block of P . A non-intersecting colored hypergraph is called for obvious reasons Cantorian since it
translates literally to a tableau. Indeed, if χ and χ ′ are two vertex colorings of H , they are isomorphic
if there exists a bijection λ : χ(L) ∪ χ(P ) → χ ′(L) ∪ χ ′(P ) such that its restriction λ : χ(L) ∩ χ(P ) →
χ ′(L) ∩ χ ′(P ) is also a bijection. Clearly, such a λ leaves the Cantorian property invariant.

Proposition 15. If two tableaux are ∼c-equivalent, then their corresponding colored hypergraphs are isomor-
phic.

Proof. Let T and T ′ be two equivalent tableaux and let H T and HT ′ be their respective colored hyper-
graphs. Clearly, acting by permutation of rows and columns on T yields an isomorphic colored hyper-
graph. It remains to verify the case where T ′ is obtained from T by a permutation of the alphabet on
a certain column. In this case, the permutation induces the bijection λ : χ(L) ∪ χ(P ) → χ ′(L) ∪ χ ′(P )

so that λ is also a bijection on their intersection. Therefore, the new hypergraph H T ′ is isomorphic
to HT . �
Remark. The converse of this statement is false. Consider the three non-equivalent tableaux on the
alphabet {1,2,3} which yield isomorphic hypergraphs:[1 1 1

1 2 2

]
,

[1 1 1
1 2 2

]
,

[1 1 1
2 2 2

]
.

1 3 3 2 3 3 3 3 3
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Every tableau has 3 distinct row blocks and 6 distinct diagonal blocks. The bijection λ sends cor-
responding blocks to each other. Since all tableaux are Cantorian, λ is trivially a bijection on
χ(L) ∩ χ(P ) = ∅. Thus, the isomorphism classes of Cantorian hypergraphs define an equivalence re-
lation ∼h which is coarser than ∼c . We conjecture that ∼h is the coarsest equivalence relation on
Cantorian tableaux which could improve the computations. Furthermore, it is possible to extend the
notion of Cantorian hypergraph by adding another family C orthogonal to L to represent the columns
of a tableau. This leads to similar notions for bi-Cantorian tableaux classes and isomorphism classes
of bi-Cantorian hypergraphs. It would be interesting to study the isomorphism classes of bi-Cantorian
hypergraphs in order to give a simpler description of bi-Cantorian classes.
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