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a b s t r a c t

In this paper, a new approach for solving nonlinear systems of Volterra integral equations
has been proposed. The method is based on Chebyshev wavelets approximations. The
method is described and after that the error is analyzed. At the end, some examples are
presented to illustrate the ability and simplify of the method and the results reveal the
effectiveness of the technique.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Orthogonal functions and polynomials have been used by many authors for solving various functional equations. The
main idea of using an orthogonal basis is that the problem under study reduces to a system of linear or nonlinear algebraic
equations. This can be done by truncated series of orthogonal basis functions for the solution of problem and using the
operational matrices. In this paper, Chebyshev wavelets basis, on the interval [0, 1], have been used. There are many
applications of the Chebyshev wavelet method in the literature [1–3]. An extension of Chebyshev wavelets method for
solving nonlinear systems of Volterra integral equations [4–6], is the novelty of this paper.

Mathematical modeling of many phenomena in different disciplines leads to a system of Volterra integral equations. So
the solutions of these systems are of great interest formathematicians and engineers. Systems of Volterra integral equations
have been solved by some methods, the Adomian decomposition method [7,8], Homotopy perturbation method [9,10],
Variational iteration method [11], Adomian–Pade technique [12], Runge–Kutta method [13], radial basis function
networks [14] and block by block method [15]. The general form of these systems can be presented as follows

(a) The first kind
m
j=1

 x

0
ki,j(x, t)Gij(u1(t), u2(t), . . . , un(t))dt = fi(x), 0 ≤ x ≤ 1, i = 1, 2, . . . , n, m = 1, 2, . . . . (1)

(b) The second kind

ui(x) = fi(x)+

m
j=1

 x

0
kij(x, t)Gij(u1(t), u2(t), . . . , un(t))dt, 0 ≤ x ≤ 1, i = 1, 2, . . . , n, m = 1, 2, . . . . (2)
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where kij(x, t) ∈ L2([0, 1] × [0, 1]) are the kernels, fi(x), i = 1, 2, . . . , n, are known functions, Gij are linear or non-linear
vector functions of n unknown real functions u1(t), . . . , un(t).

2. Wavelets and Chebyshev wavelets

Wavelets constitute a family of functions constructed from dilation and translation of a single function called themother
wavelet, [16–18]. When the dilation parameter, a and the translation parameter, b, vary continuously we have the following
family of continuous wavelets as

ψa,b(x) = |a|−
1
2 ψ


x − b
a


, a, b ∈ R, a ≠ 0. (3)

If we take the dilation and translation parameters a−k, and nba−k, respectively where a > 1, b > 0, n, and k are positive
integers, then we have the following family of discrete wavelets

ψk,n(x) = |a|
k
2 ψ(akx − nb). (4)

These functions are a wavelet basis for L2(R) and in special case a = 2, and b = 1, the functions ψk,n(x) are an
orthonormal basis.

Chebyshev wavelets ψn,m(x) = ψ(k, n,m, x) have four arguments, n = 1, 2, . . . , 2k−1, k is an arbitrary positive integer
and m is the order of Chebyshev polynomials of the first kind. They are defined on the interval [0, 1], as follows:

ψnm(x) = ψ(k, n,m, x) =


2

k
2 T̃m(2kx − 2n + 1),

n − 1
2k−1

≤ x <
n

2k−1
,

0, otherwise
(5)

where

T̃m(x) =


1

√
π
, m = 0,

2
π
Tm(x), m > 0.

(6)

andm = 0, 1, . . . ,M −1 and n = 1, 2, . . . , 2k−1. Tm(x) are the famous Chebyshev polynomials of the first kind of degreem,
which are orthogonal with respect to the weight functionW (x) =

1√
1−x2

, on the interval [−1, 1], and satisfy the following

recursive formula:T0(x) = 1,
T1(x) = x,
Tm+1(x) = 2xTm(x)− Tm−1(x), m = 1, 2, . . . .

(7)

The set of Chebyshev wavelets is an orthogonal set with respect to the weight function Wn(x) = W (2kx − 2n + 1).
A function f (x) defined on the interval [0, 1] may be presented as

f (x) =

∞
n=1

∞
m=0

cnmψnm(x). (8)

The series representation of f (x) in (7) is called a wavelet series and the wavelet coefficients cnm are given by cnm =

(f (x), ψnm(x))Wn(x). The convergence of the series (8), in L2[0, 1], means that

lim
s1,s2→∞

∥f (x)−

s1
n=1

s2
m=0

cnmψnm(x)∥ = 0. (9)

Therefore one can consider the following truncated series for series (8)

f (x) ≃

2k−1
n=1

M−1
m=0

cnmψnm(x) = CTψ(x), (10)

where C and ψ(x) are 2k−1M × 1 matrices given by

C =

c10, c11, . . . , c1M−1, c20, c21, . . . , c2M−1, . . . , c2k−10, . . . , c2k−1M−1

T
=


c1, c2, . . . , cM , cM+1, . . . , c2k−1M

T
, (11)
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and

ψ(x) =

ψ10(x), ψ11(x), . . . , ψ1,M−1(x), ψ20(x), ψ21(x),

= . . . , ψ2,M−1(x), . . . , ψ2k−10(x), . . . , ψ2k−1,M−1(x)
T

=

ψ1(x), ψ2(x), . . . , ψM(x), ψM+1(x), . . . , ψ2k−1M(x)

T
. (12)

The integration of the product of two Chebyshev wavelets vector functions with respect to the weight function Wn(x),
is derived as 1

0
Wn(x)ψ(x)ψT (x)dx = I, (13)

where I is an identity matrix.
A function f (x, y) defined on [0, 1] × [0, 1] can be approximated as the following

f (x, y) ≃ ψT (x)Kψ(y). (14)

Here the entries of matrix K = [kij]2k−1M×2k−1M will be obtain by

ki,j = (ψi(x), (f (x, y), ψj(y))Wn(y))Wn(x), i, j = 1, 2, . . . , 2k−1M. (15)

The integration of the vector ψ(x), defined in (12), can be achieved as x

0
ψ(t)dt = Pψ(x) (16)

where P is the 2k−1M × 2k−1M operational matrix of integration [1,2]. This matrix is determined as follows.

P =
1
2k



L F F · · · F

O L F
. . .

...

O O L
. . . F

...
. . .

. . .
. . . F

O · · · O O L

 , (17)

where L, F and O areM × M matrices given by

L =



1
1

√
2

0 0 0 · · · 0

−

√
2
4

0
1
4

0 0 · · · 0

−

√
2
3

−
1
2

0
1
6

0 · · · 0
...

. . .
. . .

. . .
...

√
2
2
(−1)r


1

r − 2
−

1
r


· · · −

1
2(r − 2)

0
1
2r

· · · 0

...
. . .

. . .
. . .

...
√
2
2
(−1)M


1

M − 2
−

1
M


0 0 0 · · · −

1
2(M − 2)

0



, (18)

F =



2 0 · · · 0
0 0 · · · 0

−
2
√
2

3
0 · · · 0

...
...

. . .
...

√
2
2


1 − (−1)r

r
−

1 − (−1)r−2

r − 2


0 · · · 0

...
...

. . .
...

√
2
2


1 − (−1)M

M
−

1 − (−1)M−2

M − 2


0 · · · 0


, (19)
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O =


0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 . (20)

The property of the product of two Chebyshev wavelets vector functions will be as follows

ψ(x)ψT (x)Y ≃ Ỹψ(x), (21)

where Y is a given vector and Ỹ is a 2k−1M × 2k−1M matrix. This matrix is called the operational matrix of product.

3. Solution of systems of Volterra integral equations via Chebyshev wavelets method

Consider the systems of Volterra integral equations (1) and (2). Let’s consider the following approximations for unknown
functions ui, (x), i = 1, 2, . . . , n.

ui(x) ≃ CT
i ψ(x), i = 1, 2, . . . , n (22)

where Ci, i = 1, 2, . . . , n are 2k−1M × 1 matrices given by

Ci =


c i10, , c

i
11, . . . , c

i
1M−1, c

i
20, c

i
21, . . . , c

i
2M−1, . . . , c

i
2k−10, . . . , c

i
2k−1M−1

T

=

ci,1, ci,2, . . . , ci,M , ci,M+1, . . . , ci,2k−1M

T
, (23)

and ψ(x) is defined in (12). Also consider the following approximations

fi(x) ≃ F T
i ψ(x), Gi,j(u1(t), u2(t), . . . , un(t)) ≃ Y T

ij ψ(t),

kij(x, t) ≃ ψT (x)Kijψ(t), i = 1, 2, . . . , n, j = 1, 2, . . . ,m.
(24)

where Kij are the 2k−1M × 2k−1M matrices, Fi are the 2k−1M × 1 matrices, and Yij are column vectors with the entries of the
vectors Ci for i = 1, 2, . . . , n, j = 1, 2, . . . ,m.

Substitution of approximations (22) and (24) into the systems (1) and (2), will be resulted to:

F T
i ψ(x) =

m
j=1

 x

0
ψT (x)Kijψ(t)ψT (t)Yij, dt,

=

m
j=1

ψT (x)Kij

 x

0
ψ(t)ψT (t)Yij, dt


,

=

m
j=1

ψT (x)KijỸi,jPψ(x), i = 1, 2, . . . , n, m = 1, 2, . . . (25)

and

CT
i ψ(x) = F T

i ψ(x)+

m
j=1

 x

0
ψT (x)Kijψ(t)ψT (t)Y ,ijdt,

= F T
i ψ(x)+

m
j=1

ψT (x)Kij

 x

0
ψ(t)ψT (t)Yij, dt


,

= F T
i ψ(x)+

m
j=1

ψT (x)KijỸi,jPψ(x), i = 1, 2, . . . , n, m = 1, 2, . . . (26)

where Ỹij are 2k−1M × 2k−1M operational matrices for production and P is the 2k−1M × 2k−1M operational matrix of
integration [1–3].

According to the Galerkin method by multiplying Wn(x)ψT (x), in both sides of the systems (25) and (26) and then
applying

 1
0 (.)dx, linear or non-linear systems in terms of the entries of Ci, i = 1, 2, . . . , n, will be obtained. The elements

of vector functions Ci, i = 1, 2, . . . , n can be computed by solving these systems.
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4. Error analysis

Theorem 1. Assume P be the number of vanishing moments for a wavelet ψnm(x) and let f (x) ∈ CP
[0, 1]. Then the wavelet

coefficient, cnm, decays as follows

|cnm| ≤ CP2
−n


P+

1
2


Max
ξ∈[0,1]

f (p)(ξ) , (27)

where CP is an independent constant from n,m and f (x).

The above theorem implies that wavelet coefficients are exponentially decayed with respect to P and by increasing P the
decay increases.

Since the truncated Chebyshev wavelets series is approximate solution of a system, so one has an error function
error(f (x)) for f (x) as follows

error(f (x)) =

f (x)−

2k−1
n=1

M−1
m=0

cnmψnm(x)

 (28)

where setting x = xj, xj ∈ [0, 1], the absolute error value of xj can be obtained.
The error bound of the approximate solution by using Chebyshev wavelets series is given by the following theorem.

Theorem 2. Suppose f (x) ∈ CP
[0, 1] and CTψ(x) =

2k−1

n=1
M−1

m=0 cnmψnm(x) is the approximate solution using Chebyshev
wavelets method. Then the error bound would be obtained as follows

∥error(f (x))∥ ≤
1

P!2P(k−1)
Maxξ∈[0,1]|f (P)(ξ)|. (29)

Proof. Using the definition of norm in the inner product space, we have

∥error(f (x))∥2
= ∥f (x)− CTψ(x)∥2

=

 1

0
W (x)(f (x)− CTψ(x))2dx. (30)

Because the interval [0, 1] is divided into 2k−1 subintervals In =


n−1
2k−1 ,

n
2k−1


that the function f (x) is approximated

on them by using Chebyshev wavelets method as a polynomial of the Pth degree at most with the least-square property,
therefore would be as

∥error(f (x))∥2
=

 1

0
W (x)(f (x)− CTψ(x))2dx =

2k−1
n=1

 n
2k−1

n−1
2k−1

Wn(x)(f (x)− CTψ(x))2dx

≤

2k−1
n=1

 n
2k−1

n−1
2k−1

Wn(x)(f (x)− SP(x))2dx,

where SP(x) is any polynomial of degree P that interpolates f (x) on In with the following error bound for interpolating

|f (x)− Sp(x)| ≤
1

P!2P(k−1)
Maxξn∈In |f

(P)(ξn)|. (31)

Therefore, using (31) would be obtained

∥error(f (x))∥2
≤

2k−1
n=1

 n
2k−1

n−1
2k−1

Wn(x)


1
P!2P(k−1)

Maxξn∈In

f (P)(ξn)2

dx

≤

2k−1
n=1

 n
2k−1

n−1
2k−1

Wn(x)


1
P!2P(k−1)

Maxξ∈[0,1]
f (P)(ξ)2

dx

=

 1

0


1

P!2P(k−1)
Maxξ∈[0,1]

f (P)(ξ)2

dx

=

 1
P!2P(k−1)

Maxξ∈[0,1]
f (P)(ξ)2

. �

5. Numerical examples

In this section, some examples of systems of Volterra integral equations are considered and will be solved by introduced
method. These examples are solved for k = 1 and M = 6.
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Table 1
Numerical results of Example 1.

x u(exact) u(CWM) error(u(x)) v(exact) v(CWM) error(v(x))

0 0 −0.0000260703 0.00002607035 0 0.0002222967327 0.0002222967327
5437 437

0.2 0.04 0.03998703593 0.00001296407437 0.2 0.1999646030 0.0000353966836
0.4 0.16 0.1599826154 0.00001738456777 0.4 0.4000415581 0.0000415581197
0.6 0.36 0.3600478974 0.00004789734703 0.6 0.5999773361 0.0000226638703
0.8 0.64 0.6399664612 0.00003353875937 0.8 0.7999977346 0.0000022653373
1 1 1.000185856 0.0001858557196 1 0.999922349 0.0000776850473

Example 1. Consider the following nonlinear system of Volterra integral equations of the first kind with the exact solutions
u(x) = x2 and v(x) = x [7,14].

 x

0
(1 − x2 + t2)(u(t)+ v3(t))dt = −

1
12

x6 −
2
15

x5 +
1
4
x4 +

1
3
x3, x

0
(5 + x − t)(u3(t)− v(t))dt =

1
56

x8 +
5
7
x7 −

1
6
x3 −

5
2
x2, 0 ≤ x ≤ 1.

(32)

Let’s

u(x) ≃ CT
1ψ(x), v(x) ≃ CT

2ψ(x),

u3(x) ≃ Y T
1 ψ(x), v3(x) ≃ Y T

2 ψ(x),

−
1
12

x6 −
2
15

x5 +
1
4
x4 +

1
3
x3 ≃ F T

1ψ(x),

1
56

x8 +
5
7
x7 −

1
6
x3 −

5
2
x2 ≃ F T

2ψ(x),

(1 − x2 + t2) ≃ ψT (x)K1ψ(t),
(5 + x − t) ≃ ψT (x)K2ψ(t).

Substitution into the system (29), leads to the following system
F T
1ψ(x) = ψT (x)K1

 x

0
ψ(t)ψT (t)(C1 + Y2)dt = ψT (x)K1Ỹ1Pψ(x),

F T
2ψ(x) = ψT (x)K2

 x

0
ψ(t)ψT (t)(Y1 − C2)dt = ψT (x)K2Ỹ2Pψ(x).

(33)

MultiplyWn(x)ψT (x), on both sides of the system (33), apply
 1
0 (.)dx, and then solve the system. The elements of vector

functions C1 and C2 can be obtained as follows
C1 = [0.4700121513, 0.4431403268, 0.1108030029, 0.00002342689770,

0.00003248339560, 0.00004361621557]T ,

C2 = [0.6266750242, 0.4430699839, 0.00002475338584,−0.00003950954832,
0.00002662956111,−0.00004993764185]T .

Therefore, the following solutions will result.

u(x) ≃ CT
1ψ(x) = 0.02519840204x5 − 0.05830434600x4 + 0.04658408778x3 + 0.9851318713x2

+ 0.001601910954x − 0.00002607035437
v(x) ≃ CT

2ψ(x) = −0.02885048049x5 + 0.07597237616x4 − 0.07222939205x3 + 0.02971053030x2

+ 0.9950969843x + 0.0002222967327.
Table 1 shows some values of the solutions and absolute errors at some x’s and plots of the exact and approximate

solutions are shown in Fig. 1. Comparison between the obtained solutions by the Adomian decomposition method in [7]
and the results of this paper show that the absolute error of the Chebyshev wavelets method is less than the absolute error
of the Adomian decomposition method.

Example 2. Consider the following nonlinear system of Volterra integral equations of the second kind
u(x) = sin x − x +

 x

0


u2(t)+ v2(t)


dt,

v(x) = cos x −
1
2
sin2 x +

 x

0
u(t)v(t)dt, 0 ≤ x ≤ 1.

(34)
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Fig. 1. (a1) and (b1) comparison of the exact and approximate solutions of Example 1.

Table 2
Numerical results of Example 2.

x u(exact) u(CWM) error(u(x)) v(exact) v(CWM) error(v(x))

0 0 −0.000001403 0.000001403703 1 1.000000319 0.000000319
703684 684

0.2 0.1986693308 0.1986696393 0.0000003085 0.9800665778 0.9800669460 0.0000003682
0.4 0.3894183423 0.3894165787 0.00000017636 0.9210609940 0.9210604974 0.0000004966
0.6 0.5646424734 0.5646433964 0.000000923 0.8253356149 0.8253349025 0.0000007124
0.8 0.7173560909 0.7173557641 0.0000003268 0.6967067093 0.6967067839 0.0000000746
1 0.84144709848 0.8414719842 0.0000009994 0.5403023059 0.5403020838 0.0000002221

With the exact solutions u(x) = sin x and v(x) = cos x [10,15].

The vectorsC1 andC2 are computedby solving the systemof nonlinear equations for six unknowns, via theMaple package,
as follows

C1 = [0.5638986783, 0.3768420409,−0.02600615260,−0.003987867721,
0.0001365184253, 0.00001401577453]T

C2 = [1.032209955,−0.2058701368,−0.04760382879, 0.002178573519,
0.0002499015756,−0.6913472440 × 10−5

]
T .

Therefore, we have the following approximate solutions

u(x) = 0.008097427401x5 − 0.0005258577420x4 − 0.1657167707x3 − 0.0004456850651x2

+ 1.000064274x − 0.1403703684 × 10−5

v(x) = −0.003994087527x5 + 0.04607914088x4 − 0.002260687350x3 − 0.4994799014x2

− 0.00004269977464 + 1.000000319.

Table 2 shows some values of the solutions and absolute errors at some x’s and plots of the exact and approximate
solutions are shown in Fig. 2.

Example 3. Consider

 x

0


(5 + x − t)u(t)+


x2

2
+ t


v(t)w(t)


dt =

1
48

x6 +
19
270

x5 +
19
72

x4 +
7
6
x3 + x2 + 5x, x

0


(
x2

2
+ t)u(t)+ (3 + x − t)v(t)+

1
4
(x2 − t2)w(t)


dt =

1
24

x5 +
35
288

x4 +
17
18

x3 +
5
4
x2 +

9
2
x, x

0


tu(t)v(t)− xtv2(t)− 5w(t)


dt = −

1
54

x7 +
1
72

x6 −
1
4
x5 +

17
96

x4 −
9
8
x3 −

1
2
x2 −

10
3

x, 0 ≤ x ≤ 1.

(35)

With the exact solution u(x) =
1
4x

2
+ 1, v(x) =

1
3x

2
+

3
2 , andw(x) =

1
2x +

2
3 , [9].

By applying the Chebyshev wavelets method and solving the resulted nonlinear system, the following results would be
achieved.

C1 = [1.370909608, 0.1107744910, 0.02796071583,−0.3904883363 × 10−5,−0.3849125038 × 10−5,

− 0.2901199063 × 10−5
]
T ,
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Table 3
Numerical results of Example 3.

x u(exact) u(CWM) error(u(x)) v(exact) v(CWM) error(v(x)) w(exact) w(CWM) error(w(x))

0 1 1.00000 0.000001158 1.5 1.49999 0.000000642 0.66666 0.66665 0.0000097282
1158 9358 66667 69385

0.2 1.01 1.01000 0.0000009599 1.51333 1.51333 0.0000004605 0.76666 0.76665 0.0000008219
096 7788 3333 2873 47730 66667 8447 52071

0.4 1.04 1.03999 0.0000000249 1.55333 1.55333 0.0000000792 0.86666 0.86666 0.0000030059
9975 5013 3333 3413 8579 66667 36607 964

0.6 1.09 1.08999 0.0000023016 1.62 1.62000 0.0000010726 0.96666 0.96667 0.0000071362
7698 2855 1073 5340 66667 3803 43

0.8 1.16 1.16000 0.0000044583 1.71333 1.71333 0.0000024753 1.06666 1.06665 0.0000081324
4458 5934 3333 0858 2844 6667 8534 58

1 1.25 1.24997 0.0000229459 1.83333 1.83346 0.0000132612 1.16666 1.16671 0.0000439496
7054 3658 3333 595 6583 6667 0616 41

Fig. 2. (a2) and (b2) comparison of the exact and approximate solutions of Example 2.

C2 = [2.036637098, 0.1477068045, 0.03692842611, 0.2315201546 × 10−5, 0.2139368296 × 10−5,

0.1528559747 × 10−5
]
T ,

C3 = [1.148875490, 0.2215642788, 0.5944442817 × 10−5, 0.7599016308 × 10−5,

0.6251581812 × 10−5, 0.8638907550 × 10−5
]
T .

Therefore, we have the following approximate solutions

u(x) ≃ CT
1ψ(x) = −0.001676110122x5 + 0.003634336424x4 − 0.002695611180x3 + 0.2507910494x2

− 0.00007776845858x + 1.000001158,

v(x) ≃ CT
2ψ(x) = 0.0008830950267x5 − 0.001898743184x4 + 0.001397379211x3 + 0.3329250622x2

+ 0.00004044331183x + 1.499999358,

w(x) ≃ CT
3ψ(x) = 0.004990957212x5 − 0.01157446124x4 + 0.009386241600x3

− 0.003128439331x2 + 0.5003793796x + 0.6666569385.

Some values of exact, approximate solutions and absolute errors are presented in Table 3 and the plots of exact and
approximate solutions are shown in Fig. 3.

6. Conclusion

The aim of this paper is to develop Chebyshev wavelets method for obtaining the solutions of nonlinear systems of
Volterra integral equations. Illustrative examples are included to demonstrate that the method is a very effective and useful
technique for finding approximate solutions of these systems. In [9,10], examples (2) and (3) were solved by the Homotopy
perturbations method and comparison between the obtained absolute error values in [9,10] and this paper shows that
the absolute error values of the Chebyshev wavelets method are less than the absolute error values of the Homotopy
perturbations method. Research for finding more applications of this method and other orthogonal basis functions is one
of the goals of our research group. Here, the computations associated with these examples are performed by the package
Maple 13.
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Fig. 3. (a3), (b3) and (c3) comparison of the exact and approximate solutions of Example 3.
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