
Cell Reports

Article
Highly Coordinated Proteome Dynamics
during Reprogramming
of Somatic Cells to Pluripotency
Jenny Hansson,1 Mahmoud Reza Rafiee,1,6 Sonja Reiland,1,6 Jose M. Polo,2,3,4,7 Julian Gehring,1 Satoshi Okawa,1

Wolfgang Huber,1 Konrad Hochedlinger,2,3,4,5 and Jeroen Krijgsveld1,*
1European Molecular Biology Laboratory, Genome Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
2Massachusetts General Hospital Center for Regenerative Medicine, 185 Cambridge Street, Boston, MA 02114, USA
3Massachusetts General Hospital Cancer Center and Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA
4Harvard Stem Cell Institute, 1350 Massachusetts Avenue, Cambridge, MA 02138, USA
5Howard Hughes Medical Institute and Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Medical School,

7 Divinity Avenue, Cambridge, MA 02138, USA
6These authors contributed equally to this work
7Present address: Monash Immunology and Stem Cell Laboratories, Monash University, Wellington Rd, Clayton, Victoria 3800, Australia

*Correspondence: jeroen.krijgsveld@embl.de

http://dx.doi.org/10.1016/j.celrep.2012.10.014
SUMMARY

Generation of induced pluripotent stem cells (iPSCs)
is a process whose mechanistic underpinnings are
only beginning to emerge. Here, we applied in-depth
quantitative proteomics to monitor proteome
changes during the course of reprogramming of
fibroblasts to iPSCs. We uncover a two-step reset-
ting of the proteome during the first and last 3 days
of reprogramming, with multiple functionally related
proteins changing in expression in a highly coordi-
nated fashion. This comprised several biological
processes, including changes in the stoichiometry
of electron transport-chain complexes, repressed
vesicle-mediated transport during the intermediate
stage, and an EMT-like process in the late phase. In
addition, we demonstrate that the nucleoporin
Nup210 is essential for reprogramming by its permit-
ting of rapid cellular proliferation and subsequent
progression through MET. Along with the identifica-
tion of proteins expressed in a stage-specific
manner, this study provides a rich resource toward
an enhanced mechanistic understanding of cellular
reprogramming.

INTRODUCTION

Somatic cells can be reprogrammed to induced pluripotent stem

cells (iPSCs) by the forced expression of only four transcription

factors (TFs): Oct4, Klf4, Sox2, and c-Myc (OKSM) (Park et al.,

2008; Takahashi and Yamanaka, 2006; Yu et al., 2007). iPCS

share many properties with embryonic stem cells (ESCs),

offering great potential for clinical and medical applications

such as patient-specific regenerative medicine (Wu and

Hochedlinger, 2011). To fulfill these prospects, and to design
Cell Re
strategies improving the efficiency of iPSC generation, a better

understanding of the reprogramming process is required at the

molecular level. Recent studies have shown that reprogramming

is accompanied by remodeling of the somatic cell transcription

and chromatin programs (Maherali et al., 2007; Mikkelsen

et al., 2008) and that it proceeds via intermediate steps (Bram-

brink et al., 2008; Plath and Lowry, 2011; Stadtfeld et al.,

2008), characterized by the rapid induction of proliferation and

downregulation of somatic genes, followed by a mesen-

chymal-to-epithelial transition (MET) (Li et al., 2010; Sama-

varchi-Tehrani et al., 2010). Only in the late stage the regulators

of the pluripotent state (Oct4, Nanog) are expressed (Brambrink

et al., 2008; Stadtfeld et al., 2008). In addition, several individual

parameters not directly related to the composition of the TF

cocktail have been demonstrated to affect efficiency or kinetics

of reprogramming, e.g., miRNAs acting on the cell cycle, inhibi-

tion of p53, chemical inhibition of histone deacetylase, and

hypoxic culture conditions (Feng et al., 2009b; Huangfu et al.,

2008; Krizhanovsky and Lowe, 2009; Wang et al., 2008; Zhu

et al., 2010). Collectively, these studies have substantiated the

notion that reprogramming is a multifactorial process, where

multiple fundamental cellular processes act synergistically in

a sequential manner to reach pluripotency (Hanna et al., 2009;

Stadtfeld et al., 2008).

Intermediate cells are still poorly characterized. Their investi-

gation has been hampered mainly by the low efficiency of re-

programming, and by the heterogeneity of the cells undergoing

reprogramming. In addition, there is a limited availability of

protein markers that can be used as hallmarks for reprogram-

ming status, and for isolation of distinct cell populations. This

has been addressed in a recently developed model, now facili-

tating the enrichment of intermediate cells destined to become

iPSCs based on the expression of Thy1, SSEA-1, and Oct4-

GFP (Stadtfeld et al., 2008, 2010; Polo et al., 2012). Extending

recent proteomic studies that have compared fibroblasts,

ESCs and iPSCs (Huang et al., 2012; Munoz et al., 2011; Phan-

stiel et al., 2011), we have now exploited this system to perform
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an in-depth quantitative proteomic analysis spanning the entire

course of reprogramming, aiming to study the order, timing,

and magnitude of proteome changes of fibroblasts reverting to

pluripotency.

RESULTS

In-Depth Quantitative Proteome Analysis of Cellular
Reprogramming
Reprogramming was initiated in secondary mouse embryonic

fibroblasts (MEFs) by doxycycline-induced expression of Oct4,

Klf4, Sox2, and c-Myc (Stadtfeld et al., 2010). Commitment to

a stable pluripotent cell fate was observed by days 9–12 and

iPSCs were identified at day 15 (Polo et al., 2012). Cells were iso-

lated over 15 days at 3-day intervals by fluorescence-activated

cell sorting (FACS), based on Thy1, SSEA-1, and Oct4-GFP

expression, to enrich for cells with the potential to become iPSCs

(Stadtfeld et al., 2008) (Figure 1; Figure S1A). For in-depth quan-

titative proteomic profiling, protein extracts from two biological

replicates of the six time points were digested, and peptides

were labeled with stable isotopes via reductive methylation.

Differentially labeled peptides from two consecutive time points

were combined and fractionated using isoelectric focusing.

Peptide fractions were then analyzed by high-resolution nano

liquid chromatography-tandem mass spectrometry (LC-MS/

MS), and quantification of the abundance changes was based

on MS signal intensities of the isotopically labeled peptide pairs

(Figure 1; Figure S1A).

From a total of 6,670,289 MS/MS spectra collected over 240

LC-MS/MS runs, 7,918 unique protein groups were confidently

identified with a false discovery rate of 1% (Table S1). Of these,

94%were identified on the basis of at least two peptides with an

average of eight unique peptides per protein (median = 5). The

approximate protein abundance spanned 7 orders of magnitude

(Figure S1B), affirming that also very low-abundant proteins

were detected. Importantly, the data cover large numbers of

regulatory proteins, including 576 TFs, 357 kinases, 108 phos-

phatases, and 869 proteins involved in the cell cycle (Figures

S1C and S1D).

In each of the sampled time-point comparisons, between

6,262 and 6,904 proteins were quantified in both replicates

(Table S1). The accuracy of quantification was supported by

the high number of quantitative events per protein (average ratio

count 35, median 14). Overall, 5,601 proteins were quantified at

all time points and in both replicates, while proteins not detected

at one or more time points suggest expression in a stage-

specific manner.

The Pluripotency Network Is Induced Rapidly
As expected, the three reprogramming factors that could be de-

tected (Oct4, Sox2, and Klf4) showed enhanced expression

along the course of reprogramming (Figure 1B). The data

covered 65 Oct4-interacting proteins, including a large number

of transcriptional regulators, chromatin modifiers, and general

TFs that are thought to be important to maintain pluripotency

in ESCs (Loh et al., 2011; Pardo et al., 2010; van den Berg

et al., 2010) and that therefore may support a role in imposing

pluripotency during reprogramming. The median 2-fold upregu-
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lation of these network components indicates a global and

immediate activation upon induced Oct4 expression at day 3

(Figure S1E; Table S2). Their maintained expression during the

reprogramming process suggests a sustained need for these

proteins, such as proteins in the core regulatory circuit (Jarid2,

Rif1, Tcf3, Eed) as well as protein complexes with a general

role in transcription regulation (e.g., Mediator, TAF, RNA Pol II,

Nurd) (Figures 1C and S1E; Table S2). In sharp contrast to this

were several TFs whose expression was only induced at a late

stage of reprogramming (Figure 1C), including proteins that

have been defined as bona fide reprogramming factors them-

selves (Esrrb, Sall4, Klf5, Lin28) (Feng et al., 2009a; Jiang

et al., 2008; Wong et al., 2008; Yu et al., 2007).

The network around the other core factors (Sox2, Klf4, and

c-Myc) revealed many additional TFs with less established roles

in the context of pluripotency (Figure 1D). Their early (Hmgb2,

Hmgb3, Nfyc, Ssrp1, Oct1, Crip2), late (Jade1, Hic2), or transient

expression (Meis1, Nfatc2, Crip1) (Table S1) may indicate stage-

specific control of gene expression. Furthermore, exploring

targets of TFs disclosed the differential expression of multiple

OKSM targets in the first and last stage of reprogramming (Fig-

ure 1E). The stage-specific regulation of targets of various other

TFs, such as the transcriptional repressor Bcl6, the homeobox

protein Cux1, and the E2F cell cycle regulators, suggests tran-

sient activation of a diverse set of TFs (Figures 1F, S1F, andS1G).

Proteome Reorganization across Multiple Biological
Processes Is Highly Coordinated and Occurs in Two
Oppositely Regulated Steps
The global proteomic changes of the 5,601 proteins observed at

all time points revealed that the largemajority changed in expres-

sion at some point during reprogramming, most notably during

the first and last 3 days (Figure 2A). At these time points, 1,208

and 834proteinswere found to have a greater than 2-fold change

in expression, respectively,while thiswas true for only 16, 43, and

77 proteins during intermediate stages. In addition, a strong anti-

correlation (R =�0.90) was found for protein expression changes

occurring early (transition from day 0 to day 3) and late (day 12 to

iPS) (Figure 2B; Figure S2A). This shows that many proteins with

a reduced expression in the early phase were upregulated in the

late phase, and vice versa, suggesting a drastic resetting of the

proteome at intermediate stages. Interestingly, a corresponding

transcriptomedata set (Polo et al., 2012) showeda high degree of

correlation with proteome changes within the first, but not the

last, 3 days of reprogramming. In fact, protein changes from

day 12 to iPS correlated as well with mRNA changes from day

9 to day 12 (Figure S2B), suggesting that at least some of the pro-

teomechanges at day 12maybe the effect of transcriptional acti-

vation at an earlier time point.

Unsupervised clustering partitioned the temporal profiles of

the 5,601 proteins quantified at all time points into eight clusters

with distinct expression patterns (Figure 2C). Intriguingly, the

clusters revealed stage-specific expression of many functionally

related proteins and protein classes, representing biological

processes occurring at distinct time points or intervals (Figures

2D and 2E). For instance, proteins related to regulation of gene

expression, RNA processing, and chromatin organization are

strongly induced at an early stage with a slight decrease at the
hors



Figure 1. The Changing Pluripotency Network during Reprogramming

(A) Experimental design of the study. Reprogramming was induced by expressing Oct4, Klf4, Sox2, and c-Myc. Cells were isolated at 3-day intervals by FACS

based on Thy1, SSEA-1, and GFP-Oct4 expression, followed by a quantitative proteomic analysis by pairwise comparison of two consecutive time points. See

also Figure S1A.

(B–F) Expression of transcription factors during reprogramming. Expression profiles of the reprogramming factors (B). The average log2 expression change to

day 0 ± SEM for the transcription factors that were used to initiate reprogramming. C-Myc was not covered by the data, possibly because it is refractory to tryptic

digestion. Expression patterns of proteins in the core regulatory circuit associated with pluripotency (C). Network of induced transcription factors that interact

with the reprogramming factors. Increased expression early, transient or late is depicted in gray scale (D). Number of differentially expressed proteins that are

targets of Oct4, Sox2, Klf4, or c-Myc (E) and other TFs (F).

See also Figure S1
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Figure 2. Proteome Dynamics during Reprogramming

(A) Heat map showing expression changes along reprogramming. The row-clustered heat map represents standardized average protein log2 ratios for all 5,601

proteins quantified at all time-point comparisons, in both replicates. Note that most changes occur early and late.

(B) Strong expression changes early and late show opposing direction. Log2 ratios of proteins with strong expression change both early and late during re-

programming (fold change > 2 and ratio countR 2 in both replicates from day 0 to day 3 and day 12 to day 15) are shown, together with the Pearson correlation

coefficient.

(C) Clusters of the protein dynamics along reprogramming. For the 5,601 proteins quantified at all time points (in both replicates), the ratio relative to

day 0 was standardized and proteins were subjected to unsupervised clustering. An upper and lower ratio limit of log2(0.5) and log2(�0.5) was used for

(legend continued on next page)
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final step to pluripotency (cluster 6; Figure 2D). This included

several subunits of RNA polymerase II as well as histones of all

five main histone families (Table S1). This is in line with the

well-recognized role of the chromatin state during reprogram-

ming (Onder et al., 2012) and shows that upregulation of proteins

involved in regulating gene expression is an early event. This is

supported by proteins of similar functionality (general TFs and

histone modifiers) in cluster 2, showing elevated expression in

the early phase, and switching back to original levels at the final

step to pluripotency. In addition, overrepresentation of mito-

chondria in this cluster (Figure 2E) suggests temporal elevation

of mitochondrial proteins during the course of reprogramming.

Cluster 3 indicates that many processes related to cell cycle

and DNA repair are strongly induced and maintained from day

3 onward (Figure 2D), including cell cycle proteins such as

Cdk1, Cdk2, Cyclin B1, Plk1, and NPAT. The latter protein,

required for progression through G1 and S phase, along with

the strong increase in expression of Mki67 and Rbl1 (P107) at

day 3, indicate the onset toward fast proliferation at the earliest

stage of reprogramming. This supports the recent notion that

for successful reprogramming the barrier of cell-cycle arrest

needs to be overcome early (Ruiz et al., 2011; Smith et al., 2010).

The Metabolic Switch to Glycolysis Is Preceded by
a Stoichiometric Change in the Electron Transport
System
Of the eight clusters, only two (7 and 8) showed gradual trends

during the intermediate phase, with a decrease and increase

over time, respectively (Figure 2C). Cluster 8 was found to be en-

riched for glycolytic proteins (Figure 2D), including, e.g., Pfkl,

Gpi, and Pgk1. The overall gradual modest increase of expres-

sion of glycolytic proteins from day 0 to iPS (Figure S2C)

suggests that the metabolic switch frommitochondrial oxidation

to glycolysis, characteristic for fast-proliferating cells (Vander

Heiden et al., 2009), is a gradual process. The early downregula-

tion of proteins of the electron transport system, overrepre-

sented in cluster 1 (Figure 2E), supports this idea. Interestingly,

only complex I and IV were represented in cluster 1, while

complexes II, III, and V showed an opposite (i.e., increased)

expression (Figure 5A). This indicates a change in the stoichiom-

etry of the major components of the oxidative phosphorylation

system, suggesting a change in the efficiency of oxidative phos-

phorylation (Boekema and Braun, 2007; van Raam et al., 2008).

Together with a gradual increase in glycolytic activity noted

above, this may provide a mechanism underlying the metabolic

switch during reprogramming.

Opposing Expression Changes Early and Late Point
to Altered Protein Transport and an Epithelial-to-
Mesenchymal Transition
In the cluster reflecting strongly reduced expression from day

0 to day 3 and elevated expression from day 12 to the iPS stage
inclusion into a cluster. ‘‘n’’ indicates the number of proteins within each clust

cluster profile.

(D and E) Representative overrepresented biological processes and cellular comp

Biological Processes (D) and GO Cellular Components (E) compared to unregula

See also Figure S2

Cell Re
(cluster 4), extracellular matrix (ECM) and cell adhesion proteins,

including 158 plasma membrane proteins, were clearly overrep-

resented (Figure 2D). Intriguingly, this cluster was also enriched

for proteins involved in vesicle-mediated transport (e.g., Rab34,

Cd63, Mrc2, Sec24d), and included many proteins of the Golgi

apparatus (e.g., Gosr2, Stx4, Scamp1, Scamp2) (Figures 2D

and 2E). The coregulation of these protein classes raises the

possibility that reduced endosome recycling provides a mecha-

nism to regulate surface-exposed signaling and adhesion

proteins in intermediate stages. Interestingly, among the several

processes that were found oppositely regulated early and late

was ‘‘Regulation of Epithelial-to-mesenchymal transition’’ (Fig-

ure 3A), a process strongly associated with altered cell adhesion

and motility. This reflects the demonstrated role of MET in the

early stage of reprogramming (Li et al., 2010; Samavarchi-

Tehrani et al., 2010), and suggests an opposite process (EMT)

occurring before the iPS state is reached. To further explore

this idea, the expression characteristics of the key proteins in

MET and EMT were examined in more detail. Consistent with

an early MET, mesenchymal markers like N-cadherin, Fibro-

nectin, Vimentin, and Sparc, as well as cell-matrix adhesion

proteins (e.g., Vinculin) and matrix metalloproteases (MMPs;

e.g., Mmp14) were strongly reduced in expression at day 3,

along with well-known inducers of EMT such as TGF-b, Zeb1,

and Zeb2 (Figure 3B; Table S3). Furthermore, epithelial markers

such as E-cadherin, claudins, and Epcam all showed an

increased expression after day 3 or 6 (Figure 3B; Table S3),

meaning that the repression of mesenchymal proteins precedes

the upregulation of epithelial proteins. Strikingly, at day 12, most

of the mesenchymal markers, cell-matrix adhesion proteins and

MMPs were strongly upregulated, while the epithelial markers

started to decrease in expression (Figure 3B), supporting an

EMT-like process before reaching the iPS state. Although the

key EMT transcription factor Snail remained undetected in our

study, several other proteins known to induce EMT followed

a pattern consistent with the induction of EMT around day 12

(e.g., Pdgfr and Egfr) (Ahmed et al., 2006; Yang et al., 2006).

This also applies to several collagens and integrins (Figure 3C),

protein classes that are thought to promote EMT and contribute

to a gain in stem cell properties (Hayashi et al., 2007; Imamichi

and Menke, 2007). Interestingly, while MET at day 3 was re-

flected both at the transcript and protein level, a late EMT was

only apparent from changes in protein levels (Figures 3B, S3B,

and S3C; Table S3), suggesting that the EMT-like process may

be regulated at the posttranscriptional level.

Proteins within Complexes Are Tightly Coregulated
during Reprogramming
The coordinated proteome changes observed for biological

processes (Figure 2) were also evidenced among components

of protein complexes and protein families, showing concerted

temporal dynamics of proteins within a large number of
er. Membership value represents how well the protein profile fit the average

onents of the clusters. Each cluster from (C) was tested for overrepresented GO

ted proteins.
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Figure 3. Expression Changes Categorized by Functional Group

(A) Overrepresented network processes for protein expression changes early and late. Proteins with expression change (fold change > 1.4 (j0.5j on log2-scale])

both early and late during reprogramming, were tested for overrepresented network processes. Displayed network processes were found overrepresented (p <

0.01) both early and late. Note that no process was overrepresented for proteins whose expression decreased both from day 0 to day 3 and day 12 to iPS.

(B) Temporal expression profiles of proteins related to EMT and MET.

(C) Temporal expression profiles of proteins related to ECM.

See also Figure S3.
complexes with statistical significance (Table S4). These encom-

passed a range of functionalities, e.g., RNA processing (spliceo-

some and integrator complex), mRNA surveillance (exosome),

DNA damage and replication (BASC and MCM complexes),

vesicular transport (AP2 adaptor complex), protein degradation

(COP9 signalosome), and glycosylation (COG and OST

complexes), each of which showed a distinct expression profile

(Figure 4A). For many complexes, our data fully covered all

known subunits. While some of the complexes have previously

been shown to play a role during reprogramming (e.g., BAF; Sin-

ghal et al., 2010) or ESC-specific gene programs (e.g., Cohesin

complex; Nitzsche et al., 2011), many others have not. Interest-

ingly, the data substantiate that protein folding in the ER (115

proteins with KEGG term ‘‘protein processing in endoplasmic

reticulum,’’ including disulfide isomerases), glycosylation in the

Golgi and ER (COG and OST complexes), and protein transport

(AP2 complex, Golgin subfamily A, and KEGG term ‘‘Protein

export’’) are inhibited at intermediate stages (Table S4; Fig-

ure 4A). In addition, we observed subtle but consistent

differences between the chromosome segregation complexes

Cohesin and Condensin, suggesting tightly controlled protein

expression (Figure 4A). This is also reflected by cytoplasmic

and mitochondrial ribosomes each having a distinct expression

profile, supported by the demonstration that unsupervised
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clustering could reconstitute 28S and 39S ribosomes on one

hand, and 40S and 60S on the other (Figure 4B). Similarly, the

19S (PA700 complex) and the 20S subcomponents of the

proteasome show distinct and even slightly opposing profiles

(Table S4). All together, the data point to the tight and specific

regulation of functionally distinct subgroups of the proteome at

specific stages of reprogramming.

Functionally Related ProteinswithOpposing Expression
Profiles Point to a Potential Role in Reprogramming
While coregulation of functionally related proteins reflects tight

coordination of protein expression, deviation from this pattern

by one or more proteins may indicate a specific functionality

during reprogramming. Several of such profiles were observed

in the data (Figure 5A). This included integrins alpha 6 and beta

4 (Figure 3C), which associate to form a receptor for laminin

and have a suggested role in proliferation and migration proper-

ties (Guo and Giancotti, 2004); the epithelial marker 14-3-3

protein sigma (Sfn) regulating ESC proliferation (Chang et al.,

2012); and Histone H1.0, which is differentially incorporated

into chromatin during reprogramming (Terme et al., 2011).

Interestingly, opposed expression profiles were found for

several protein pairs involved in ECM remodeling and EMT,

e.g., Nfatc1 andNfatc2, aswell as Iqgap1 and Iqgap2 (Figure 5A).
hors



Figure 4. Proteins within Complexes or with Related Function Showing Highly Similar Dynamics along Reprogramming

The significance of expression profile similarities within groups of interest was assessed using the R package protein profiles.

(A) Examples of protein complexes or protein families for which the proteins show similar dynamics with statistical significance (all examples have p < 0.015).

(B) Clustering of mitochondrial and cytoplasmic ribosomal proteins. Similarities in expression profiles showed statistical significance within all four ribosomal

subunits (28S and 39S [mitochondrial] and 40S and 60S [cytoplasmic]) (maximal p value was 0.0005). The proteins of all four subunits were grouped by

unsupervised clustering based on expression changes. Mitochondrial and cytoplasmic are indicated in green and purple, respectively.
This suggests functionality in reprogramming by opposing roles

of these proteins in the regulation of cell cycle and apoptosis, as

well as in inhibiting EMT and promotingMET (Kuroda et al., 1998;

Robbs et al., 2008;White et al., 2009). Analogously, the opposing

expression profiles of Fibrillin-1 and Fibrillin-2 may control differ-

ential availability of TGF-b and bone morphogenetic protein

signaling, which inhibit and activate EMT, respectively (Maherali

and Hochedlinger, 2009; Nistala et al., 2010; Samavarchi-

Tehrani et al., 2010). In addition, the opposing expression profile

of the two O-fucosyltransferases Pofut1 and Pofut2 possibly

reflects the fact that Pofut2, but not Pofut1, targets components

of the ECM, thereby modulating ECM synthesis and remodeling

(Du et al., 2010).

The data also covered the quantification of all three mamma-

lian DNA methyltransferases—Dnmt1, Dnmt3a, and Dnmt3b—

critical for altering the epigenetic landscape during reprogram-

ming (Lister et al., 2011). While Dnmt1 and Dnmt3a showed

highest expression in the intermediate phase, Dnmt3b was

strongly upregulated from day 12 to day 15, to a final iPS expres-

sion more than 40-fold higher than in fibroblasts (Figure 5A). This

was concomitant with a sharp increase of Dnmt3l, a catalytic

activator of both Dnmt3a and Dnmt3b (Gowher et al., 2005).

The results fit a model where the differential regulation of the

two de novo DNA methyltransferases controls non-CpG methyl-

ation along reprogramming (Ziller et al., 2011).
Cell Re
Nup210 Is Essential for Reprogramming
Of the 26 nucleoporins that were quantified, 25 showed a

coherent modestly increased expression, while in sharp

contrast the transmembrane nucleoporin Nup210 showed a

more than 10-fold increase from day 3 onward (Figure 6A).

The recent observation that Nup210 shows a very similar

profile during differentiation, regulating the expression of plu-

ripotency and somatic genes (D’Angelo et al., 2012), raises

the possibility that Nup210 fulfills a critical role during reprog-

ramming as well. To address this question, secondary fibro-

blasts were transduced with two different Nup210 shRNAs fol-

lowed by the induction of reprogramming. Strikingly,

reprogramming and iPSC colony formation was blocked in

the absence of Nup210 (Figures 6B and 6C). In fact most of

the cells retained their mesenchymal-like morphology

even 15 days after OKSM induction, and expressed markers

characteristic of mesenchymal cells (Fibronectin and Snail)

(Figure 6C). In addition, appearance of epithelial markers

(Epcam and E-cadherin) was interrupted (Figure 6D). Although

Nup210 is expressed at a very low level in fibroblast cells (Fig-

ure S4E), its repression completely halted cellular proliferation

of the cells (Figure 6E). These results indicate that increased

expression of Nup210 at the onset of reprogramming is

required to permit rapid cell proliferation, and hence progres-

sion through MET.
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(legend continued on next page)
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Stage-Specific Protein Expression Characterizes
Intermediate Cells
The identification of proteins that are expressed in a stage-

specific manner may help to explain the mechanism of reprog-

ramming, or to elucidate markers for intermediate cells. To

nominate such proteins, a principle component analysis (PCA)

was applied to the approximated abundance of each protein

observed at each time point. The overall pattern, displayed as

a biplot (Figure 5B), positions the sampled time points in chrono-

logical order, pointing to a successive change in proteome

composition. Most importantly, the proteins that contributed

most prominently in the PCA provide candidate proteins that

best represent the individual time points (e.g., p53, Mcts2, Tia,

Serpinb6c, Aldoc, and Lin28 for day 0, 3, 6, 9, 12, and 15, respec-

tively, Figure 5C). This collective set of proteins may provide

a signature for subsequent states of reprogramming.

As an alternative approach, individual proteins that changed in

expression specifically at intermediate stages were selected

(Figure 5D). Several of these had emerged in the context of

MET (e.g., Epcam, Claudin 4 and 6) or glycolysis (e.g., Pgk1,

Pfkl, Tpi1), but they also include several other transiently ex-

pressed proteins (e.g., Dlk1, Ly6d, Peg3, Avil). Interestingly,

Dlk1 was recently shown to be a stem cell protein, whose loss

in expression results in enhanced differentiation (Begum et al.,

2012), and Epcam has been shown to be useful for isolating

iPSCs (Chen et al., 2011; Gundry et al., 2012). This confirms

the usefulness of the approach and indicates that the presented

proteins may help to distinguish intermediate cellular popula-

tions that are prone to reach the pluripotent state.

Finally, we compiled inventories of additional protein classes

based on distinct expression patterns. Specifically, Table S5

shows proteins that were not identified until the fully reprog-

rammed iPS state, thus representing proteins that may be re-

garded as iPS-cell specific (e.g., Sod3 and Eras), as well as

proteins that disappear directly after the start of reprogramming

(e.g., Tgfb1 and Slc6a9). Table S6 includes membrane proteins

that are changing strongly between any two consecutive time-

points, and attain their highest expression at the iPS stage.

These proteins, e.g., Cav1 and Gbp2, may be strong candidates

for FACS-based sorting of partially and fully reprogrammed cells.

DISCUSSION

Since the pioneering finding in 2006 that pluripotency can be

induced in somatic cells (Takahashi and Yamanaka, 2006),

a comprehensive view of the underlying mechanisms that drives

reprogramming to the induced pluripotent state remains

incomplete. Because there is a notable lack of understanding

of reprogramming at the protein level, we applied quantitative

proteomics to profile dynamic changes in protein abundance
Figure 5. Prioritizing Proteins Based on Expression Profiles and Funct

(A) Functionally related proteins with opposing expression profile along reprogram

(B and C) Principal component analysis reveals candidate proteins contributing

abundances (iBAQ) of each protein at each time point. Proteins with probable

temporal expression profiles shown in (C), with the same color coding as in (B).

(D) Proteins with a stage-specific expression pattern. Temporal expression profile

intermediate time-point comparisons, and only low change (<1.3-fold) or absence
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during the course of reprogramming of fibroblasts to pluripo-

tency, resulting in a proteome sampled at great depth (close to

8,000 proteins) and spanning a wide dynamic range (7 orders

of magnitude).

While it has become evident that successful reprogramming is

a multistep process, most studies have focused on the initiation

phase, leaving the changes required for the final transition poorly

characterized (Plath and Lowry, 2011). The capability to obtain

intermediate cells destined to become iPSCs (Stadtfeld et al.,

2010; Stadtfeld et al., 2008) enabled us to generate a detailed

proteomic view of the events taking place across the entire

process of reprogramming. We found that major reorganization

of the proteome takes place during the first 3 days of reprogram-

ming, as well as in the final step after day 12, while more subtle

changes occur in the intermediate phase (Figure 7). This applied

tomultiple gene ontologies, suggesting a global and coordinated

two-step rearrangement of the proteome. The pronounced

changes of the proteome within the first 3 days reflect the

kinetics observed in gene expression analyses (Samavarchi-

Tehrani et al., 2010; Polo et al., 2012). A striking finding was

the opposing direction of protein expression changes during

the first and last step of reprogramming. Indeed, our data clearly

show that a large portion of the proteins have their extreme

expression (either maximal or minimal) in the intermediate cells

(Figure 2), indicating a highly particular proteomic identity very

different from their origin (fibroblasts) or destination (iPSC).

Highly coordinated proteome changes were apparent from

synchronized biological processes (Figure 2), but became

even more clear from the tight coregulation of subunits in protein

complexes, indicating the concerted involvement of multiple

processes across multiple cellular compartments (Figure 4;

Table S4). The strong upregulation at day 3 of numerous

proteins related to cell division, DNA replication, chromatin

modification, and DNA damage response can all be related to

accelerated cell cycle progression, by shortening of the G1

phase for iPSCs compared to somatic cells (Ghule et al.,

2011). It is striking that the machinery to effectuate and proof-

read this program is implemented already at the earliest stage

of reprogramming. This was concomitant with elevated levels

of proteins involved in transcription, posttranscriptional pro-

cesses (mRNA processing, splicing, and degradation, Figures

2D and 4A), and translation (translation factors and ribosomes;

Table S1; Figure 4B). In contrast to these processes, glycolytic

enzymes increased progressively in the intermediate phase,

suggesting a gradual transformation of energy metabolism

(Figures 2D and S2C). Strikingly, this was preceded by the

decreased expression of complex I and IV in the electron trans-

port chain at day 3 (Figure 5A), which was in sharp contrast to

the rest of the complexes within the electron transport chain,

as well as to most mitochondrial proteins, showing a temporal
ionality

ming. Curves show mean ± SEM of log2 expression change relative to day 0.

particularly to a specific time point. A PCA was applied to the approximated

high contribution to each time point are highlighted in the biplot (B) and their

s for examples of proteins with strong change (>1.5-fold) in at least one of the

at day 0 to day 3. Curves showmean ±SEMof log2 expression change to day 0.
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Figure 6. Nup210 Is Required for Reprogramming

(A) Protein expression profile of nucleoporins. Curves show mean ± SEM of log2 expression change relative to day 0.

(B–E) Nup210 was depleted (using shRNA) in secondary MEF cells during reprogramming to iPS cells. Number of colonies (mean ± SD) in controls and Nup210

knocked-down cells are shown, for two independent Nup210 shRNAs (B). While many Oct4-EGFP colonies developed in the controls, Nup210 knockdown cells

showed expression of Fibronectin and the mesenchymal marker Snail after 15 days of reprogramming (C). Upper panel shows iPS colony formation for control

cells, and lower panel the Nup210 knockdown cells and their expression of Fibronectin and Snail at day 15 after induction of reprogramming. Scale bar represents

100 mm. For Snail expression, the border of the nucleus (defined by Hoechst staining, see Figure S4) is shown in blue, demonstrating that virtually all cells retain

a mesenchymal phenotype. Relative gene expression (mean ± SD) in control and Nup210 knocked-down cells 15 days after reprogramming (D). Growth curve for

control and Nup210 knockdown MEFs (E).
elevated expression in the intermediate phase (Figure 2E). This

change in stoichiometry of the electron transport chain

complexes is likely to affect the composition of respiratory

supercomplexes, leading to a change in efficiency of oxidative

phosphorylation, and suggests reduced or even uncoupling of
1588 Cell Reports 2, 1579–1592, December 27, 2012 ª2012 The Aut
ATP generation via oxidative phosphorylation (Boekema and

Braun, 2007; van Raam et al., 2008). This is in accordance

with the notion that high proliferation rates are fuelled by a shift

from oxidative phosphorylation to glycolysis (DeBerardinis et al.,

2008; Vander Heiden et al., 2009). Indeed, stimulation of the
hors



Figure 7. Model of Highly Coordinated Proteome Dynamics during Reprogramming

Protein upregulation and downregulation is shown in red and blue, respectively, where color intensity reflects the degree of regulation. Examples are given of

individual proteins that are expressed or repressed in a stage-specific manner.
glycolytic flux has been shown to increase the efficiency of re-

programming (Folmes et al., 2011; Zhu et al., 2010), where

glycolysis and oxidative phosphorylation are compensatory

mechanisms (Folmes et al., 2011). This suggests that a decrease

in oxidative phosphorylation via a reduction of complex I early

during reprogramming may be one of the driving forces to

enhance glycolysis.

Another key event early during reprogramming is MET reca-

pitulated in our data by the sudden loss of multiple ECM

proteins, including mesenchymal markers, and the gradual

gain of epithelial proteins (Figure 3). Intriguingly, this pattern is

almost completely reversed as reprogramming approaches

completion, reminiscent of an EMT-like process. Although this

notion as such is novel, it may bridge an incongruity between

the observation that MET is required for reprogramming (Li

et al., 2010; Samavarchi-Tehrani et al., 2010), and at the same

time that the opposed process (i.e., EMT) confers stem cell prop-

erties to epithelial cells (Mani et al., 2008; Morel et al., 2008).

Epithelial markers (e.g., Epcam) only started to revert to their

initial levels by day 15, suggesting that only partial EMT occurs

and that reprogrammed cells retain some epithelial characteris-

tics. Therefore, the possibility remains that the observed effect

may not be strictly defined as EMT but is simply a change in

adhesion molecules. In conjunction, we observed the loss

and regain of proteins in ER, Golgi, and endosomal vesicles in

a profile very similar to ECM proteins (Figures 2D and 4A).

This may reflect a mechanistic link between protein folding,

glycosylation and transport to regulate deposition of surface

adhesion molecules, thereby modulating cellular interaction or
Cell Re
morphology in intermediate stages to facilitate cellular

reprogramming.

Despite few pronounced events between day 3 and 12, we

identified multiple individual proteins that are transiently ex-

pressed at early, late, or intermediate stages with a potential

role in driving reprogramming to completion (Figure 5; Tables

S5 and S6). A pivotal example is the nuclear pore protein

Nup210, whose expression sharply increased at day 3 (Figure 6).

Countering this by using shRNA-mediated inhibition of Nup210

expression, we showed that MEFs fail to reprogram in the

absence of Nup210 (Figure 6). Interestingly, earlier observations

have indicated that Nup210 is dispensable for nuclear pore

complex assembly (Eriksson et al., 2004; Stavru et al., 2006),

showing preferred expression in epithelial cells while absent in

mesenchymal cells, including fibroblasts (Eriksson et al., 2004;

Olsson et al., 2004; Stavru et al., 2006). In spite of low expression

of Nup210 in MEFs (Figure S4), we observed that its repression

resulted in inhibition of cellular proliferation. Consequently,

progression through MET was prevented and reprogramming

was blocked (Figure 6). Recent data have shown that Nup210

is also required for cellular differentiation by regulating the

expression of pluripotency and somatic genes (D’Angelo et al.,

2012). Intriguingly, among the genes that are upregulated upon

Nup210 knockdown during cellular differentiation (i.e., that are

repressed in the presence of Nup210; D’Angelo et al., 2012),

most of the corresponding proteins in our data showed an

upregulation during reprogramming (Figure S4D). This suggests

that Nup210 may have opposing effects on the regulation of

target genes depending on cellular context. All together, our
ports 2, 1579–1592, December 27, 2012 ª2012 The Authors 1589



observations indicate that Nup210 has a critical regulatory role in

cell cycle progression and reprogramming. In addition, this indi-

cates that factors affecting reprogramming may be sought

beyond classical transcription factors and chromatin modifiers.

In summary, the data presented here offer important insights

into proteome dynamics underlying OKSM-induced reprogram-

ming. We have identified many individual proteins, protein

complexes, and biological processes that accompany reprog-

ramming, some of which in a causal manner, as exemplified for

Nup210. We therefore believe that these data constitute a rich

resource that may assist to further our mechanistic under-

standing of cellular plasticity, and to advance practical applica-

tions of iPS technology.

EXPERIMENTAL PROCEDURES

Reprogramming Experiments and Cell Collection

MEF cultures were established from E13.5 embryos from a reprogrammable

mice strain carrying one copy of theOKSMcassette and Rosa26-M2rtTA allele

(het/het) or carrying two copies of the OKSM cassette and Rosa26-M2rtTA

allele (ho/ho), as well as the GFP reporter for Oct4. Reprogramming was per-

formed in ESC medium in the presence of doxycycline. Cells were isolated at

3-day intervals from day 0 to day 15 by FACS, based on Thy1, SSEA-1, and

Oct4-GFP expression. For Nup210 knockdown experiment, secondary MEF

cells were transduced by lentiviral vectors (two different Nup210 shRNAs,

scrambled shRNA or mock), and reprogramming was induced as described

above.

Peptide Stable Isotope Labeling and Fractionation

After lysis of cells, proteins were reduced/alkylated and digested with trypsin.

Resulting peptides were differentially labeled with stable isotope dimethyl

labeling on column as previously described (Boersema et al., 2009). Briefly,

peptides from consecutive reprogramming time-points were labeled with

a mixture of either formaldehyde-H2 and sodium cyanoborohydride (‘‘light’’

reagent) or formaldehyde-D2 with cyanoborohydride (‘‘heavy’’ reagent). In

a second biological replicate, time-point reagents were swapped, and the light

and heavy labeled samples were mixed in 1:1 ratio based on total peptide

amount. Sample complexity was reduced by fractionating the peptides with

OFFGEL isoelectric focusing (Agilent), into 12 fractions.

LC-ESI-MS/MS Analysis

In technical duplicates, peptides were separated by nanoflow ultrahigh-perfor-

mance liquid chromatography on a 120 min gradient and analyzed by electro-

spray ionization (ESI) MS/MS on an LTQ Orbitrap Velos or Orbitrap Velos Pro

(Thermo Fisher Scientific). Full scan spectra from m/z 300 to 1,700 at resolu-

tion 30,000 were acquired in the Orbitrap MS. The most intense ions (up to

15) from the full-scan MS were selected for fragmentation in the ion trap.

Protein Identification and Quantification

MS raw data files were processed with MaxQuant (version 1.2.2.5) (Cox and

Mann, 2008). The derived peak list was searched using the in-built Andromeda

search engine (version 1.2.2.5) in MaxQuant against the Uniprot mouse data-

base (2011.06.21). A 1% false-discovery rate was required at both the protein

level and the peptide level. The protein identification was reported as an indis-

tinguishable ‘‘protein group’’ if no unique peptide sequence to a single data-

base entry was identified. The iBAQ algorithm was used for estimation of the

abundance of different proteins within a single sample (proteome) (Schwan-

häusser et al., 2011).

Bioinformatic Analysis

Protein classificationwas performed using PANTHER classification system (Mi

et al., 2007). Network and transcription factor activity analysis was done using

MetaCore (GeneGo; Nikolsky et al., 2005). GproX was used for clustering and

Gene Ontology (GO) enrichment analysis (Ashburner et al., 2000; Kumar and

Futschik, 2007; Rigbolt et al., 2011). Principal component analysis was per-
1590 Cell Reports 2, 1579–1592, December 27, 2012 ª2012 The Aut
formed with Perseus (version 1.2.0.11, within the MaxQuant package). The

significance of expression profile similarities within groups of interest was as-

sessed using the R package proteinProfiles.
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