On topological entropy of transitive triangular maps

Marta Štefánková

Mathematical Institute, Silesian University, 746 01 Opava, Czech Republic

Accepted 1 November 2005

Abstract

In the paper of Alsedà, Kolyada, Llibre and Snoha [L. Alsedà, S.F. Kolyada, J. Llibre, L’. Snoha, Entropy and periodic points for transitive maps, Trans. Amer. Math. Soc. 351 (1999) 1551–1573] there was—among others—proved that a nonminimal continuous transitive map \(f \) of a compact metric space \((X, \rho)\) can be extended to a triangular map \(F \) on \(X \times I \) (i.e., \(f \) is the base for \(F \)) in such a way that \(F \) is transitive and has the same entropy as \(f \). The presented paper shows that under certain conditions the extension of minimal maps is guaranteed, too: Let \((X, f)\) be a solenoidal dynamical system. Then there exist a transitive triangular map \(F \) such that \(h(F) = h(f) \).

© 2005 Elsevier B.V. All rights reserved.

MSC: primary 37B05, 37B10, 37B20, 37B40; secondary 54H20

Keywords: Topological entropy; Topological transitivity; Extension; Triangular map; Regularly recurrent point; Distributional chaos

0. Introduction

Let \((X, \rho)\) be a compact metric space. Let \(f : X \to X \) be a continuous map. We say that \(f \) is (topologically) transitive if for any two nonempty open sets \(U \) and \(V \) in \(X \), there is a nonnegative integer \(k \) such that \(f^k(U) \cap V \neq \emptyset \). We say that a subset \(M \) of \(X \) is a minimal set for a map \(f \) if it is nonempty, closed and invariant and if no proper subset of \(M \) has the same properties. By \(f^n \)-minimal set we mean a minimal set for the map \(f^n \). It is easily seen that if \(X \) itself is minimal then \(f \) is transitive.

Now we recall the Bowen’s definition [3] of topological entropy. A subset \(E \) of \(X \) is called \((n, \epsilon)\)-separated if for every two different points \(x, y \in E \) there exists \(0 \leq j < n \) with \(\rho(f^j(x), f^j(y)) > \epsilon \). A set \(E_1 \subset X \) \((n, \epsilon)\)-spans another set \(K \subset X \) provided that for each \(x \in K \) there is \(y \in E_1 \) for which \(\rho(f^j(x), f^j(y)) \leq \epsilon \) for all \(0 \leq j < n \). For a compact set \(K \subset X \) let \(s_n(\epsilon, K) \) be the maximal possible cardinality of an \((n, \epsilon)\)-separated set \(E \) contained in \(K \) and let \(r_n(\epsilon, K) \) be the minimal possible cardinality of a set \(E_1 \) which \((n, \epsilon)\)-spans \(K \) (we will write \(s_n(\epsilon, K, f) \) and \(r_n(\epsilon, K, f) \) if we wish to stress the dependence on \(f \)). Further, let

\[
s(\epsilon, K, f) = \limsup_{n \to \infty} \frac{1}{n} \log s_n(\epsilon, K, f)
\]

The research was supported, in part, by the Grant Agency of Czech Republic, Grant No. 201/01/P134 and the Czech Ministry of Education, project MSM 192400002.

E-mail address: marta.stefankova@math.slu.cz (M. Štefánková).
Then the entropy of \(f \) on the set \(K \) is defined by
\[
h_\rho(f, K) = \lim_{s \to 0} s(\varepsilon, K, F)
\]
and the topological entropy of \(f \) by
\[
h(f) = h_\rho(f, X).
\]
Denote by \(\mathbb{N} \) the set of positive integers. A point \(x \in X \) is said to be recurrent if for every neighborhood \(V \) of \(x \), there is a sequence of positive integers \(k_1 < k_2 < \cdots \) such that \(f^{k_i} \in V \), for each \(i \in \mathbb{N} \). The set of all recurrent points for \(f \) is denoted by \(\text{Rec}(f) \). The point \(x \in X \) is said to be regularly recurrent if for every neighborhood \(V \) of \(x \), there is an \(n \in \mathbb{N} \) such that, for every nonnegative integer \(k \), \(f^{kn}(x) \in V \). Note that a minimal set containing regularly recurrent point can have positive topological entropy.

Next, we recall the notion of distributional chaos which was introduced by Schweizer and Smítal in 1994 [7]. For any pair \((x, y)\) of points in \(X \) and any \(n \in \mathbb{N} \), define a distribution function \(\Phi_{xy}^{(n)} : \mathbb{R} \to [0, 1] \) by
\[
\Phi_{xy}^{(n)}(t) = \frac{1}{n} \#\{0 \leq i \leq n - 1; \rho(f^i(x), f^i(y)) < t\}.
\]
Obviously, \(\Phi_{xy}^{(n)}(t) \) is a nondecreasing function, \(\Phi_{xy}^{(n)}(t) = 0 \) for \(t \leq 0 \) and \(\Phi_{xy}^{(n)}(t) = 1 \) for \(t \) greater than the diameter of \(X \). Put
\[
\Phi_{xy}(t) = \lim_{n \to \infty} \Phi_{xy}^{(n)}(t), \quad \text{and} \quad \Phi_{xy}^*(t) = \limsup_{n \to \infty} \Phi_{xy}^{(n)}(t).
\]
The function \(\Phi_{xy} \) is called the lower distribution, and \(\Phi_{xy}^* \) the upper distribution of \(x \) and \(y \). Obviously, \(\Phi_{xy}(t) \leq \Phi_{xy}^*(t) \) for any real \(t \). If \(\Phi_{xy}(t) < \Phi_{xy}^*(t) \) for all \(t \) in an interval, we simply write \(\Phi_{xy} < \Phi_{xy}^* \) and we say that \(f \) is distributionally chaotic.

Let \(M_0 \supseteq M_1 \supseteq \cdots \) be minimal subsets of \(X \) for the maps \(f^{m_0}, f^{m_1}, \ldots \), respectively. Obviously \(m_{i+1} \) is a multiple of \(m_i \) for all \(i \). If \(m_i \to \infty \) then any invariant closed set \(S \subset X = \bigcap_{j \geq 0} \text{Orb}(M_j) \) is called a solenoidal set; if \(X \) is nowhere dense then we call \(X \) a solenoid.

Let \(X \) be a metric space. Let \(C \) denote the class of continuous maps \(f : X \to X \), and \(\Delta \) the class of triangular maps \(F : X \times I \to X \times I \), i.e., the continuous functions defined by
\[
F(x, y) = (f(x), g(x, y)) = (f(x), g_x(y)).
\]
The map \(f \in C \) is called the base for \(F \), and \(g_x : X \times I \to I \) is a family of continuous maps depending continuously on \(x \). Note that \(F \) transforms the layer \(I_x := \{x\} \times I \) into the layer \(I_{f(x)} \).

Triangular maps have much simpler dynamics than continuous maps of the square in general [6]. This is because the projection \(\pi_1 : (x, y) \mapsto x \) semiconjugates any \(F \in \Delta \) to its base \(f \), i.e., \(f \circ \pi_1 = \pi_1 \circ F \). Recall that, for example, the projection \(\pi_1 \) maps the class \(\text{Per}(F) \) of periodic points of \(F \) onto \(\text{Per}(f) \), and if \(M \) is a minimal set for \(F \in \Delta \), then \(\pi_1(M) \) is a minimal set for \(f \). But, on the other hand, a big difference between the dynamics of maps in \(C \) and in \(\Delta \) already appears in the simplest cases in which every periodic point of \(F \) is a fixed point and the base is linear, cf. [4,6]. Note also that if the layer maps \(g_x \) are monotone (i.e., their topological entropy is zero) then entropy of the triangular map \(F \) equals entropy of the base map \(f \).

The Main Theorem of this paper (Theorem 2.1) shows that a continuous transitive map \(f \) of an infinite minimal compact Hausdorff space \(X \) containing a regularly recurrent point (i.e., \(X \) is a solenoidal set—see Theorem 1.3) can be extended to a triangular map \(F \) on \(X \times I \) (i.e., \(f \) is the base for \(F \)) in such a way that \(F \) has the following two properties: (a) \(F \) is transitive; (b) \(F \) has the same topological entropy as \(f \). This result, among others, proves the validity of a theorem from [11] to some minimal spaces; there was proved that on a compact metric space \((X, \rho) \) which is not minimal, a continuous transitive map \(f \) can be extended to a triangular map \(F \) in such a way that \(F \) remains transitive and its entropy does not increase (i.e., is the same as the entropy of \(f \)). The last result of the presented paper (Theorem 2.2) shows that \(F \) can be constructed in such a way that \(F \) is distributionally chaotic.
1. Solenoidal sets in compact Hausdorff spaces

In this section we introduce some results concerning solenoidal sets in compact Hausdorff spaces.

Lemma 1.1. Let \(X \) be a minimal compact Hausdorff space with respect to some \(f \in C(X, X) \), and let \(X \) contain more than one point. Let \(\alpha \in X \) be a regularly recurrent point for \(f \). Then for some positive integer \(n \), \(\omega_{f^n}(\alpha) \) is a proper minimal subset of \(X \) for \(f^n \).

Proof. Let \(\alpha \in X \) be a regularly recurrent point for \(f \), let \(\beta = f(\alpha) \neq \alpha \). (The fact that \(\beta \neq \alpha \) follows immediately from the minimality of \(X \).) Take \(V_\alpha, V_\beta \) disjoint compact neighborhoods of \(\alpha \) and \(\beta \), respectively, and such that \(f(V_\alpha) \subset V_\beta \). Since \(\alpha \) is regularly recurrent, there exists a positive integer \(n \) such that \(f^{kn}(\alpha) \in V_\alpha \) for each positive integer \(k \).

So, \(M := \omega_{f^n}(\alpha) \) is a minimal set for \(f^n \) since \(\alpha \) is regularly recurrent for \(f^n \), and it is a proper subset of \(X \) since \(V_\alpha \cap V_\beta = \emptyset \). \(\square \)

In the proof of the next theorem we use an important result concerning maps on minimal sets:

Lemma 1.2. [2, Lemma 2.1] Let \(X \) be a compact Hausdorff space, let \(f \in C(X, X) \). Suppose that \(X \) is a minimal set for \(f \). Let \(n \) be a positive integer. Then for some positive integer \(t \leq n \) and some \(f^n \)-minimal set \(M \), we have each of the following:

1. \(X \) is the disjoint union of \(M, f(M), \ldots, f^{t-1}(M) \).
2. Each of the sets \(M, f(M), \ldots, f^{t-1}(M) \) is clopen.
3. The collection \(\{ M, f(M), \ldots, f^{t-1}(M) \} \) is the collection of all subsets of \(X \) which are \(f^n \)-minimal.

Also, for each \(x \in X \), the closure of the \(f^n \)-orbit of \(x \) is an \(f^n \)-minimal set.

Theorem 1.3. Let \(X \) be a minimal compact Hausdorff space with respect to some \(f \in C(X, X) \), let \(X \) contain more than one point, and let \(\alpha \in X \) be a regularly recurrent point for \(f \). Then \(X \) is a solenoidal set.

Proof. Let \(M_1 \subset X \) be a proper minimal set for \(f^n \), by Lemma 1.1. By Lemma 1.2 there is \(t_1 \leq n \) such that \(X \) is a disjoint union of \(M_1, f(M_1), \ldots, f^{t_1-1}(M_1) \).

Now, we can proceed by induction: Applying Lemma 1.1 to the minimal set \(M_1 \) and the map \(f^{t_1} \) we can find an increasing sequence \(\{t_k\}_{k=0}^\infty \) of positive integers and a decreasing sequence of compact sets \(\{ M_k \}_{k=0}^\infty \) such that \(t_0 = 1, M_0 = X, \) and \(M_k = \omega_{f^{t_k}}(\alpha) \) is an \(f^k \)-minimal set such that \(M_k, f^{t_k-1}(M_k), \ldots, (f^{t_k-1})^{t_k-2}(M_k) \) is a periodic decomposition of \(X \) into minimal sets with \(f^{t_k-1-t_k}(M_k) = M_k \). \(\square \)

2. A parametric class of triangular maps

Throughout this section we assume that \(X \) is an infinite compact Hausdorff space, and \(f \) is a minimal, and hence, transitive continuous map of \(X \), and that \(X \) contains a regularly recurrent point \(\alpha \). By Theorem 1.3 there is a sequence \(\{ p_i \} \) of positive integers such that \(X \) can be decomposed to \(p_1 \) clopen subsets on the first “level”, then to \(p_1 \cdot p_2 \) clopen subsets on the second one, etc.; let

\[
\underline{X} = Z_{p_1} \times Z_{p_2} \times \cdots \times Z_{p_i} \times \cdots = \prod_{i=1}^\infty Z_{p_i}.
\]

So, we may identify any element \(x \in X \) with the corresponding sequence \(x = x_1x_2 \ldots \in \underline{X}, x_i \in \{0, \ldots, p_i - 1\} \), for any \(i \in \mathbb{N} \).

Let us consider the metric space \((\underline{X}, \rho) \), where \(\rho(\underline{a}, \underline{b}) = \max\{1/i; a_i \neq b_i\} \) for any distinct \(\underline{a} = a_1a_2 \ldots, \underline{b} = b_1b_2 \ldots \) in \(\underline{X} \), and \(\rho(\underline{a}, \underline{b}) = 0 \) otherwise. Let \(\lambda = \{ p_1, p_2, p_3, \ldots \} \) be a sequence of integers greater than \(1 \) which characterizes the solenoidal set \(X \) generated by a regularly recurrent point \(\alpha \), cf. Theorem 1.3.
Assume that the function \(f : X \to X \) acts on \(X \) as an adding machine with the base \(\lambda \), i.e., for \(a \in X \), \(f(a) \equiv b = a + 1000 \ldots \) where the adding is in a changing base given by the sequence \(\lambda \) from the left to right, i.e., \(b_1 = a_1 + 1 \) if \(a_1 + 1 < p_1 \), otherwise \(b_1 = 0 \) and we carry 1 to the next position. The terms \(b_2, b_3, \ldots \) are successively determined in the same fashion—we only have to change the base \(p_i \) in each step (e.g., for \(\lambda = \{2, 3, 5, 2, 6, \ldots \} \) we have \(f(11304 \ldots) = 02304 \ldots, f(12400 \ldots) = 00010 \ldots \)).

It is easy to see that \(\omega_f(x) = X \) for any \(x \in X \).

Now, we can start with the definition of a class of triangular maps which will be needed in the proof of our main theorem. This construction was inspired by a similar and simpler one from [5].

Denote by \(T \) the class of maps \(F : X \times I \to X \times I \), where \(X \) is a solenoidal set and \(F(x, y) = (f(x), g(x, y)) \), where \(f : X \to X \) is the adding machine with the base \(\lambda \), \(g(x, \cdot) : X \times I \to I \) is continuous and nondecreasing for any \(x \in X \) and the family \(g(x, \cdot) \) depends continuously on \(x \) with respect to the uniform metric. Thus \(F \) is continuous on \(X \times I \).

Note that each map \(F \in T \) (and obviously also its monotonic extension \(\tilde{F} \in \Delta \)) has topological entropy \(h(F) = h(f) \). Indeed, we have (see [6])

\[
\sup \{ h(F, I_x); \ x \in X \} + h(f) \geq h(F),
\]

where \(h(F, I_x) \) denotes the topological entropy of the map \(F : X \times I \to X \times I \) with respect to the compact subset \(I_x \), i.e., the entropy \(h(F, I_x) \) is computed only for trajectories starting from \(I_x \). But since \(F^i \) is monotonic on \(I_x \) for any \(i \), we have clearly \(h(F, I_x) = 0 \). Thus, \(h(F) = h(f) \).

Now, we introduce a special subclass \(T_1 \) of \(T \). Let \(\{k_i\}_{i=1}^{\infty} \) be an increasing sequence of positive integers with \(k_i - i \to \infty \). For any \(x = x_1 x_2 \ldots x_i \ldots \) in \(X \), the digits \(x_{k_1}, x_{k_2}, \ldots \) are called control digits of \(x \). Let \(\{\varphi_i\}_{i=1}^{\infty} \) be a sequence of mappings from \(I \) into \(I \) of the form

\[
\varphi_i(t) = t^{k_i}, \quad \text{with } s_i > 0, \quad \lim_{i \to \infty} s_i = 1.
\]

We define a function \(F : X \times I \to X \times I \) as follows:

If the first zero control digit of \(x \) is \(x_{k_a} \),

\[
F(x, y) = (f(x), \varphi_{k_a}(y));
\]

otherwise \(F(x, y) = (f(x), y) \). The condition \(\lim_{i \to \infty} s_i = 1 \) assures the continuity of \(F \). Moreover, it is easy to recognize that \(F \) is a homeomorphism of \(X \times I \) into itself.

Theorem 2.1 (Main Theorem). Let \((X, f) \) be a solenoidal dynamical system. Then there exist a transitive triangular map \(F \) with \(h(F) = h(f) \).

Proof. We show that \(F \in T_1 \). Since the functions \(\varphi_i \) commute, the value \(F^n(Q, y_0) = : (f^n(Q), y_m) \) depends only on the number of times any function \(\varphi_i \) is applied. Given an \(r \in \mathbb{N} \), take \(n \) so that \(k_n \leq r < k_{n+1} \), and denote by \(\pi(r) = p_1 \cdot p_2 \cdot \ldots \cdot p_r \). Then the points \(f^i(Q), 0 \leq i < \pi(r) \) are represented by all the \(\pi(r) \) sequences

\[
a_1 \ldots a_0 0 \ldots, \quad a_i \in \{0, \ldots, p_i - 1\}, \quad 1 \leq i \leq r
\]

which have the \((n + 1)\)th control digit equal zero and so the only functions that may enter in the expression of \(y_i, 1 \leq i \leq \pi(r) \), are \(\varphi_1, \ldots, \varphi_{n+1} \). The number of times the function \(\varphi_i, 1 \leq i \leq n + 1 \), enters the expression of \(y_{\pi(r)} \) equals the number \(N(r, i) \) of sequences \(a_1 \ldots a_0 0 \ldots \) having \(a_{k_i} = 0 \) and \(a_{k_x} \neq 0 \) for all \(1 \leq s < i \). It is easy to see that \(N(r, i) = \pi(r) \cdot v(n, i) \) where

\[
v(n, i) = \frac{p_{k_1} - 1}{p_{k_1}} \cdot \frac{p_{k_2} - 1}{p_{k_2}} \cdot \ldots \cdot \frac{p_{k_i - 1} - 1}{p_{k_i - 1}} \cdot \frac{1}{p_{k_i}} \quad \text{if } 1 \leq i \leq n,
\]

and

\[
v(n, n + 1) = \frac{p_{k_1} - 1}{p_{k_1}} \cdot \frac{p_{k_2} - 1}{p_{k_2}} \cdot \ldots \cdot \frac{p_{k_n} - 1}{p_{k_n}}.
\]

So we have

\[
y_{\pi(k_n)} = \varphi_1^{\pi(k_n)v(n, 1)} \circ \varphi_2^{\pi(k_n)v(n, 2)} \circ \ldots \circ \varphi_{n+1}^{\pi(k_n)v(n, n+1)}(y_0).
\]
Since
\[f^{\pi(k_n)}(0) = 0 \ldots 0 100 \ldots \]
for the next \(\pi(k_n) \) iterations we use exactly the same functions as starting from 0. We may proceed in this way until the \(k_{n+1} \)th digit stays zero. This means that we can repeat this process \(\pi(k_{n+1} - 1)/\pi(k_n) \) times. Thus, for any \(m \) with \(0 \leq m \leq \pi(k_{n+1} - 1)/\pi(k_n) \),
\[y_{m\pi(k_n)} = \varphi_1^{m\pi(k_n)v(n,1)} \circ \varphi_2^{m\pi(k_n)v(n,2)} \circ \cdots \circ \varphi_{m\pi(k_n)v(n,n+1)}(y_0). \]

In order to construct the function \(F \) we start by imposing on the sequence \(\{s_i\} \) the additional condition
\[s_{2i-1}s_{2i-1}^{-1} = 1, \quad \text{for } i \geq 1, \]
or equivalently,
\[\varphi_{2i-1}^{s_{2i-1}} \circ \varphi_{2i}^{-s_{2i-1}} = \text{Id}, \quad \text{for } i \geq 1. \]

Note that in (8) we have powers of \(s_{2i-1} \) and \(s_{2i} \) (with exponents \(p_{2i} \) and \(p_{2i-1} - 1 \), respectively) while in (9) iterates of functions \(\varphi_{2i-1} \) and \(\varphi_{2i} \), with the same exponents. By (3)–(7) this implies
\[\varphi_{2i-1}^{m\pi(r)v(l,2i-1)} \circ \varphi_{2i}^{m\pi(r)v(l,2i)} = \text{Id}, \quad \text{if } r \geq k_{2i}, \ l \geq 2i, \ i \geq 1. \]

Consequently, by (7),
\[y_{m\pi(k_{2n})} = \varphi_{2n+1}^{m\pi(k_{2n})v(2n,2n+1)}(y_0), \quad \text{i.e.,} \]
\[y_{m\pi(k_{2n})} = y_0^{(s_{2n+1})m\pi(k_{2n})v(2n,2n+1)}, \quad 0 \leq m \leq \frac{\pi(k_{2n+1} - 1)}{\pi(k_{2n})}. \]

We want to show that it is possible to choose the sequence of parameters \(\{s_n\} \) satisfying (8) such that
\[\omega_F((0, y_0)) \supseteq I_0, \quad \text{for any } y_0 \in (0, 1). \]

Since the \(\omega \)-limit sets are strongly \(F \)-invariant, and \(F \) maps any fibre \(I_x \) onto the fibre \(I_{f(x)} \) (13) implies \(\omega_F((0, y_0)) = X \times I \). Since \(\lim_{n \to \infty} f^{\pi(k_n)}(0) = 0 \) to prove (13) it is enough to assure that the values given by (12), with \(m = 1 \), are dense in \(I \) and this is equivalent to requiring that
\[\pi(k_{2n})v(2n, 2n + 1) \log(s_{2n+1}) \quad \text{is dense in } (-\infty, \infty). \]

Thus, we are looking for a sequence \(\{s_i\}_{i=1}^\infty \) satisfying (8), (14), and the last condition from (1), i.e.,
\[\lim_{i \to \infty} s_i = 1. \]

To satisfy (14) we define the sequence \(\{s_{2n+1}\}_{n=1}^\infty \) by
\[\log(s_{2n+1}) = \frac{\sigma_n}{\pi(k_{2n})v(2n, 2n + 1)} \]
where \(\{\sigma_n\}_{n=1}^\infty \) is a sequence dense in \((-\infty, \infty) \) satisfying
\[\left| \frac{\sigma_n}{\pi(k_{2n})v(2n, 2n + 1)} \right| < \frac{1}{n}. \]

Note that we can always meet this condition provided the sequence \(\{k_i\}_{i=1}^\infty \) increases sufficiently rapidly. Thus, there is a sequence \(\{\eta_n\}_{n=1}^\infty \) such that (17) is satisfied provided
\[k_{2n} \geq \eta_n, \quad n = 1, 2, \ldots. \]

Now if the sequence \(\{s_{2n+1}\}_{n=1}^\infty \) satisfies (16) and (17), we have \(\lim_{n \to \infty} s_{2n+1} = 1 \), and the sequence \(\{s_{2n}\}_{n=1}^\infty \) which is uniquely determined by \(\{s_{2n+1}\}_{n=1}^\infty \) via (8), also converges to 1 and consequently, (15) is satisfied. So (i) is proved provided the sequence \(\{k_{2n}\} \) satisfies condition (18). \(\Box \)
Theorem 2.2. Let \((X, f)\) be the solenoidal dynamical system, let \(F\) be the map from the Main Theorem. Then for any \(u \in \{0\} \times (0, 1)\) and \(v = (0, 0)\) or \(v = (0, 1)\),
\[
\Phi^*_{uv}(t) = 1, \quad \Phi_{uv}(t) = 0, \quad t \in (0, 1);
\]
hence \(F\) is distributionally chaotic.

Proof. In this proof we use the notation from the proof of the Main Theorem. In order to assure (2) we take a sequence \(\{\sigma_n\}\), dense in \((-\infty, \infty)\) and such that
\[
\sigma_n < 0 \quad \text{for } n \text{ odd, and } \sigma_n > 0 \quad \text{for } n \text{ even}
\]
and we show how to define recursively the sequence \(\{k_n\}\) in order to meet condition (18).

We start the recursive process by taking \(k_1\) arbitrarily, \(s_1 = s_2 = 1\) and \(k_2 > k_1\) satisfying (18). Assume now we have constructed \(k_i\), for \(i \leq 2n\), so that (18) is satisfied.

If \(n\) is even take \(\rho_n \in (0, 1/2n)\) such that
\[
y_j < \frac{1}{2n} \quad \text{if } y_0 \leq \rho_n \text{ and } 0 < j < \pi(k_{2n}).
\]
This is possible since only a finite number of continuous functions \(\varphi_i\) enter in the expression of \(y_j\) and for them both points 0 and 1 are fixed. Since \(n\) is even, \(\sigma_n > 0\), by (19). Hence, by (16), \(s_{2n+1}^{\pi(k_{2n})} < 1\) and consequently, there is a positive integer \(b(n)\) such that
\[
\varphi_{2n+1}^{b(n)\pi(k_{2n})}(y_0) = y_{0+1}^{s_{2n+1}^{\pi(k_{2n})}} < \rho_n, \quad \text{for } y_0 = 1 - (1/2n).
\]
Similarly, if \(n\) is odd we take \(\rho_n \in (0, 1/2n)\) such that
\[
y_j > 1 - \frac{1}{2n} \quad \text{if } y_0 \geq 1 - \rho_n \text{ and } 0 \leq j < \pi(k_{2n}).
\]
Since \(\sigma_n < 0\) there is a positive integer \(b(n)\) such that
\[
\varphi_{2n+1}^{b(n)\pi(k_{2n})}(y_0) > 1 - \rho_n, \quad \text{for } y_0 = 1/2n.
\]
Now, we choose \(k_{2n+1}\) such that
\[
\frac{b(n)\pi(k_{2n})}{\pi(k_{2n+1} - 1)} < \frac{1}{2n}
\]
and \(k_{2n+2} > k_{2n+1}\) satisfying (18).

Now we show that the function \(F\) constructed in this way satisfies (2). Take \(y_0 \in (0, 1)\) and \(n_0\) such that \(y_0 \in [1/2n_0, 1 - (1/2n_0)]\). Let \(n\) be an even integer greater than \(n_0\). For every \(r\), \(b(n)\pi(k_{2n}) \leq r \leq \pi(k_{2n+1} - 1)\), we can write \(r = m\pi(k_{2n}) + j\) with \(b(n) \leq m \leq \pi(k_{2n+1} - 1)/\pi(k_{2n})\) and \(0 \leq j < \pi(k_{2n})\). So, by (12), (20) and (21)
\[
y_m\pi(k_{2n}) \leq y_{b(n)\pi(k_{2n})} < \rho_n \quad \text{and} \quad y_j < \frac{1}{2n}.
\]
Thus
\[
\# \begin{Bmatrix}
0 \leq i < \pi(k_{2n+1} - 1) \text{ and } y_i < \frac{1}{2n}
\end{Bmatrix} \geq \pi(k_{2n+1} - 1) - b(n)\pi(k_{2n}),
\]
and so, by (24)
\[
\Phi_{uv}^{\pi(k_{2n+1})} \left(\frac{1}{2n} \right) \geq 1 - \frac{b(n)\pi(k_{2n})}{\pi(k_{2n+1} - 1)} > 1 - \frac{1}{2n}.
\]
Hence we conclude that \(\Phi_{uv}^*(t) = 1\) for \(t \in (0, 1)\). Similarly, if we take \(n\) odd, we get
\[
\Phi_{uv}^{\pi(k_{2n+1})} \left(1 - \frac{1}{2n} \right) \leq \frac{1}{2n},
\]
and so \(\Phi_{uv}(t) = 0\) for \(t \in (0, 1)\). \(\Box\)
References