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MicroRNAs (miRNAs) are a class of small, endogenous RNAs of 21–25 nucleotides (nts) in length. They play
an important regulatory role in animals and plants by targeting specific mRNAs for degradation or translation
repression. Recent scientific advances have revealed the synthesis pathways and the regulatory mechanisms
of miRNAs in animals and plants. miRNA-based regulation is implicated in disease etiology and has been
studied for treatment. Furthermore, several preclinical and clinical trials have been initiated for miRNA-
based therapeutics. In this review, the existing knowledge about miRNAs synthesis, mechanisms for
regulation of the genome, and their widespread functions in animals and plants is summarized. The current
status of preclinical and clinical trials regarding miRNA therapeutics is also reviewed. The recent findings in
miRNA studies, summarized in this review, may add new dimensions to small RNA biology and miRNA
therapeutics.
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1. Introduction

The first small RNA, lin-4, was discovered in 1993 through a
genetic screening in nematodes. Later in the same year, the regulation
of lin-14 by lin-4 was discovered, which demonstrated the regulatory
function of small RNAs [1,2]. The shorter lin-4 RNA is now recognized
as the origin of an abundant class of small regulatory RNAs, known as
microRNAs (miRNAs). Currently, miRNA-directed gene regulation is
an active area of study. Hundreds of miRNAs have been discovered by
cloning and size-fractionated RNA techniques [3–5]. The recent
development of high-throughput sequencing technologies [6,7] and
computational and bioinformatics prediction methods has greatly
enhanced research on miRNAs including regulatory targets and
possible functions [8–11]. A number of miRNAs are known for
functions in diverse processes including cell proliferation, cell death,
fat metabolism, neuronal patterning, hematopoietic differentiation,
immunity, and control of leaf and flower development [12].
Computational techniques and bioinformatics algorithms for finding
genes regulated by miRNAs have suggested that these examples
represent very few of the total miRNA system.

In animals, miRNAs are synthesized from primary miRNAs (pri-
miRNAs) in two stages by the action of two RNase III-type proteins:
Drosha in the nucleus and Dicer in the cytoplasm [13]. In plants, the
two-step processing of pri-miRNA into mature miRNA occurs entirely
in the nucleus and is carried out by a single RNase III enzyme, DCL1
(Dicer-like 1) [14]. The mature miRNAs are then bound by Argonaute
(Ago) subfamily proteins. These miRNAs target mRNAs and thereby
function as posttranscriptional regulators [13].

Developments in the miRNA field are increasing steadily. This is
clearly evident in the studies of miRNAs in various diseases, ranging
from Alzheimer's to diabetes. Recently, miRNA research has been
accelerated by technological advancements in RNA-based therapies.
miRNAs are now being studied for their potential as a new generation
of drugs.

This review highlights our understanding of miRNAs following the
report of lin-4 RNA and its regulation of lin-14. The major topics
discussed include miRNA synthesis and regulatory mechanisms. The
functions of miRNAs in gene regulatory pathways and several recent
preclinical and clinical trials are also summarized.

2. miRNA synthesis in animals

miRNAs are defined as 21–25 nucleotide single-stranded RNAs
(ssRNAs), which are produced from hairpin shaped precursors [15].
miRNAs transcripts are then processed after their synthesis. In recent
years, there has been significant effort to investigate the processing of
miRNAs in animals and plants. In animals, genes for miRNAs are
transcribed to a primary miRNA (pri-miRNA). The pri-miRNA is
processed within the nucleus to a precursor miRNA (pre-miRNA) by
Drosha, a class 2 RNase III enzyme. Next, the transport of pre-miRNAs
to the cytoplasm is mediated by exportin-5 (EXP-5). In the cytoplasm,
they are further processed to become mature miRNAs by Dicer an
RNase III type protein and loaded onto the Argonaute (ago) protein to
produce the effector RNA-induced silencing complex (RISC).
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2.1. Genome, genes, and transcriptions

The identification of the lin-4 RNA in 1993 opened windows for a
new era in the field of miRNA genomics; this era truly, began in 2000
with the discovery of the let-7 RNA in Caenorhabditis elegans [16,17].
In the same year, the let-7 gene and let-7 RNA were detected in
humans, Drosophila, and other bilateral animals [18]. Since then,
thousands of miRNAs and miRNA genes have been reported by
cloning and other molecular biology techniques. Moreover, other
miRNAs and miRNA genes have been predicted with the help of
bioinformatics and computational technology tools. A recent study
reported 154 C. elegans, 152 Drosophila melanogaster, 337 Danio rerios
(zebrafish), 475 Gallus gallus (chicken), 695 human, and 187
Arabidopsis thaliana miRNAs [13]. It is worth noting that the miRNA
database “miRBase” reports an indeed larger number of human
miRNA than the reported figures. miRNAs have even been reported in
simple multicellular organisms [19]. Evolutionary studies show that
some miRNAs are phylogenetically conserved in bilaterian animals.
More than half of the C. elegansmiRNA genes have been found to have
homologs in humans [13].

Early researchers discovered that the majority of miRNAs are
located in intergenic regions, whereas a few were annotated in
intronic regions [3,5]. Approximately half of all known miRNAs are
found in close proximity to othermiRNAs. These clusteredmiRNAs are
expressed as poly-cistronic primary transcripts. A few cases showed
that some miRNAs can be transcribed from their own promoter as
mono-cistronic primary transcripts [20,21]. Based on their genomic
locations, miRNA genes can be classified as intronic miRNAs in coding
transcription units (TUs), intronic miRNAs in noncoding TU, exonic
miRNAs in coding TU, and exonic miRNAs in noncoding TU (Fig. 1).
Fig. 1. Schematic illustration of the genomic organization and structure ofmiRNA genes.
The miRNAs can be divided into four distinct groups on the basis of their genomic
location (a) intronic miRNAs in coding transcription units (TUs), for example, the mir-
101-2 cluster. The mir-101-2 cluster is found in the intron of a non-coding RNA
gene, HSPC338. (b) Intronic miRNAs in noncoding TU, such as the mir-135a-2 cluster.
(c) Exonic miRNAs in coding TU, of which the mir-985 is a well known example that is
found in the CACNG8 gene. (d) Exonic miRNAs in noncoding TU, such as mir-206. The
hairpin illustrates miRNA stem loops, and boxes show the protein coding regions
(exon). The figure shows a rough schematic.
RNA polymerase II (Pol II) is mainly responsible for the
transcription of miRNA genes [21,22], but a small group associated
with Alu repeats can be transcribed by RNA polymerase III (Pol III)
[23]. Pol II-dependent miRNA gene expression enables temporal
control, so that a specific set of miRNAs can be synthesized according
to specific conditions and cell types. The product of Pol II- or Pol III-
mediated expression is known as the primary miRNA (pri-miRNA),
which are usually several kilobases long and contain local stem loop
structures.

2.2. Nuclear processing

A number of different proteins are involved in miRNA processing
(Fig. 2). All animal miRNAs are first processed in the nucleus. The pri-
miRNA produced by Pol II is cleaved at the stem of the hairpin
structure, which releases an approximately 60–70 nt hairpin
structure, known as the precursor miRNA (pre-miRNA) [24,25]. This
processing step is performed by Drosha, which requires the DiGeorge
syndrome critical region in gene 8 (DGCR8) in humans and Pasha in D.
melanogaster or C. elegans as a cofactor [20,26–29]. Drosha, in
conjunction with either DGCR8 or Pasha, forms a large complex
known as themicroprocessor complex [26,28]. Mousemodels showed
that DGCR8 genes are important for developmental processes. DGCR8
and Drosha are largely conserved in animals [30–33]. Typically,
metazoan pri-miRNAs are comprised of about 33 base pairs (bp) of
the stem loop and a terminal loop and single-strand RNA (ssRNA)
flanking segments. DGCR8 interacts with the ssRNA segment and
guides Drosha to slice pri-miRNA. Drosha cleaves RNA duplexes about
11 bp away from the ssRNA-stem loop junction and thus processes
the pri-miRNA to the pre-miRNA with a 5′-phosphate group and an
approximately 2 nt 3′ overhang [20,34,35].

2.3. Transportation by exportin-5

Pre-miRNAs are transported into the cytoplasm for further
processing to become mature miRNAs. The transport of the pre-
miRNA occurs through nuclear pore complexes, which are large
proteinaceous channels embedded in the nuclear membrane [36]. The
transport of the pre-miRNA is mediated by the RanGTP-dependent
nuclear transport receptor exportin-5 (EXP5) [37–39]. One proposed
model of miRNA transport posits that the export of the pre-miRNA is
initiated when the EXP5 recognizes the N14-bp double-stranded RNA
(ds-RNA) stem loop with a 3′ overhang followed by cooperative
binding to both the pre-miRNA and GTP-bound cofactor Ran in the
nucleus. The pre-miRNA bound EXP5 exports out of the nucleus,
where hydrolysis of the GTP results in the release of the pre-miRNA
[37,40–42].

2.4. Cytoplasmic processing and Argonaute loading

The nuclear cleavage process by Drosha defines one end of the
mature miRNA. The pre-miRNA is released in the cytoplasm by means
of EXP5 and is subsequently processed by an endonuclease cytoplas-
mic RNase III enzyme Dicer to create amaturemiRNA [43–46]. Dicer is
a highly specific enzyme that measures about 22 nt from the
preexisting terminus of the pre-miRNA and cleaves the miRNA strand.
Dicer is a highly conserved protein that exists in almost all eukaryotic
organisms. Some organisms have multiple types of Dicers; for
example, D. melanogaster contains Dicer-1 and Dicer-2, each having
different roles. Dicer-1 is required for miRNA maturation, whereas
Dicer-2 is required for the maturation of siRNA [47].

Dicer works in close proximity with other proteins including RNAi
deficient-4 (RDE-4) in C. elegans, R2D2, fragile X mental retardation 1
(FMR1) in D. melanogaster, and the Argonaute family proteins (Ago
family protein) in several other organisms [48–51]. Recently, it was
shown that D. melanogaster Dicer-1 requires Loquacious (LOQS; also



Fig. 2. The animal miRNA synthesis pathway. The microRNA (miRNA) genes are
transcribed by RNA polymerase II (Pol II), which results in the production of a pri-
miRNA. Drosha, along with DiGeorge syndrome critical region gene-8 (DGCR-8; Pasha
in flies), mediates the initial processing step (primary processing) that produces a ~65
nucleotide (nt) pre-miRNA. The pre-miRNA has a short stem of 2–3 nt 3′ overhangs,
which is recognized by exportin 5 (EXP5) that mediates transport to cytoplasm. In the
cytoplasm, RNase III Dicer is thought to catalyze the second processing step (secondary
processing), which generates the miRNA/miRNA* duplex. Dicer, TRBP or PACT (LOQS in
flies), and Argonaute1–4 (Ago 1–4) (Argonaute 1 in flies) are responsible for pre-
miRNA processing and RISC (RNA-induced silencing complex) assembly. An unknown
helicase is thought to mediate unwinding of the duplex. One strand of the duplex
remains the mature miRNA (miRNA) on Ago, whereas the miRNA* or passenger strand
is degraded. The figure shows the mammalian miRNA synthesis pathway and fly factors
are in the squares.
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known as R3D1), which contains three dsRNA binding motifs for pre-
miRNA processing [52–54]. The human Dicer is associated with two
closely related proteins, trans-activation response RNA-binding
protein (TRBP) and protein kinase, interferon-inducible double-
stranded RNA-dependent activator (PRKRA, also known as PACT)
[55–57]. The Dicer-associated proteins do not seem to be required for
any processing activity themselves, but rather they contribute in the
formation of the RNA-induced silencing complex [55–57]. However,
the specific roles of these proteins have yet to be determined.

According to the current model, after the generation of an
approximately 22 nt miRNA duplex by Dicer cleavage, the miRNA
duplex is incorporated into an Ago family protein complex. This
generates an effector complex. Mostly one strand of the miRNA
(passenger strand or miRNA⁎) is degraded, whereas the other strand
remains bound to Ago as maturemiRNA (guide strand or miRNA). Yet,
in a few cases, miRNA⁎ are loaded into RISC and therefore remains
functional. Recent evidence has shown that the thermodynamic
stability of the two ends of the duplex may determine which strand is
to be selected [58]. Dicer, in conjunction with other interacting
proteins (TRBP and/or PACT in human and LOQS in fly) and Ago
family proteins, contributes to RISC assembly by forming a RISC
loading complex (RLC) [55,59–62]. The exact mechanism regarding to
the role of RLC in RNA loading to Ago is not known. However, evidence
suggests that after the processed miRNA duplexes are released from
Dicer, the stable end of the miRNA duplex binds to interacting
proteins in the RLC, and the unstable end associates with the Ago
proteins [49,62]. It has been demonstrated that the endo-nucleolytic
enzyme activity of the Ago protein is responsible for the removal of
the miRNA passenger strands [63]. Most of the miRNAs contain
mismatches in the middle, and some Ago proteins lack “slicer”
activity, making the passenger strand of the miRNA resistant to
cleavage. Evidence suggests that an RNA Helicase (yet to be
identified) mediates the unwinding and removal of the unselected
strand of the miRNA duplex. After loading, the miRNA guides the RISC
to its target mRNA, which is silenced through degradation or
translation repression [13,14].

3. miRNA synthesis in plants

Homologs of Drosha and its cofactors (DGCR8/Pasha) have not
been confirmed in plants, which suggests that Drosha-dependent
stepwise processing is absent in plants. Genetic studies showed that
Dicer like-1 (DCL-1) is solely responsible for plant miRNA processing.
The HASTY (HST) homologue of exportin-5 mediates the export of
miRNAs from the nucleus to the cytoplasm. The loading of the miRNA
to the Argonaute family proteins (Ago) is carried out in the nucleus or
in the cytoplasm (Fig. 3).

3.1. Genes and their transcription in plants

In 2002, the first small RNA in plants was discovered through
cloning of a small RNA in rice and Arabidopsis. This suggested that a
small portion of cloned small RNAs correspond to miRNAs [64,65].
Recently, advanced genetics, direct cloning and sequencing, and
bioinformatics and computational prediction methods have revealed
many new miRNAs and their functions in Arabidopsis and other plant
species [66]. A recent study reported 959 miRNAs genes from 10 plant
species including mosses, dicots, and monocots [66]. Some plant
miRNA genes have multiple isoforms (paralogs) that probably arose
by the process of gene duplication and diversification. Plant miRNAs
are generally conserved in evolutionary processes ranging from
mosses to flowering plants [67–69]. Most of the miRNA genes are
annotated to intergenic regions, and unlike animal miRNAs, plants
miRNAs are not arranged in clusters [66]. The majority of plant
miRNAs analyzed have been found to have their own transcriptional
units that are transcribed into a primary transcript (pri-miRNA) by
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polymerase II [66]. Plant miRNA precursors are quite diverse in
structure, and the stem loops are usually longer than those of animal
pri-miRNAs. Studies have shown that the 5′ cap is present in most
plant miRNAs [70]. Most of the plant miRNAs have poly-adenylated
tails; however, the exact role of polyadenylation is still unknown [71].
3.2. Dicer processing and methylation

Plant miRNA processing is entirely dependent on Dicer-like
proteins. Various studies in A. thaliana and other plants have revealed
that DCL1 is important for miRNA processing [72]. DCL1 is a nuclear
protein which indicates that mature miRNAs in plants might be
synthesized in the nucleus [73]. The functional loss of DCL1 greatly
reduces the accumulation of miRNAs and causes pleiotropic develop-
mental defects, revealing the role of DCL1 in miRNA maturation
[72,74–76]. Recent studies have shown that the processing of pri-
miRNAs to pre-miRNAs by DCL1 also requires two other proteins,
HYPONASTIC LEAVES1 (HYL1) and SERRATE (SE). HYL1 is a member
of the ds-RNA-binding protein family in Arabidopsis, and SE encodes a
C2H2 zinc finger motif, which plays a general role in the biogenesis of
miRNAs [77–80].

Plant miRNA methylation occurs after Dicer processing, which
distinguishes it from animal miRNAs. Hua Enhancer (HEN1), a
methyltransferase, may be responsible for methylation and has a
general role in miRNA processing in plants [66]. Recently, it was
demonstrated that HEN1 adds a methyl group onto the 2′ OH of the 3′
terminal nucleotide [81]. The molecular mass of an endogenous
miRNA is approximately 14 Da larger than that of an in vitro
synthesized unmodified miRNA, indicating the presence of a methyl
group in plants [82].
3.3. Argonaute loading and transportation

The resulting methylated miRNA/miRNA* duplex is loaded onto
the Ago protein to generate RISC. The Ago family proteins are
composed of three distinctive domains: the PAZ, MID, and PIWI
domains [83]. The Ago protein PAZ domains bind to RNA and PIWI
domains in a folded structure similar to RNase H [84]. The miRNA*
strand is degraded, which results in the formation of RISC with one
mature miRNA. Like in animals, the strand selection is made through
thermodynamic stability [58,85]. Different types of Ago proteins have
been reported in Arabidopsis, and most of these contain the catalytic
site for slicer activity [86].

HST is a plant homolog of exportin-5 and plays a role in plant
miRNA export from the nucleus to cytoplasm [87,88]. An HST mutant
showed pleiotropic phenotypes and a reduced accumulation of
miRNAs, indicating that this protein functions as a nuclear export
receptor [88–90]. Evidence showed that mature miRNA abundance is
higher than that of miRNA* in both cellular compartments. These facts
suggest that either RISC loading occurs in the nucleus followed by
transportation of miRISC to the cytoplasm or RISC loading occurs in
the cytoplasm after the transportation of the miRNA/miRNA* duplex.
Fig. 3. The plant miRNA synthesis pathway. The miRNA genes are transcribed by RNA
polymerase II (Pol II), which results in the production of the pri-miRNA. DCL1 in
association with SE and HYL1 performs the first processing step (primary processing),
which produces the pre-miRNA. DCL1 and HYL1 are also responsible for the second
processing step (secondary processing) to produce the miRNA/miRNA* duplex. HEN1
mediates methylation in plant miRNA synthesis, which adds methyl groups to both
strand of the miRNA/miRNA* duplex. Hasty (HST) is thought to be responsible for
nuclear export of miRNA in plants. Argonaute loading occurs in the nucleus or
cytoplasm (figure shows cytoplasmic Argonaute loading). Some unknown helicase is
thought to mediate unwinding of the duplex. The passenger strand (miRNA*) is
degraded, and the other strand remains the mature strand with the Ago proteins.
4. Mechanism

miRNAs guide miRISC to specifically recognize messenger RNA
(mRNA) and downregulate gene expression by one of the two
posttranscriptional mechanisms: (i) translational repression and (ii)

image of 


Fig. 4. Possible mechanisms for miRNA gene regulation. Unregulated mRNAs engage with the initiation factor eIF4F complex, which is composed of eIF4A, eIF4E and eIF4G subunits
and recruits ribosomal subunits, which form circularized structures that enhance translation (upper left). When miRISC binds to target mRNAs, a high degree of miRNA–mRNA
complementarity facilitates Ago-catalyzed degradation of target mRNA sequences through mRNA cleavage mechanisms (lower left). Alternatively, central mismatches prevent
degradation and facilitate translational repression by any of four (a–d) possible mechanisms (right): (a) miRISCs bind to target mRNAs and represses initiation at the cap recognition
stage, or at (b) the 60S ribosomal recruitment stage, (c) miRISC can prevent mRNA to circularize (d) miRISC attachment to target mRNAs also facilitates premature separation from
ribosomes, which represses translation at the postinitiation stage.
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mRNA cleavage (Fig. 4). Initially, it was proposed that lin-4 RNA
represses translation of C. elegans lin-14 mRNA [2]. Current studies
suggest that if miRISC contains a heterologous RNA recognition factor,
then it facilitates miRISC to recognize and specifically repressesmRNA
in spite of lackingmiRNA binding sites [90]. Studies indicate that most
miRNA binding sites in animal mRNAs lie in the 3′ UTR as multiple
copies. Animal miRNAs bind with mismatches and bulges through
Watson–Crick base pairing [91]. In contrast, the miRNA binding sites
in plant mRNAs lie in the centre of the complementary regions, and
most plant miRNAs contain a high degree of sequence complemen-
tarity to their target mRNA sequence [92–94].

The degree of miRNA–mRNA complementarity is a major
determinant of the regulatory mechanism process. The high degree
of complementarity enables the Ago-catalyzed degradation of target
mRNA sequences through the mRNA cleavage mechanism process. In
contrast, a central mismatch omits degradation and facilitates the
translational repression mechanism.

4.1. Translation repression

The exact mechanism for the repression of target mRNA translation
by miRISC is still unknown. Whether repression occurs at the
translational initiation or posttranslational level still needs to be
determined. However, the current model suggests that the eIF4F
complex is involved in translational initiation. The subunits of the eIF4F
complex include eIF4A, eIF4E, and eIF4G. The mRNA 5′ terminal cap is
recognized by eIF4E and thus starts the initiation process. eIF3, another
initiation factor, interacts with eIF4G and contributes to the 40S
ribosomal subunit assembly at the 5′ end of the mRNA to enable the
preinitiation complex. The elongation process is initiated by joining of
the 60S ribosomal subunit at the AUG codon of the mRNA and the 40S
preinitiation complex. eIF4G and eIF3 also interact with the polyA-
binding protein PABP1. The mRNA molecule becomes circular as a
result of this process, and the translation efficiency is thereby improved.
In some viral mRNAs, the translation initiation process is facilitated
without any initiation factors through internal ribosome sites (IRES),
which require only a subset of the initiation factors [92].

Whether a miRNA inhibits translation through inhibition of
initiation or elongation is typically determined by two sets of
criterion. For the first option, the density gradient centrifugation
technique is used to determine whether mRNAs are present in the
complex mRNA–protein (mRNP) system (initiation inhibition), or in
the form of large polysomes (elongation inhibition). The second
criterion is tested by determining whether inhibited mRNAs contain-
ing IRES sequences are resistant to repression [92,95]. In testing this,
some studies reported data supporting repressed initiation [95–98],
whereas others provide evidence for inhibition of the post-initiation
processes [99–101]. However, none of the above criteria alone is
sufficient to explain repressed initiation or inhibition of postinitiation
processes. The existing discrepancies show that repression may occur
either at the initiation step or at a later stage in the translation process.

In 2006, Petersen et al. proposed a possible mechanism through
which miRISC may exert its action by repressing the elongation
process. An inhibited mRNA can be associated with polysomes, but
when the initiation process is rapidly blocked with hippuristanol, the
ribosomes quickly become detached in a miRNA-dependent manner.
Based on these results, it was suggested that miRISC promotes early
ribosome dissociation from mRNAs. Recently, three different models
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have been proposed to explain the mechanism by which miRISC
represses the initiationmechanism (Fig. 4). First, miRISCswere shown
to compete with eIF4E for binding to the mRNA 5′ cap structure,
which results in the failure of the translation initiation process
[97,102]. However, some studies contradict this model and suggest
that either GW182 or a downstream factor could be the eIF4E
competitor [103]. The second model suggests that miRISC prevents
the mRNA from circularizing, resulting in translation inhibition [104–
107]. The C-C chemokine receptor 4-negative on TATA (CCR4–NOT)
complex is composed of multiple proteins, namely chemokine (C-C
motif) receptor 4 (CCR4), chromatin assembly factor 1 subunit
(CAF1), and NOT1–NOT5. These regulate gene expression and may
be involved in miRISC translation inhibition [107–110]. The third
model proposes that miRISC may inhibit the assembly of the 60S
ribosomal subunit with the 40S preinitiation complex. In this process,
the 40S ribosomes are attached to the targeted mRNA, but the 60S
ribosomal subunit fails to join the 40S subunit, resulting in translation
repression [111,112].

Another possible mechanism of miRNA mediated translational
repression is that miRNA/RISC may mediate translation repression
through accumulation of target mRNAs in processing bodies (P-
bodies) [113]. P-bodies lack any translation machinery, and thus, it is
suggested that P-bodies containing mRNAs are not involved in the
translation process [113]. The accumulation of mRNA in a miRNAs-
dependent manner suggests that miRNAs are increasing the ribo-
some-free mRNA and cause translation repression.

4.2. mRNA degradation

Previously, it has been shown that when miRNAs have a high
degree of sequence complementarity, then target mRNA degradation
processes are facilitated through Ago protein slicer activity. The fact
that mRNAs are reduced with an abundance of miRNAs suggests that
miRNAs are responsible for mRNA degradation processes [104–
106,114,115]. Recent studies have suggested that not only the Ago-
catalyzed mRNA degradation process is responsible for the mRNA
degradation, but othermechanisms such as deadenylation, decapping,
and exonucleolytic digestion of mRNA are also involved [104–106].
mRNA degradation by miRNA requires Ago, GW182, and the cellular
decapping and deadenylation machinery [103]. The exact process of
target selection has yet to be determined. However, it has been shown
that the number, type, and position of mismatches in the miRNA/
mRNA duplex play a critical role in the selection of the degradation or
translational repression mechanisms [116].

5. Functions of miRNAs in animals

miRNAs have key roles in the regulation of distinct processes in
mammals. They provide a key and powerful tool in gene regulation
and thus a potential novel class of therapeutic targets. miRNAs play an
evolutionarily conserved developmental role and diverse physiolog-
ical functions in animal. miRNAs largely exhibit limited complemen-
tarity with their target mRNAs in animals, but this is still sufficient to
regulate several physiological processes. It has been suggested that
they repress the initiation step of the translation process, which may
be followed by mRNA degradation [117]. Loss-of-function mutations
of the first two identified miRNAs in C. elegans, lin-4 (abnormal cell
lineage-4) and let-7 (lethal-7), caused defects in larvae developmen-
tal processes [1,118]. It has been suggested that lin-4 regulates the
early developmental stages, whereas let-7 plays an important role in
the late developmental processes in C. elegans and possibly some
other animals [119,120]. The lsy-6 (laterally symmetric-6) miRNA
induces cell fate of two morphologically distinct neurons, ASE left
(ASEL) and ASE right (ASER). lsy-6 is expressed in the ASEL neurons
and inhibits the expression of its target gene, cog-1 (connection of
gonad defective-1), which results in the loss of asymmetry.mir-273 in
the ASER neurons, activated by the lsy-6 target cog-1, inhibits the
translation of die-1 (dorsal intercalation and elongation defect-1).
This leads to the down-regulation of lsy-6 and the subsequent
expression of the GCY-5 (guanylyl cyclase-5) receptor in the ASER
[121,122].

Two miRNAs, bantam and lin-14, were identified in D. melanoga-
ster, and studies suggest that overexpression of bantam induces
growth and inhibits apoptosis [123]. It is known that miR-14
suppresses cell death and is involved in fat metabolism by acting on
D. melanogaster IL1-beta convertase (DRICE), which is upregulated in
the absence of miR-14 [124]. Furthermore, two groups of Notch target
genes contain conserved motifs in their 3′ UTR, which are comple-
mentary to the sequences of a related group of miRNAs [125,126].
miR-7 regulates the GY-box motif, and reduction in mir-7 expression
leads to a reduced expression of downstream Notch targets, such as
Cut, resulting in reduced vein spacing and thickening of the veins
[125,126].

A knockout gene strategy has been used in different mammals to
study the role of miRNAs in mammalian developmental processes. A
Dicer knockout was made in zebrafish [127], and this revealed a role
of the mir-430 family members, which are highly expressed in
zebrafish zygotic development, in neurogenesis. mir-430 expression
was also observed in the early developmental processes in frogs
[128,129]. Recent studies have suggested that late-stage mouse
development is under the control of miRNAs, which is supported by
the regulation of Hox genes by miR-196. mir-196 is expressed in the
hind limb, it cleaves its target Hoxa B8, and it inhibits the translation
of Hoxc8, Hoxd8, and Hoxa7 [130,131]. miR-196 acts upstream of Hox
B8 and Sonic hedgehog (SHH) in limb development [131]. The
muscle-specific miRNA, miR-1, targets heart and neural crest
derivatives-expressed protein 2 (HAND2), which results in muscle
degeneration and premature differentiation of cardiomyocytes [132].
mir-181, which is expressed in the B lymphocytes of bonemarrow and
the thymus of mice, causes an increase in B lymphocytes and regulates
mouse hematopoietic lineage differentiation [133]. Similarly, the
expression ofmir-143 has been reported in human fat tissues and has
been shown to regulate fat differentiation by increasing the
extracellular signal-regulated kinase-5 (ERK5) level [134]; indeed,
ERK5 is the predicted potential target gene for miR-143 [135]. This
shows the involvement of miR-143 in adipocyte differentiation by the
regulation of ERK5 protein levels. Some miRNAs regulate diverse
physiological processes, including miR-375 and miR-16. mir-375 is
expressed in the pancreatic islet and inhibits glucose-induced insulin
secretion through regulation of its target gene Myotrophin, indicating
that miR-375 is an inhibitor of glucose-stimulated insulin secretion
[136]. It has also been shown that mir-375 is highly expressed in the
pituitary gland of zebrafish embryos, indicating a role for miR-375 in
the secretion of hormones [137]. Similarly, miR-16 causes AU-rich
element-mediatedmRNA instability and degradation [138]. miR-16 in
humans has a limited complementarity to AREs but is sufficient to
destabilize ARE-containing mRNAs. In addition, mir-155 lies in the
noncoding BIC RNA transcript and is involved in innate immunity, as
evidenced by the rapid induction in B lymphocytes and T lymphocytes
either after antigen exposure or due to some inflammatory mediators
[139]. miR-155 targets PU.1 and c-Maf transcription factors, which
result in the negative regulation of IgG1 and T-cell lineage by
differentiation of T helper type 1 and type 2 cells [140,141]. Recently,
it has been found that some endogenous miRNAs participate in
antiviral defense mechanisms. miR-32 exhibits inhibitory effects
against the retrovirus type 1 (PFV-1) and protects human cells from
PFV-1 [142]. The role of miRNAs in different types of cancer was
shown in a study on chronic lymphocyte leukemia; mir-15a and mir-
16-1 are located at chromosome 13q14 and have been found to be
deleted in the majority of cases of chronic lymphocytic leukemia
[143].mir-15a andmir-16-1 are upregulated in B-cell lymphomas and
exert tumor suppressor activities by inhibiting B-cell lymphoma 2
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(Bcl2) functions [144]. Similarly, mir-17-92 clusters are located on
human chromosome 13q31, which is augmented in some tumors and
is frequently amplified in B-cell lymphomas. This overexpression of
mir-17-92 induces c-Myc-mediated tumorigenesis and suppresses
apoptosis in mouse models of human B-cell lymphoma [145]. In
addition, mir-372 and mir-373, which are expressed in primary
human fibroblasts, induced tumorigenesis through targeting the
tumor suppressor gene LATS2 [146]. Specifically, mir-372 and mir-
373 are expressed in testicular tumors of the germ cell [146].

Based on the above evidence, it can be concluded that miRNAs
control various physiological processes in humans and other animals
through diverse targets. Several of the reported animal miRNAs and
their biological functions are summarized in Table 1.

6. Functions of miRNAs in plants

Like in animals, miRNAs also play crucial roles in plants at various
developmental stages and facilitate organ identity maintenance [14].
Plant development is a highly regulated process that is controlled at
many levels. Plant miRNAs are highly complementary to conserved
target mRNAs, which allows fast and confident bioinformatics
identification of plant miRNA targets [156]. The major class of
miRNA-targeted genes is comprised of transcription factors and F-
box (a motif that was first identified in cyclin F) proteins, which
constitute major plant developmental regulatory networks [157]. In
plants, miRNA regulatory functions can be divided into three major
categories. First, miRNAs are capable of defining distinct expression
patterns of their targets, in which miRNAs and their targets are
expressed on adjoining nonoverlapping domains. Second, miRNAs
prevent variations in the pattern and expression levels of their targets
by sharing overlapping expression domains. Third, miRNAs are
involved in the temporal regulation of target gene accumulation
[158], which regulates developmental transitions.

The first evidence for the importance of miRNAs in plant
development came from mutants impaired in small RNA biogenesis
or function, which exhibited altered growth patterns. Many develop-
mental defects result from this type of impaired miRNA activity. The
role of miRNAs in target accumulation was demonstrated by target
gene expression pattern expansion in the absence of miRNA
regulation. This restricting action was proposed based on mir-165/
166 regulation of prohibitin (PHB) in Arabidopsis and maize rolled leaf
Table 1
Animal miRNAs and their biological functions.

miRNAs Target gene Biological functio

bantam HID Cell death and pr
let-7 lin-41, HBL-1 Regulation of dev
lin-4 lin-14, lin-28 Physiological con
lsy-6 COG-1 Neuronal cell fate
miR-1 HAND 2 Cardiomyocyte d
miR-7 Notch targets Notch signaling
miR-14 Caspase? Cell death and pr
miR-15a, miR-16-1 Bcl2 Down-regulated
miR-16 Several AU-rich element
miR-17-92 c-Myc, E2F1 Upregulated in B
miR-32 Retrovirus PFV1 Antiviral defense
miR-143 ERK5 Adipocyte differe
miR-143, miR-145 Unknown Downregulated in
miR-146 c-Myc, ROCK1 Development and
miR-155 PU-1, c-Maf T-cell developme
miR-181 unknown Regulation of hem
miR-196 HOXA7, HOXB8, HOXC8, HOXD8 Development?
miR-223 NFI-A, Mef2c Regulation of gra
miR-273 DIE-1 Neuronal cell fate
miR-372, miR-373 LATS2
miR-375 Myotrophin Insulin secretions
miR-430 ? Brain morphogen
SVmiRNAs SV40 viral mRNAs Susceptibility to c
1 (RLD1) in maize [159]. The mir-165/166 genes are important for
establishing and maintaining abaxial polarity. In the same way,
mutations within the mir-165/166 complementary site of the maize
homeodomain leucine zipper (HD-ZIP) gene RLD1 adaxialize leaf
primordia causes an overaccumulation of RLD1-mRNA [160]. When
mir-165/166 was identified and the mutations were mapped to the
miRNA complementary site, it was hypothesized that the altered
phenotypes resulted from the loss of miRNA-directed regulation
[161]. The prediction tools for plant miRNA targets and other
methodologies have been used to study the regulatory impact of
miR-167 and its target genes, ADP ribosylation factors 6 and 8 (ARF6
and 8). Two recent reports revealed the regulatory role of miR-167 in
plant reproductive development [162]. The ARF6 and ARF8 genes
regulate stamen development in the immature flowers. It was shown
that miR-167 causes the degradation of ARF6- and ARF8-encoded
mRNAs [163]. miR-167 may also repress ARF6 expression at the
translational level. The mir-167-overexpressing Arabidopsis recapitu-
lates ARF6/ARF8 double-mutant phenotypes, in which the plants
produce flowers with short stamens and anthers lose the ability to
release pollen. Mutations of the mir-167 target sites for ARF6 or ARF8
result in abnormal expression of these genes in both ovules and
anthers, where mir-167 is normally present. The promoter activity of
mir-167 was studied with respect to four members of the mir-167
family, which illustrated the essential roles of these members. The
plant hormones auxin, gibberellic acid (GA), and abscisic acid (ABA)
play critical roles in the regulation of developmental processes such as
embryogenesis, cell division, elongation, differentiation, and organo-
genesis [164].

One of the important mediators in the GA-dependent pathway is
GAMYB, which controls GA-activated genes. mir-159 is regulated by
GA and targets the GAMYB genes MYB33 and MYB65 [165].
Overexpression of mir-159 leads to a late flowering phenotype
[165,166]. Developmental defects such as hyponastic leaves were
observed in transgenic plants expressing the miRNA-resistant version
of MYB33 and the double-mutant mir-159ab [166,167]. These defects
were diminished in the quadruple mutant of mir-159ab, MYB33 and
MYB65, conclusively demonstrating the role of miRNA-based regula-
tion of the MYB genes in these phenotypes [168].

Furthermore, miR-164 prevents the alteration and facilitates the
precise control of the expression level of target genes in the Auxin
signal transduction pathways and leaf patterning [169]. miR-164
ns Species Reference

oliferation D. melanogaster [149]
elopmental timing C. elegans [17,148]
dition and developmental timing C. elegans [1,147]
and developmental timing C. elegans [121]

ifferentiation and proliferation Mus musculus [132]
D. melanogaster [125,126]

oliferation D. melanogaster [124]
in B cell chronic lymphocyte leukemia [143,144]
mediated mRNA instability Homo sapiens [138]
-cell lymphoma H. sapiens [145,155]

H. sapiens [142]
ntiation [134]
colonic adenocarcinoma H. sapiens [154]
function of immune system H. sapiens [151,152]

nt and in innate immunity Mouse [139–141]
atopoietic cell fate M. musculus [137]

M. musculus [130]
nulocytic maturation H. sapiens [150]
and developmental timing C. elegans [122]

[146]
M. musculus [136]

esis D. rerio [128]
ytotoxic T cells [153]
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controls the activity of the NAM, ATAF, and CUC (NAC) transcription
factors, which regulate signaling processes. A balance exists between
these, but overexpression of mir-164 causes the down-regulation of
CUP SHAPED COTYLEDON (CUC1), (CUC2), and the NAC family genes,
which results in the induction of lateral leafing and rooting [170].
These observations suggest that closely interrelated miRNA family
members that target the same set of genes can have different
functions in plant development, which expands the role of miRNAs in
the Auxin signaling pathways. A similar role has been observed in the
process of leaf initiation by miR-156, which regulates 10 members of
the SQUAMOSA promoter-binding-like (SPL) gene family and is
expressed in an opposite pattern than these factors. miR-156
regulates SPL9 and has the same temporal expression pattern.
Reduced activity of miR-156 results in an increased expression of
SPL9 [171].

In Arabidopsis, the miR-172 targeted gene APETALA2 (AP2)
controls the developmental timing of flowers. The overexpression of
mir-172 leads to loss-of-function mutants, which exhibit develop-
mental floral defects such as absence of petals and sepal transforma-
tion into carpels [172]. Many miRNA families target a single class of
gene products including miR-319, which targets the TEOSINTE
BRANCHED1, CYCLOIDEA, and PCF (TCP) transcription factors.
Furthermore, the overexpression of mir-319 leads to patchy leaf
shapes and delayed flowering times [173]. The miR-319-resistant
TCP4 gene causes deviant seedlings with no apical meristems. Several
miRNAs are closely connected to signaling mediators that respond to
plant hormones, such as miR-393, which targets TRANSPORT
INHIBITOR RESPONSE 1 (TIR1) and three F-box proteins [156]. The
F-box proteins act as auxin receptors and mediate degradation in
response to auxin [174]. In addition, miRNAs target transcription
factors, such as in the case of miR-162 that targets DCL1 or miR-168
that targets Ago1 [175,176]. miRNA targeting of DCL1 and Ago1
suggests a feedbackmechanism, wherebymiRNAs negatively regulate
their activity. Some of the known plant miRNAs and their biological
functions are summarized in Table 2. Based on the above discussion, it
is clear that miRNAs play a vital role in the regulation of many
developmental and other processes in plants.
7. Current clinical trials

Recent understanding of the importance of miRNAs has attracted
the interest of the biomedical research community. Researchers
believe that miRNAs are the next important class of therapeutic
Table 2
Plant miRNAs and their biological functions in different plant species.

miRNAs Target gene Biological functions

miR156 SPL Development transition time
miR157 SPL Developmental timing
miR158 PP2 Unknown
miR159 MYBTFS:GAMYB, MYB33 Floral identity and flower deve
miR160 ARF Leaf and root development, aux
miR162 DCL1
miR164 NAC-TF: CUC1, CUC2 Shoot and root development
miR164a NAC-TF: CUC1, CUC2 Leaf development, patterning, a
miR164c NAC-TF: CUC1, CUC2 Floral identity and flower deve
miR165/miR166 HD-ZIP, PHB Meristem maintenance, vascula
miR167 ARF6 and 8 Auxin response
miR168 AGO1
miR170/171 SCL Root development
miR172 AP2 Developmental timing and flor
miR319 TCP Leaf development
miR319/JAW BHLH TFS: TCPS Leaf development, patterning a
miR390 TAS3 Auxin response, developmenta
miR393 F-box protein: TIR1 Hormone signaling for plant de
miR395 Sulfate transporter Stress response
miR408 Plantacyanin, laccases Stress response
molecules after siRNA. These will have significant advantages over
siRNAs due to many therapeutic applications.

The misregulation of several miRNAs is linked to the development
of certain diseases in humans and other organisms [184]. It has been
demonstrated that the restoration of misregulated miRNAs to their
normal levels can reduce or even eliminate diseases including tumors
in animal models [184]. Because miRNAs are naturally occurring
molecules, there are certain advantages in their application as
therapeutic agents. Worldwide researchers have validated the theory
of “miRNA replacement therapy,” which involves introducing syn-
thetic miRNAs or miRNA mimetics into diseased tissues in an attempt
to restore normal proliferation, apoptosis, cell cycle, and other cellular
functions that have been affected by the misregulation of one or more
miRNAs [185,186]. In contrast, some researchers have utilized miRNA
inhibitors in an effort to increase the endogenous levels of therapeutic
proteins [187]. Thus, in theory, inhibition of a specific miRNA linked to
a given disease can remove the block of expression of a therapeutic
protein. On the other hand, the administration of a miRNA mimetic
can increase the endogenous miRNA population, therefore suppres-
sing a harmful gene. In many cases, the reactivation or inhibition of
these miRNA-regulated pathways leads to a significant therapeutic
responses [188]. The pioneering groups of specialized pharmaceutical
companies have initiated studies on creating viable therapeutic
candidates with miRNA inhibitors and miRNA mimetics in diverse
fields such as cancer, cardiovascular diseases, neurological disorders,
and viral infections [185]. miRNAs are making their way in the
pharmaceutical industry as therapeutic and diagnostic targets.

A miRNA-dependent posttranscriptional gene silencing process
has been proven effective in organisms ranging from plants to
nematodes and from fruit flies to humans at cell culture level. In 2008,
a leading pharmaceutical company called Santaris announced the
initiation of clinical trials with SPC3649, an LNA-based (locked nucleic
acid) antisense molecule against miR-122, for the treatment of
hepatitis C [185]. miR-122 has been found to affect hepatitis C virus
(HCV) replication, which also has a role in cholesterol synthesis [189].
Due to these potential applications and its expression in the liver,
miR-122 has become a favorite target for first-generation miRNA-
based therapeutic development programs. Trials are already in
progress and include 48 healthy volunteers to evaluate the safety of
the drug and other factors. So far, the company has reported that
results are encouraging, and phase 2 clinical trials in HCV patients are
planned [190].

According to the National Cancer Institute (USA), liver cancer is the
third most common cause of cancer deaths in men and the tenth most
Species Reference

A. thaliana [171]
Gossypium hirsutum [177]
A. thaliana [72]

lopment A. thaliana [165]
in response, floral organ identity Glycine max [178]

A. thaliana [175]
A. thaliana [182]

nd polarity A. thaliana [169]
lopment A. thaliana [183]
r development and organ polarity A. thaliana [159]

A. thaliana [163]
A. thaliana [176]
Populus trichocarpa [179]

al organ identity Oryza sativa, A. thaliana [172,180]
A. thaliana [173]

nd polarity [173]
l timing, lateral organ polarity Zea mays [181]
velopment A. thaliana [157]

O. sativa [156]
A. thaliana [157]



Table 3
Recent preclinical and clinical trials based on miRNA therapeutics.

Disease or condition Trial title Targeted status Location Government identifiera or
reference

Asthma miRNA analysis in premenstrual asthma Unspecified The Ohio State University,
Columbus, United States

NCT00837395

Barrett's esophagus, esophageal
adenocarcinoma

miRNA expression in upper gastroin-testinal mucosal
tissue

Unspecified Mayo Clinic, Florida, United States NCT00909350

Cancer and liver infection miR-34a mimetics miRNA 34a and
tumor p53 protein

Rosetta Genomics [186]

Cancer, acute leukemia
myelogenous

AML miRNA therapy Unspecified Mirna Therapeutic 185

Epstein–Barr virus and herpes
simplex virus infection

Herpes virus therapy Unspecified Rosetta Genomics [185]

HCV infection Hepatitis C therapy Unspecified Rosetta Genomics [185]
HCV infection Anti-mir-122 oligo miRNA122 Alnylam [189]
HCV infection,
hypercholesterolemia

SPC-3649 miRNA122 Santaris Pharma [190]

Hepatitis C miRNA-122 clinical course of patients with chronic
HCV infection

Unspecified National Taiwan University
Hospital

NCT00980161

Healthy Safety study of SPC3649 in healthy men Unspecified Hvidovre University Hospital,
Denmark, Santaris Pharma

NCT00688012

Heart failure miRNA inhibitors miRNA 208a Miragen Therapeutics [185]
Heart failure miRNA mimetics Unspecified Miragen Therapeutics [185]
HIV/AIDS infection HIV therapy Unspecified Rosetta Genomics [185]
Inflammatory bowel disease miRNA in inflammatory bowel disease Unspecified Tel Aviv Sourasky Medical Center,

Israel
NCT00734331

Leukemia Studying biomarkers in cell samples from patients
with acute myeloid leukemia

Unspecified National Cancer Institute (NCI) NCT01057199

Lungs and non-small cell cancer Osolo miRNA therapy miRNA let-7a-1 Mirna Therapeutic [185]
Melanoma miRNA expression and function in cutaneous

malignant melanoma
Unspecified Rigshospitalet, Denmark NCT00536029

Naevi malignant melanoma Expression patterns of miRNA processing enzyme
Dicer

Unspecified Ruhr-University Bochum,
Germany

NCT00862914

Pregnant women miRNA profile in umbilical cord blood NK cells Unspecified National Taiwan University
Hospital, Taiwan

NCT00751569

Prostate cancer Prostate cancer miRNA Unspecified Mirna Therapeutics [185]
Pulmonary arterial
hypertension

Expression and significance of miRNA Unspecified The Ohio State University,
Columbus, U.S.

NCT00806312

Renal cell carcinoma miRNA expression in renal cell carcinoma Unspecified The 1st Affiliated Hospital, Sun
Yet-sen University, China

NCT00743054

Sepsis Circulating miRNAs as biomarkers of sepsis Unspecified Changhai Hospital, Shanghai,
China

NCT00862290

Skin Cancer Expression levels of miRNA processing enzymes Dicer
and Drosha in epithelial skin cancer

Unspecified Ruhr-University Bochum,
Germany

NCT00849914

Transplant CMV miRNA expression in vivo and Immune Evasion Unspecified University of Alberta Hospital,
Canada

NCT00677482

Unspecified Antagomirs Unspecified Alnylam [185]
Unspecified Anti-inflammatory miRNA Unspecified Alnylam [185]
Unspecified Anticancer miRNA Unspecified Alnylam [185]

a Source: www.clinicaltrials.gov.
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common in women. Rosetta Genomics has commenced in in vivo
studies with its miRNA-based liver cancer therapeutic program in
collaboration with Isis Pharmaceuticals. The project, joining Isis's
widespread understanding of antisense chemistry and Rosetta
Genomics' knowledge in miRNA technologies, is the companies' first
attempt at exploring the role of miRNAs as master switches of the
human body to treat cancer. In September 2008, Rosetta Genomics
moved its miRNA-based liver cancer therapeutics project with Isis
Pharmaceuticals to Regulus Therapeutics, a joint venture between
Alnylam Pharmaceuticals and Isis Pharmaceuticals that is focused on
the development of miRNA-based therapeutics [191,192].

Rosetta Genomics together with Columbia University Medical
Center (CUMC) has proposed its first diagnostic test for regulatory
approval. The test distinguishes between squamous and nonsqua-
mous lung cancer [193]. GlaxoSmithKline and Regulus Therapeutics
formed a strategic alliance for the development of novel miRNA-
targeted drugs for inflammatory diseases [194]. Asuragen initiated the
first ever miRNA-based diagnostic test. The test is designed to
differentiate between pancreatic cancer and pancreatitis, which
often have similar symptoms. Asuragen performed a trial in which
60 samples from patients were evaluated by the newly developed
assay. The assay demonstrated remarkable results in distinguishing
between the two conditions, in which 95% of the samples were
accurately identified [195]. Miragen has announced plans to focus on
identifying targets which are related to cardiovascular diseases,
primarily relating to heart failure [196]. The recent preclinical and
clinical trials based on miRNA therapeutics are summarized in Table 3.

The process of developing any drug is very expensive and is
characterized by numerous hurdles with a very high chance of failure.
The development of miRNA-targeted drugs is very challenging due to
the lack of experience, and studies are still in their early stages. Although
miRNA clinical trials are still in their infancy; nevertheless, the available
data indicate the great potential of miRNAs in diagnosis and therapy.

8. Future prospectives

A large number of miRNAs and their functions have been
discovered, and more are expected to be explored in the near future
due to rapidly expanding sequencing power. Although the miRNA
synthesis pathway in animals and plants has been well researched
over the past decade, many questions have yet to be answered.
Specifically, the precise structures of the complexes including the

http://www.clinicaltrials.gov
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Microprocessor, EXP5, HST, and Dicer-RISC in association with the
targeted mRNA remain to be determined. The exact biochemical role
of many factors associated with the miRNA biogenesis such as PACT,
LOQS, HEN1, SE, and HYL1 have yet to be revealed. In addition, more
protein factors associated with miRNA synthesis and mechanisms are
expected to be determined in future. Moreover, the significance and
enzymology of themodifications such as uridylation, adenylation, and
methylation of miRNAs are still a mystery.

Themajority of evolutionarily conservedmiRNAs belong tomultiple
gene families, and one of the challenges is to understand the functional
relationship among themembers of themiRNA families. A large number
of miRNAs have multiple target genes; therefore, researchers will have
to determine the regulatory relationship betweenmultiple members of
a miRNA gene family and multiple target genes.

The scaling up of miRNAs from the laboratory to the pharmaceu-
tical industry is ongoing. Whereas the swift technological develop-
ments to date are encouraging, there are still a number of risks
associated with this research. For example, it is unclear whether
successfully inhibiting miRNA in chronic diseases will have meaning-
ful results. Typically, tissue culture cell lines express less miRNAs than
tissues and thus may not be as rate limiting for disease treatment in
vivo. Furthermore, there are additional general hurdles such as drug
delivery to the right organs or tissues and choosing the appropriate
technology to modulate the miRNA expression. These hurdles will
certainly make the road towards miRNA therapeutics a very rough
one; however, a number of therapeutic programs with similar initial
problems have been proven to be successful.
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