Weak type estimates of square functions associated with quasiradial Bochner–Riesz means on certain Hardy spaces

Yong-Cheol Kim

Department of Mathematics Ed., Korea University, Seoul 136-701, Republic of Korea

Received 17 January 2007
Available online 14 July 2007
Submitted by R.H. Torres

Abstract

Let $\varrho_d \in C^\infty (\mathbb{R}^n \setminus \{0\})$ be a non-radial homogeneous distance function of degree $d \in \mathbb{N}$ satisfying $\varrho_d(t\xi) = t^d \varrho_d(\xi)$. For $f \in \mathcal{S}(\mathbb{R}^n)$, we define square functions $\mathcal{G}_\delta f(x)$ associated with quasiradial Bochner–Riesz means $\mathfrak{R}_{\varrho_d,t} f$ of index δ by

$$
\mathcal{G}_\delta f(x) = \left(\int_0^\infty \left| \mathfrak{R}_{\varrho_d,t}^\delta f(x) - \mathfrak{R}_{\varrho_d,t} f(x) \right|^2 \frac{dt}{t} \right)^{1/2}
$$

where $\mathfrak{R}_{\varrho_d,t}^\delta f(x) = \mathcal{F}^{-1}[(1 - \varrho_d / t^d)_{+}\hat{f}](x)$. If $\{\xi \in \mathbb{R}^n: \varrho_d(\xi) = 1\}$ is a smooth convex hypersurface of finite type, then we prove in an extremely easy way that \mathcal{G}_δ is well-defined on $H^p(\mathbb{R}^n)$ when $\delta = n(1/p - 1/2) - 1/2$ and $0 < p < 1$; moreover, it is a bounded operator from $H^p(\mathbb{R}^n)$ into $L^{p,\infty}(\mathbb{R}^n)$. In addition, if $\varrho_d \in C^\infty (\mathbb{R}^n \setminus \{0\})$, then we also prove that \mathcal{G}_δ is a bounded operator from $H^p(\mathbb{R}^n)$ into $L^p(\mathbb{R}^n)$ when $\delta > n(1/p - 1/2) - 1/2$ and $0 < p < 1$.

© 2007 Elsevier Inc. All rights reserved.

Keywords: Square functions; Quasiradial Bochner–Riesz means; Hardy spaces

1. Introduction

Let $\mathcal{S}(\mathbb{R}^n)$ be the Schwartz space on \mathbb{R}^n. For $f \in \mathcal{S}(\mathbb{R}^n)$, we denote the Fourier transform of f by

$$
\mathcal{F}[f](x) = \hat{f}(x) = \int_{\mathbb{R}^n} e^{-i(x,\xi)} f(\xi) \, d\xi.
$$

Then the inverse Fourier transform of f is given by

$$
\mathcal{F}^{-1}[f](x) = \tilde{f}(x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{i(x,\xi)} f(\xi) \, d\xi.
$$

E-mail address: ychkim@korea.ac.kr.

1 The author was supported in part by a Korea University Grant.
Let M be a real-valued $n \times n$ matrix whose eigenvalues have positive real parts. Then we consider the dilation group $\{A_t\}_{t>0}$ in \mathbb{R}^n generated by the infinitesimal generator M, where $A_t = \exp(M \log t)$ for $t > 0$. We introduce A_t-homogeneous distance functions ϱ_d defined on \mathbb{R}^n which is of degree $d \in \mathbb{N}$; that is, $\varrho_d : \mathbb{R}^n \to [0, \infty)$ is a continuous function satisfying $\varrho_d(A_t \xi) = t^d \varrho_d(\xi)$ for all $\xi \in \mathbb{R}^n$ and $t > 0$. If $A_t = tI$, then we call such ϱ_d a homogeneous distance function of degree d. One can refer to [4] and [16] for its fundamental properties.

In the following we shall denote the unit sphere of ϱ_d by $\Sigma_{\varrho_d} = \{ \xi \in \mathbb{R}^n : \varrho_d(\xi) = 1 \}$ and denote by $\mathbb{R}_d^n = \mathbb{R}^n \setminus \{0\}$.

We use the polar coordinates; given $x \in \mathbb{R}^n$, we write $x = r \theta$ where $r = |x|$ and $\theta = (\theta_1, \theta_2, \ldots, \theta_n) \in S^{n-1}$. Given two quantities A and B, we write $A \lesssim B$ or $B \gtrsim A$ if there is a constant c (possibly depending on the dimension n and the index p to be given) such that $A \leq cB$. We also write $A \sim B$ if $A \lesssim B$ and $B \lesssim A$.

In case that ϱ is a non-radial homogeneous distance function of degree 1, Dappa and Trebels [4] proved that if $\varrho \in C^{n/2+1}(\mathbb{R}^n)$ is A_1-homogeneous distance function of degree 1, then ϱ^δ is bounded on $L^p(\mathbb{R}^n)$ for $p > 1$, and is of weak type $(1, 1)$. In case that $\varrho \in C^{\infty}(\mathbb{R}^n)$ is A_{d}-homogeneous distance function of degree 1 and the surface measure $d\sigma$ on Σ_{ϱ} satisfies $d\sigma(\xi) = O(|\xi|^{-n})$ for $0 < n \leq (n-1)/2$, it was shown by Seeger [12] that if $\delta > n(1/2 - 1/p) - 1/2$, then ϱ^δ is bounded on $L^p(\mathbb{R}^n)$, which is a partial extension of Carbery’s result [2] in higher dimensions.

The purpose of this article is to obtain sharp weak type endpoint $(\delta(p) = n(1/p - 1/2) - 1/2)$ results of $\varrho_d^{\delta(p)}$ on $H^p(\mathbb{R}^n)$, $0 < p < 1$, under certain curvature condition on Σ_{ϱ}, where $\varrho_d^{\delta(p)}(\mathbb{R}^n)$ is a homogeneous distance function of degree $d \in \mathbb{N}$. That is to say, this result is to generalize that of [7] in \mathbb{R}^n to non-radial cases (which is of finite type and convex) by using the arguments based on the result in [9]. Here $H^p(\mathbb{R}^n)$ denotes the standard real Hardy space as defined by E.M. Stein in [14].

In our first result we shall assume that $\varrho_d \in C^{\infty}(\mathbb{R}_d^n)$, ϱ_d is a non-radial homogeneous distance function of degree $d \in \mathbb{N}$ and Σ_{ϱ_d} is a smooth convex hypersurface of \mathbb{R}^n which is of finite type, i.e. every tangent line makes finite order of contact with Σ_{ϱ_d}.

Theorem 1.1. Suppose that $\varrho_d \in C^{\infty}(\mathbb{R}_d^n)$ is a non-radial homogeneous distance function of degree $d \in \mathbb{N}$ and Σ_{ϱ_d} is a smooth convex hypersurface of finite type. Then $\varrho_d^{\delta(p)}$ is well-defined on $H^p(\mathbb{R}^n)$ when $0 < p < 1$; moreover, $\varrho_d^{\delta(p)}$ is a bounded operator from $H^p(\mathbb{R}^n)$ into $L^{p, \infty}(\mathbb{R}^n)$. That is, there is a constant $C = C(n, p, \Sigma_{\varrho_d}) > 0$ such that for any $f \in H^p(\mathbb{R}^n)$,

$$\left| \{ x \in \mathbb{R}^n : \varrho_d^{\delta(p)} f(x) > \lambda \} \right| \leq \frac{C}{\lambda^p} \| f \|_{H^p}, \quad \lambda > 0,$$

where $|E|$ denotes the Lebesgue measure of the set $E \subset \mathbb{R}^n$.

Theorem 1.2. The angular part $\Phi(\theta)$ This makes the problem more complicated and difficult than the radial case. But it turns out in Corollary 2.8 that the angular part $\Phi(\theta)$ of the decay of the kernel should be in $L^p(S^{n-1})$ for any p with $0 < p < 1$. So it is possible to work it out in spite of badness of the kernel.

Remark. (i) As a matter of fact, we prove this result under more general surface condition than the finite type condition on Σ_d, which is to be called a spherically integrable condition of order < 1 in Section 2.

(ii) In case that ρ_d is radial (in fact, $\rho_d(\xi) = \rho_d(1)|\xi|^d$ by the homogeneity condition), some properties of the Bessel functions could be used in order to estimate decay of the Bochner–Riesz kernel. However we cannot do that in case of non-radial ρ_d and a convex hypersurface Σ_{ρ_d} of finite type, which may cause some difficulty to obtain decay of the kernel. In fact, if $\xi(x)$ is the point of Σ_{ρ_d} whose outer unit normal vector is in the direction x and at which the Gaussian curvature vanishes, then the decay of the quasiradial Bochner–Riesz kernel is pretty bad in the direction x. This makes the problem more complicated and difficult than the radial case. But it turns out in Corollary 2.8 that the angular part $\Phi(\theta)$ of the decay of the kernel should be in $L^p(S^{n-1})$ for any p with $0 < p < 1$. So it is possible to work it out in spite of badness of the kernel.

Our second result is to obtain that if $\delta > n(1/p - 1/2) - 1/2$ for $0 < p < 1$ then \mathcal{G}_{ρ_d} admits (H^p, L^p)-estimate under no surface condition on Σ_{ρ_d} where $\rho_d \in C^\infty(\mathbb{R}^n_0)$ is a non-radial homogeneous distance function of degree $d \in \mathbb{N}$.

Theorem 1.2. Suppose that $\rho_d \in C^\infty(\mathbb{R}^n_0)$ is a non-radial homogeneous distance function of degree $d \in \mathbb{N}$. If $\delta > \delta(p)$ for $0 < p < 1$, then \mathcal{G}_{ρ_d} is a bounded operator from $H^p(\mathbb{R}^n)$ into $L^p(\mathbb{R}^n)$; that is, there is a constant $C = C(n, p) > 0$ such that for any $f \in H^p(\mathbb{R}^n)$,

$$\|\mathcal{G}_{\rho_d} f \|_{L^p} \leq C \| f \|_{H^p},$$

provided that $\delta > n(1/p - 1/2) - 1/2$ and $0 < p < 1$.

Remark. This problem is still left open on the critical index $\delta = n(1/p - 1/2) - 1/2$ and $0 < p < 1$.

The outline of the paper is as follows. In Section 2, we shall furnish preliminary estimates on smooth convex hypersurface Σ_{ρ_d} of finite type and decay estimate for the quasiradial Bochner–Riesz type kernel $K_{\rho_d}^{(p)} = \mathcal{F}^{-1}[\rho_d(1 - \rho_d)^{\delta(p)}]$ whose proof is based on a certain decomposition of the multiplier $\rho_d(1 - \rho_d)^{\delta(p)}$ like that of the Bochner–Riesz multiplier $(1 - |\xi|^2)^{\delta(p)}$ used in Córdoba [3], and also give (H^p, L^p, ∞)-estimates of \mathcal{G}_{ρ_d} for the case that $\rho_d \in C^\infty(\mathbb{R}^n_0)$ and $\delta = \delta(p)$, $0 < p < 1$. In Section 3, we shall obtain (H^p, L^p)-estimates of \mathcal{G}_{ρ_d} for the case that $\rho_d \in C^\infty(\mathbb{R}^n_0)$ and $\delta > \delta(p)$, $0 < p < 1$.

2. (H^p, L^p, ∞)-estimate for the case that $\rho_d \in C^\infty(\mathbb{R}^n_0)$ and $\delta = \delta(p)$, $0 < p < 1$

In this section we shall focus on obtaining (H^p, L^p, ∞)-mapping properties of the square function $\mathcal{G}_{\rho_d}^{(p)}$ associated with the quasiradial Bochner–Riesz means $\mathcal{R}_{\rho_d}^{(p)}$ of index $\delta(p), 0 < p < 1$, under the condition that Σ_{ρ_d} is a smooth convex hypersurface of finite type, where $\rho_d \in C^\infty(\mathbb{R}^n_0)$ is a non-radial homogeneous distance function of degree $d \in \mathbb{N}$.

Let Σ be a smooth convex hypersurface of \mathbb{R}^n and let $d\sigma$ be the induced surface area measure on Σ. Let $\mathcal{E}(\Sigma)$ be the set of points of Σ at which the Gaussian curvature κ vanishes, and let $\mathcal{N}(\Sigma) = \{n(\xi): \xi \in \mathcal{E}(\Sigma)\}$ where $n(\xi)$ denotes the outer unit normal to Σ at $\xi \in \Sigma$. For $x \in \mathbb{R}^n$, denote by $d(x/|x|, \mathcal{N}(\Sigma))$ the geodesic distance on S^{n-1} between $x/|x|$ and $\mathcal{N}(\Sigma)$, and by $\mathcal{B}(\xi(x), s)$ the spherical cap near $\xi(x) \in \Sigma$ cut off from Σ by a plane parallel to $T_{\xi(x)}(\Sigma)$ (the affine tangent plane to Σ at $\xi(x)$) at distance $s > 0$ from it; that is,

$$\mathcal{B}(\xi(x), s) = \{\xi \in \Sigma: \text{dist}(\xi, T_{\xi(x)}(\Sigma)) < s\},$$

where $\xi(x)$ is the point of Σ whose outer unit normal vector is in the direction x and $\text{dist}(\xi, T_{\xi(x)}(\Sigma))$ is the shortest distance between $\xi \in \Sigma$ and the tangent plane $T_{\xi(x)}(\Sigma)$. These spherical caps play an important role in furnishing the decay of the Fourier transform of the measure $d\sigma$. It is well known [10,14] that the function

$$\Phi(\theta) = \sup_{r > 0} \sigma(\mathcal{B}(\xi(r\theta), 1/r)) (1 + r)^{n-1} \quad (2.1)$$

is bounded on S^{n-1} provided that Σ has nonvanishing Gaussian curvature.
Definition 2.1. Let $Σ$ be a smooth convex hypersurface of \mathbb{R}^n. Then we say that $Σ$ satisfies a spherically integrable condition of order < 1 if $Φ ∈ L^p(S^{n-1})$ for any $p < 1$.

Remark. (i) B. Randol [10] proved that if $Σ$ is a real analytic convex hypersurface of \mathbb{R}^n then $Φ ∈ L^p(S^{n-1})$ for some $p > 2$. Thus any real analytic convex hypersurface satisfies a spherically integrable condition of order < 1.

(ii) Let $Σ$ be a smooth convex hypersurface of finite type $k ≥ 2$ and suppose that $N(Σ)$ is a m-dimensional submanifold of \mathbb{R}^n which is on S^{n-1}, where $m < [k(n-1)]/[2(k-1)]$. Then we see (refer to [8]) that $Σ$ satisfies a spherically integrable condition of order < 1. Moreover, it is not hard to see that $Σ$ satisfies a spherically integrable condition even for $m ≤ n-2$. We mention for reader that it can be shown by Lemma 2.8 [8] and the fact that $Σ$ is of finite type $P(k)$; i.e. there is some constant $C = C(Σ) > 0$ such that for any $θ ∈ S^{n-1}$,

$$Φ(θ) ≤ \frac{C}{d(θ, N(Σ))^{\frac{k-2}{m-1}(n-1)}}.$$

Since $Σ$ is smooth and of finite type, it is absolutely impossible that $N(Σ)$ is a $(n-1)$-dimensional submanifold of \mathbb{R}^n which is on S^{n-1}.

(iii) More generally, it was shown by I. Svensson [18] that if $Σ$ is a smooth convex hypersurface of finite type $k ≥ 2$ then $Φ ∈ L^p(S^{n-1})$ for some $p > 2$.

Thus, by the above remark (iii), it is natural for us to obtain the following lemma.

Lemma 2.2. Any smooth convex hypersurface of finite type always satisfies a spherically integrable condition of order < 1.

Sharp decay estimates for the Fourier transform of surface measure on a smooth convex hypersurface $Σ$ of finite type $k ≥ 2$ has been obtained by Bruna, Nagel, and Wainger [1]; precisely speaking, $|\mathcal{F}[dσ](x)|$ is equivalent to $σ[\mathcal{B}(ξ(x), 1/|x|)]$. They define a family of anisotropic balls on $Σ$ by letting

$$\mathcal{B}(ξ_0, s) = \{ξ ∈ Σ: \text{dist}(ξ, Tξ_0(Σ)) < s\}$$

where $ξ_0 ∈ Σ$. We now recall some properties of the anisotropic balls $\mathcal{B}(ξ_0, s)$ associated with $Σ$. The proof of the doubling property in [1] makes it possible to obtain the following stronger estimate for the surface measure of these balls

$$σ[\mathcal{B}(ξ_0, γs)] ≤ \begin{cases} γ^{\frac{n+1}{n-1}} σ[\mathcal{B}(ξ_0, s)], & γ ≥ 1, \\ γ^{\frac{n+1}{n-1}} σ[\mathcal{B}(ξ_0, s)], & γ < 1. \end{cases} \quad (2.2)$$

It also follows from the triangle inequality and the doubling property [1] that there is a positive constant $C > 0$ independent of $s > 0$ such that

$$\frac{1}{C} σ[\mathcal{B}(ξ_0, s)] ≤ σ[\mathcal{B}(ξ, s)] ≤ C σ[\mathcal{B}(ξ_0, s)] \quad \text{for any } ξ ∈ \mathcal{B}(ξ_0, s). \quad (2.3)$$

Lemma 2.3. Let $0 < p < 1$. Suppose that $\{h_k\}$ is a sequence of measurable functions defined on \mathbb{R}^n such that for all $k ∈ \mathbb{N}$,

$$\|h_k\|_{L^p,∞} ≤ 1.$$

If $\{c_k\} ∈ ℓ^p$, then we have the following estimate

$$\left\| \sum_{k=1}^{∞} c_k h_k \right\|_{L^p,∞} ≤ \left(\frac{2 - p}{1 - p}\right)^{1/p} \|\{c_k\}\|_{ℓ^p}.$$
Lemma 2.4. (See [9].) Let Σ be a smooth convex hypersurface of \mathbb{R}^n which is of finite type $k \geq 2$. Then there is a constant $C = C(\Sigma) > 0$ such that for any $x \in B(0; s)$ and $y \in B(0; 2s)^\circ$, $0 < s \leq 1$,
\[\xi(x - y) \in B(\xi(x), C/|x|) \]
where $\xi(x)$ is the point of Σ whose outer unit normal is in the direction x.

Lemma 2.5. Let Σ be a smooth convex hypersurface of \mathbb{R}^n which is of finite type $k \geq 2$. Then there is a constant $C = C(\Sigma) > 0$ such that for any x, $y \in \mathbb{R}^n$ with $|x| > 2|y| > 0$,
\[\Phi \left(\frac{x - y}{|x - y|} \right) \leq C \Phi \left(\frac{x}{|x|} \right) \]
where Φ is the function defined as in (2.1).

Proof. It easily follows from (2.3), the definition of Φ, and Lemma 2.4 that for any $y \in B(0; s)$ and $x \in B(0; 2s)^\circ$, $0 < s \leq 1$,
\[
\Phi \left(\frac{x - y}{|x - y|} \right) \leq \sup_{r > 0} \left[\mathcal{B}(\xi(x - y), 1/r) \right] (1 + r)^{\frac{d - 1}{2}} \\
\leq \sup_{r > 0} \left[\mathcal{B}(\xi(x), 1/r) \right] (1 + r)^{\frac{n - 1}{2}} = \Phi \left(\frac{x}{|x|} \right).
\]
Thus this implies that for any x, $y \in \mathbb{R}^n$ with $|x| > 2|y| > 0$,
\[
\Phi \left(\frac{x - y}{|x - y|} \right) = \Phi \left(\frac{x/|y| - y/|y|}{|x/|y| - y/|y||} \right) \leq \Phi \left(\frac{x/|y|}{|x/|y||} \right) = \Phi \left(\frac{x}{|x|} \right). \quad \Box
\]

We shall employ a decomposition of the multiplier $\varrho_d(1 - \varrho_d)^{\delta(p)}$ like that of the Bochner–Riesz multiplier $(1 - |\xi|^2)^{\delta(p)}$ used in Córdoba [3], where $\varrho_d \in C^\infty(\mathbb{R}^n_0)$ is a non-radial homogeneous distance function of degree $d \in \mathbb{N}$. Let $\varphi \in C_c^\infty(1/2, 2)$ be a function satisfying $\sum_{k \in \mathbb{Z}} \varphi(2^k t) = 1$ for $t > 0$. For $k \in \mathbb{N}$, let
\[
\Phi_k^{\delta(p)}(\xi) = \varphi(2^{k+1}(1 - \varrho_d)\varrho_d(1 - \varrho_d)^{\delta(p)}
\]
and $\Phi_0^{\delta(p)}(\xi) = \varrho_d(1 - \varrho_d)^{\delta(p)} - \sum_{k \in \mathbb{N}} \Phi_k^{\delta(p)}$. Then we note $\sum_{k \in \mathbb{N}} \Phi_k^{\delta(p)} = \varphi \varrho_d(1 - \varrho_d)^{\delta(p)}$ a.e., where $\varphi \in C_c^\infty(\mathbb{R}^n)$ is a function supported in the closed annulus
\[
\{ \xi \in \mathbb{R}^n : 1/2 < \varrho_d(\xi) < 2 \}
\]
such that
\[
\varphi(\xi) = \sum_{k \in \mathbb{N}} \Phi_k^{\delta(p)}(1 - \varrho_d(\xi)) \quad (2.4)
\]
on the open annulus $\{ \xi \in \mathbb{R}^n : 1/2 < \varrho_d(\xi) < 1 \}$. We now introduce a partition of unity \mathcal{E}_ℓ, $\ell = 1, 2, \ldots, L_0$, on the unit sphere Σ_{ϱ_d}, which we extend to \mathbb{R}^n by way of $\Pi_\ell(t \xi) = \mathcal{E}_\ell(\xi)$, $t > 0$, $\xi \in \Sigma_{\varrho_d}$, and which satisfies the following properties; by compactness of Σ_{ϱ_d}, there are a sufficiently large finite number of points $\zeta_1, \zeta_2, \ldots, \zeta_{L_0} \in \Sigma_{\varrho_d}$ such that for $\ell = 1, 2, \ldots, L_0$,

(a) $\sum_{\ell=1}^{L_0} \Pi_\ell(\zeta) = 1$ for all $\zeta \in \Sigma_{\varrho_d}$,
(b) $\mathcal{E}_\ell(\zeta) = 1$ for all $\zeta \in \Sigma_{\varrho_d} \cap B(\zeta; 2^{-M_0/2})$,
(c) \mathcal{E}_ℓ is supported in $\Sigma_{\varrho_d} \cap B(\zeta; 2^{1-M_0/2})$,
(d) $|\mathcal{D}_\alpha \Pi_\ell(\zeta)| \lesssim 2^{k_0|M_0/2}$ for any multi-index α, if $1/2 < \varrho_d(\zeta) < 2$,
(e) $L_0 \lesssim 2^{(n-1)M_0/2}$ for some sufficiently large fixed M_0 (to be chosen later),
where $B(\zeta_0; s)$ denotes the ball in \mathbb{R}^n with center $\zeta_0 \in \Sigma_{\varrho_d}$ and radius $s > 0$. For each $\ell = 1, 2, \ldots, L_0$, let $K_{\varrho_d \ell}^{\delta(p)} = F^{-1}[\varphi \Pi_{\ell} \varrho_d(1 - \varrho_d + \delta(p)_{\ell})]$ and $K_{0}^{\delta(p)} = F^{-1}[\Phi_0^{\delta(p)}].$

Next we invoke a simple observation to obtain decay estimate for kernels $K_{\varrho_d \ell}^{\delta(p)}$, $K_{0}^{\delta(p)}$ corresponding to the decomposition of the Bochner–Riesz type multiplier defined above. Without loss of generality, we can assume that $\varrho_d \in C^\infty(\mathbb{R}^n)$ because we can replace ϱ_d by $\varrho_d^{N_1}$ for sufficiently large $N_1 > 0$ by a subordination argument in [3]. Then we easily see that the kernel $K_{0}^{\delta(p)}$ has a nice decay, and so its corresponding square function admits $(H^p, L^{p, \infty})$-estimate for the critical index $\delta(p) = n(1/p - 1/2) - 1/2, 0 < p < 1$. Thus we concentrate upon obtaining the decay estimate for the kernel $K_{\varrho_d \ell}^{\delta(p)}$; in particular, in the first half of this section we shall show that the following summation of N^{th} derivatives

$$\sum_{|\alpha|=N} \frac{1}{\alpha!} D^{\alpha} K_{\varrho_d \ell}^{\delta(p)}(x)$$

of the kernel $K_{\varrho_d \ell}^{\delta(p)}$ has the same decay as that of the kernel $K_{\varrho_d \ell}^{\delta(p)}$ with the constant not depending upon $N \in \mathbb{N}$, where $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n) \in (\mathbb{N} \cup \{0\})^n$ is a multi-index, $\alpha! = \alpha_1! \alpha_2! \cdots \alpha_n!$, and

$$D^{\alpha} K_{\varrho_d \ell}^{\delta(p)}(x) = \left(\frac{\partial}{\partial x_1}\right)^{\alpha_1} \left(\frac{\partial}{\partial x_2}\right)^{\alpha_2} \cdots \left(\frac{\partial}{\partial x_n}\right)^{\alpha_n} K_{\varrho_d \ell}^{\delta(p)}(x).$$

We observe that for any multi-index $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n) \in (\mathbb{N} \cup \{0\})^n$,

$$D^{\alpha} K_{\varrho_d \ell}^{\delta(p)}(x) = F^{-1}\left[i^{(|\alpha|)} \xi^\alpha \varphi(\xi) \Pi_{\ell}(\xi) \varrho_d(\xi) (1 - \varrho_d(\xi))_{\ell}^{\delta(p)}(\xi)\right](x),$$

(2.5)

where we denote by $\xi^\alpha = \xi_1^{\alpha_1} \xi_2^{\alpha_2} \cdots \xi_n^{\alpha_n}$.

Now we introduce polar coordinates with respect to a homogeneous distance function $\varrho_d \in C^\infty(\mathbb{R}^n_0)$ as follows; the diffeomorphism

$$\mathbb{R}_+ \times \Sigma_{\varrho} \rightarrow \mathbb{R}^n_0, (\varrho, \xi) \mapsto \varrho \xi = \xi, \quad \xi \in \Sigma_{\varrho_d}$$

defines polar coordinates with respect to ϱ by way of

$$d\xi = \varrho^{n-1}(\xi, n(\xi))d\varrho d\sigma(\xi),$$

where $d\sigma(\xi)$ denotes the surface area measure on Σ_{ϱ_d} and $n(\xi)$ is the outer unit normal vector to Σ_{ϱ_d} at $\xi \in \Sigma_{\varrho_d}$. Now fix $\xi_0 \in \Sigma_{\varrho_d}$. Then the unit sphere Σ_{ϱ_d} can be parametrized near $\xi_0 \in \Sigma_{\varrho_d}$ by a map

$$w \mapsto P(w), \quad w \in \mathbb{R}^{n-1}, \quad |w| < 1,$$

such that $P(0) = \xi_0$. Then there is a neighborhood U_0 of ξ_0 with compact closure and a neighborhood V_0 of the origin in \mathbb{R}^{n-1} so that the map

$$Q : (1/2, 3/2) \times V_0 \rightarrow U_0, \quad (\varrho, w) \mapsto Q(\varrho, w) = \varrho P(w)$$

(2.6)

is a diffeomorphism with $Q(1, 0) = \xi_0$. The Jacobian of Q is given by

$$J(\varrho, w) = \varrho^{n-1}|P(w), n(P(w))|R(w),$$

where $R(w)$ is positive and

$$[R(w)]^2 = \det\left(\begin{bmatrix} \frac{d\varrho}{dw} \\ \frac{dP}{dw} \end{bmatrix}\right).$$

\textbf{Lemma 2.6.} Suppose that $\varrho_d \in C^\infty(\mathbb{R}^n_0)$ is a non-radial homogeneous distance function of degree $d \in \mathbb{N}$. Let ξ_0, U_0, ϱ be as above. If $\delta(p) = n(1/p - 1/2) - 1/2$ for $0 < p < 1$, then for each $M \in \mathbb{N}$, there are $\eta = \eta(M) > 0$, $\mu = \mu(M) > 0$, a sufficiently large $M_0 > 0$ in (a)–(e), $\varepsilon_0 > 0$, a neighborhood U_1 of ξ_0 with $\text{supp}(\varphi \Pi_{\ell}) \subset \overline{U_1} \subset U_0$, and a neighborhood V_1 of the origin in \mathbb{R}^{n-1} so that (2.6) holds and such that for any $\alpha \in (\mathbb{N} \cup \{0\})^n$,

$$|D^{\alpha} K_{\varrho_d \ell}^{\delta(p)}(x)| \leq \eta \mu^{\alpha}(1 + |x|)^{-M} \left|\left|\frac{x}{|x|}, n(\xi_0)\right|\right| \leq 1 - \varepsilon_0$$

(2.7)
and
\[
\mathcal{D}_\alpha^\delta K_{\partial \ell}^\delta (x) = \sum_{j=0}^{M-1} \mathcal{h}_j (x) + O\left(|x|^{-M}\right) \quad \text{if} \quad \left|\left< x, \nu (\xi, \ell) \right>\right| \geq 1 - \epsilon_0, \tag{2.8}
\]
where
\[
\mathcal{h}_j (x) = |x|^{-\delta (p) - 1 - j} \int_{\Sigma_{\delta d}} e^{i|x|^{\langle 1/|\eta|, \nu \rangle}} \mathcal{t}_j (\xi, x/|x|) \, d\sigma (\xi)
\]
and \(\mathcal{t}_j \in C_0^\infty (\mathcal{P}(\partial_0) \times S^{n-1})\) for \(j = 0, 1, 2, \ldots, M - 1\). In particular,
\[
\mathcal{t}_0 (\xi, x/|x|) = \Gamma (\delta (p) + 1) e^{-i\pi (\delta (p) + 1)/2} \kappa^\alpha \Pi \xi (\xi, n (\xi)) \left[\left< x, \xi, \ell \right>\right]^{-\delta (p) - 1}.
\]

Proof. Applying generalized polar coordinates that we introduced above, we have that
\[
\mathcal{D}_\alpha^\delta K_{\partial \ell}^\delta (x) = \int\int e^{i|x|^{\langle 1/|\eta|, \nu \rangle}} (1 - \epsilon)^{\delta (p) + 1} \kappa^\alpha \phi (\xi) \Pi \xi (\xi, n (\xi)) d\epsilon d\sigma (\xi)
\]
\[
= \int\int e^{i|x|^{\langle 1/|\eta|, \nu \rangle}} w^\alpha \Pi \xi (\xi, n (\xi)) \Pi \xi (\xi, n (\xi)) d\epsilon d\sigma (\xi)
\]
\[
\leq \mathcal{H}_\xi^\delta (x, \epsilon)^{n + |\alpha|} (1 - \epsilon)^{\delta (p)} \, d\epsilon.
\]

We note that if \(|\langle \theta, n (\xi) \rangle| < 1\), then we have that
\[
\nabla_w \theta (\xi, \mathcal{P}(w)) \bigg|_{w=0} \neq 0.
\]
Combining this with the homogeneity condition on the distance function \(\rho_d\) and choosing a sufficiently large \(M_0 > 0\) in (a)–(e), we may select \(\epsilon_0 > 0\), a neighborhood \(\mathcal{U}_1\) of \(\xi\) with \(\text{supp} (\phi \Pi \xi) \subset \mathcal{U}_1 \subset \mathcal{U}_0\), and a neighborhood \(\mathcal{V}_1\) of the origin in \(\mathbb{R}^{n-1}\) so that (2.6) holds, and such that for all \((w, \rho) \in \mathcal{V}_1 \times [1/2, 1],
\]
\[
\nabla_w \theta (\xi, \mathcal{P}(w)) \bigg|_{w=0} \neq 0.
\]
and
\[
c_1 \leq \left|\frac{\partial}{\partial \rho} \theta (\xi, \mathcal{P}(w))\right| \leq c_2 \quad \text{if} \quad \left|\langle \theta, n (\xi) \rangle\right| \geq 1 - \epsilon_0 \quad \tag{2.10}
\]
for some \(c_0 > 0, c_1 > 0,\) and \(c_2 > 0\). We choose some \(\epsilon \in S^{n-2}\) so that for all \((w, \rho) \in \mathcal{V}_1 \times [1/2, 1],
\]
\[
\left|\nabla_w \theta (\xi, \mathcal{P}(w))\right| \geq \frac{1}{2} \left|\nabla_w \theta (\xi, \mathcal{P}(w))\right| \geq \frac{1}{2} c_0 \quad \text{if} \quad \left|\langle \theta, n (\xi) \rangle\right| \leq 1 - \epsilon_0. \tag{2.11}
\]
If \(|\langle \theta, n (\xi) \rangle| \leq 1 - \epsilon_0\), we apply the integration of \(\mathcal{H}_\xi^\delta (x, \epsilon)\) by parts with respect to \(w\)-variable \(N\)-times to obtain that
\[
\mathcal{H}_\xi^\delta (x, \epsilon) = \int e^{i|x|^{\langle 1/|\eta|, \nu \rangle}} (\mathcal{D}_\epsilon^\nu \Pi \xi (\xi, n (\xi)) \Pi \xi (\xi, n (\xi)) d\epsilon d\sigma (\xi)
\]
\[
\leq \mathcal{H}_\xi^\delta (x, \epsilon)^{n + |\alpha|} (1 - \epsilon)^{\delta (p)} \, d\epsilon. \tag{2.12}
\]
where \(\mathcal{D}_\epsilon^\nu\) denotes the transpose of the differential operator
\[
\mathcal{D}_\epsilon^\nu g = \mathcal{D}_\epsilon^\nu [\mathcal{D}_\epsilon^\nu (\mathcal{P}(w)) \mathcal{D}_\epsilon^\nu (\mathcal{P}(w))] \mathcal{D}_\epsilon^\nu g; \quad \text{i.e.} \quad \mathcal{D}_\epsilon^\nu g = -\mathcal{D}_\epsilon^\nu \left(\frac{g}{\mathcal{D}_\epsilon^\nu (\mathcal{P}(w))}\right).
\]
Thus, it follows from (2.9), (2.11), and (2.12) that for each \(M \in \mathbb{N}\), there are constants \(\eta = \eta (M), \mu = \mu (M) > 0\) such that for any \(\alpha \in (\mathbb{N} \cup \{0\})^n,
\]
\[
|\mathcal{D}_\alpha^\delta K_{\partial \ell}^\delta (x)| \leq \eta \mu |\alpha| \left(1 + |x|\right)^{-M}. \tag{2.13}
\]
If \(|\langle \theta, n (\xi) \rangle| \geq 1 - \epsilon_0\), then by (2.10), the above (2.8) follows from the asymptotic result (see [5]) of (2.9) with respect to \(\rho\)-variable. Therefore we complete the proof. □
As we observed in Lemma 2.6, the main contribution to the decay of the kernel $\mathcal{D}_{\delta(p)}^{n}K_{\delta(p)}(x)$ comes from points near the horizontal part of $\sum_{0}d$, i.e. from points $x \in \mathbb{R}^n$ whose unit vector $x/|x|$ is almost parallel to $n(\zeta)$.

If $|\langle \theta, n(\zeta) \rangle| \geq 1 - \varepsilon_0$, then by (2.8) we can deduce the following estimate; for any multi-index $\alpha \in (\mathbb{N} \cup \{0\})^n$,

$$
\mathcal{D}_{\delta(p)}^{n}K_{\delta(p)}(x) \sim |x|^{-\delta(p)-1} \int_{\Sigma_{\delta(p)}} e^{i|x||\tilde{n}_{\zeta}/|n_{x}|} t_{0}(\zeta, x/|x|) d\sigma(\zeta),
$$

where

$$
t_{0}(\zeta, x/|x|) = \Gamma(\delta(p) + 1) e^{-i \pi (\delta(p)+1)/2} \zeta^{\alpha} \Pi(\zeta)[n(\zeta)\left[|x/|x|, \zeta\right]]^{-\delta(p)-1}.
$$

Without loss of generality, we can assume that $r_{\delta} \equiv \sup \{|\zeta| : \zeta \in \Sigma_{\delta(p)}| \leq 1$; for, by the change of variable, we may choose a sufficiently large $N_1 > 0$ so that $r_{\delta} \leq 1$ and

$$
K_{\delta(p)}(x) = N_1^{-d} \mathcal{F}^{-1}\left[\mathcal{F}(\zeta) (1 - \mathcal{F}(\zeta))^{\delta(p)} \right](N_1 x),
$$

where $K_{\delta(p)}(x) = \mathcal{F}^{-1}[\lambda_{d}(\zeta) (1 - \lambda_{d}(\zeta))^{\delta(p)}](x)$ and $\lambda_{d}(\zeta) = \lambda_{d}(N_1 \zeta)$. Since $|\zeta^\alpha| \leq 1$ by $r_{\delta} \leq 1$, it easily follows from (2.1), the fact that $|\mathcal{F}[d\sigma](x)| \sim \sigma(\mathcal{B}(\xi(x), 1/|x|))$ mentioned above, and (2.14) that for any multi-index $\alpha \in (\mathbb{N} \cup \{0\})^n$,

$$
|\mathcal{D}_{\delta(p)}^{n}K_{\delta(p)}(x)| \leq \frac{C}{(1 + |x|)^{n/p}} \Phi \left(\frac{x}{|x|}\right).
$$

Hence, by (2.15) and the multinomial theorem, we obtain that for any $N \in \mathbb{N}$,

$$
\sum_{|\alpha| = N} \frac{1}{\alpha!} \left|\mathcal{D}_{\delta(p)}^{n}K_{\delta(p)}(x)\right| \leq \sum_{|\alpha| = N} \frac{1}{\alpha!} \frac{1}{(1 + |x|)^{n/p}} \Phi \left(\frac{x}{|x|}\right)
$$

$$
= \frac{n^N}{N!} \frac{1}{(1 + |x|)^{n/p}} \Phi \left(\frac{x}{|x|}\right)
$$

$$
\leq \frac{1}{(1 + |x|)^{n/p}} \Phi \left(\frac{x}{|x|}\right).
$$

If $|\langle \theta, n(\zeta) \rangle| \leq 1 - \varepsilon_0$, then it easily follows from (2.7) and the multinomial theorem that for any $N > d\mu([n/p + 1])$,

$$
\sum_{|\alpha| = N} \frac{1}{\alpha!} \left|\mathcal{D}_{\delta(p)}^{n}K_{\delta(p)}(x)\right| \leq \sum_{|\alpha| = N} \frac{1}{\alpha!} \frac{\eta([n/p + 1]) \mu([n/p + 1])]^{|\alpha|}}{(1 + |x|)^{n/p}}
$$

$$
= \frac{n^N \mu([n/p + 1])]^N}{N!} \eta([n/p + 1])
$$

$$
\leq \frac{\eta([n/p + 1])}{(1 + |x|)^{n/p}}.
$$

Therefore we can easily obtain the following corollaries.

Corollary 2.7. Suppose that $\varrho_{d} \in C^{\infty}(\mathbb{R}^n)$ is a non-radial homogeneous distance function of degree $d \in \mathbb{N}$. Let ζ_{ℓ}, ζ_0, and ϵ_0 be as above. If $\delta(p) = n(1/p - 1/2) - 1/2$ for $0 < p < 1$, then there are constants $\mu_0 = \mu([n/p + 1]) > 0$ and $\eta_0 = \eta([n/p + 1]) > 0$ given in (2.13), a sufficiently large $M_0 > 0$ in (a)–(e), $\varepsilon_0 > 0$, a neighborhood U_{1} of ζ_{ℓ} with $\text{supp}(\varphi \Pi_{\ell}) \subset U_{1} \subset U_{0}$, and a neighborhood V_{1} of the origin in \mathbb{R}^{n-1} so that (2.6) holds and such that for any $N > d\mu_0$,

$$
\sum_{|\alpha| = N} \frac{1}{\alpha!} \left|\mathcal{D}_{\delta(p)}^{n}K_{\delta(p)}(x)\right| \leq \frac{\eta_0}{(1 + |x|)^{n/p}} \Phi \left(\frac{x}{|x|}, n(\zeta_{\ell})\right) \leq 1 - \varepsilon_0
$$

and

$$
\sum_{|\alpha| = N} \frac{1}{\alpha!} \left|\mathcal{D}_{\delta(p)}^{n}K_{\delta(p)}(x)\right| \leq \frac{1}{(1 + |x|)^{n/p}} \Phi \left(\frac{x}{|x|}, n(\zeta_{\ell})\right) \geq 1 - \varepsilon_0,
$$

where $\alpha \in (\mathbb{N} \cup \{0\})^n$ is a multi-index.
Corollary 2.8. Suppose that \(\varrho_d \in C^\infty(\mathbb{R}_+^d) \) is a non-radial homogeneous distance function of degree \(d \in \mathbb{N} \). If we set
\[
K_{\varrho_d}^{\delta(p)}(x) = \mathcal{F}^{-1}[\varrho_d(1 - \varrho_d^\delta)\hat{1}](x) \quad \text{for} \quad 0 < p < 1,
\]
then we have the following uniform estimate; there is a constant \(C = C(n, p) > 0 \) such that for any \(N \in \mathbb{N} \),
\[
\left| K_{\varrho_d}^{\delta(p)}(x) \right| + \sum_{\left| \alpha \right| = N} \frac{1}{\alpha!} \left| \mathcal{T}^\alpha K_{\varrho_d}^{\delta(p)}(x) \right| \leq \frac{C}{(1 + |x|)^{n/p}} \Phi \left(\frac{x}{|x|} \right),
\]
where \(\alpha \in (\mathbb{N} \cup \{0\})^n \) is a multi-index. Here the constant \(C > 0 \) is independent of \(N \in \mathbb{N} \).

We now introduce the real Hardy space \(H^p(\mathbb{R}^n) \) defined in terms of atomic decompositions along the pattern of Stein [14]. Let \(0 < p < 1 \). For \(\mu \geq n(1/p - 1) \), a function \(\alpha \in L^\infty(\mathbb{R}^n) \) is called a \((p, \mu)\)-atom centered at \(x_0 \in \mathbb{R}^n \) if it satisfies

(i) there is a ball \(B(x_0; s) \) with \(\text{supp}(\alpha) \subset B(x_0; s) \),
(ii) \(\| \alpha \|_{L^\infty} \leq |B(x_0; s)|^{-1/p} \), and
(iii) \(\int_{\mathbb{R}^n} \alpha(x) x^\alpha \, dx = 0 \) for \(|\alpha| \leq \mu \),

where \(\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n) \) is an \(n \)-tuple of nonnegative integers and \(|\alpha| = \sum_{i=1}^n \alpha_i \leq \mu \). If \(f = \sum_{k=1}^\infty c_k \alpha_k \) where the \(\alpha_k \)'s are \((p, \mu)\)-atoms and \(\{c_k\} \in l^p \), then \(f \in H^p(\mathbb{R}^n) \) and \(\|f\|_{H^p} \lesssim \sum_k |c_k|^p \) and the converse inequality also holds (see [14]).

Proof of Theorem 1.1. Fix \(0 < p < 1 \). Let \(\alpha \) be a \((p, n(1/p - 1))\)-atom supported in the ball \(B(x_0; s) \) with center \(x_0 \in \mathbb{R}^n \) and radius \(s > 0 \). Then we see that
\[
\mathcal{G}_{\varrho_d}^{\delta(p)} \alpha(x) = \left(\int_0^\infty |k_{\varrho_d}^{\delta(p), t} \ast \alpha(x)|^2 \frac{dt}{t} \right)^{1/2},
\]
where \(k_{\varrho_d}^{\delta(p)}(x) = t^n K_{\varrho_d}^{\delta(p)}(tx) \) and \(K_{\varrho_d}^{\delta(p)}(x) = \mathcal{F}^{-1}[\varrho_d(1 - \varrho_d^\delta)\hat{1}](x) \). Then it follows from changing the order of integration and the Plancherel’s theorem that
\[
\left\| \mathcal{G}_{\varrho_d}^{\delta(p)} \alpha \right\|_{L^2}^2 = \int_{\mathbb{R}^n} \left| \hat{\alpha}(\xi) \right|^2 \int_0^\infty \left(\frac{\varrho_d(\xi)}{t^d} \right)^2 \left(1 - \frac{\varrho_d(\xi)}{t^d} \right)^{2\delta(p)} \frac{dt}{t} \, d\xi
\]
\[
= \left(\frac{1}{d} \int_0^1 t(1 - t)^{2\delta(p)} \, dt \right) \left\| \hat{\alpha} \right\|_{L^2}^2 \lesssim \| \alpha \|_{L^2}^2, \quad \delta(p) > -1/2.
\]
By Plancherel’s theorem, (2.21), and Hölder’s inequality with \(p/2 + 1/q = 1 \), we have that
\[
\int_{B(x_0; 2s)} \left| \mathcal{G}_{\varrho_d}^{\delta(p)} \alpha(x) \right|^p \, dx \lesssim \left\| \mathcal{G}_{\varrho_d}^{\delta(p)} \alpha \right\|_{L^2}^p \left| B(x_0; 2s) \right|^{1/q} \lesssim C.
\]
Thus by Chebyshev’s inequality we have that for all \(\lambda > 0 \),
\[
\left| \left\{ x \in B(x_0; 2s) : \left| \mathcal{G}_{\varrho_d}^{\delta(p)} \alpha(x) \right| > \lambda/2 \right\} \right| \lesssim \lambda^{-p}.
\]
Thus it suffices to show that
\[
\left| \left\{ x \in B(x_0; 2s) : \left| \mathcal{G}_{\varrho_d}^{\delta(p)} \alpha(x) \right| > \lambda/2 \right\} \right| \lesssim \lambda^{-p}, \quad \lambda > 0.
\]
Since \(k_{\varrho_d}^{\delta(p)} \ast \alpha \) is translation invariant, we may assume that \(x_0 = 0 \). If we set \(b(x) = s^{n/p} \alpha(tx) \), then \(b \) is clearly a \((p, n(1/p - 1))\)-atom that is supported in the unit ball \(B(0; 1) \). We observe that
provided that
\[
K^{\delta(p)}_{e_{d,t}} \ast a(x) = s^{-n/p} \frac{1}{K^{\delta(p)}_{e_{d,s}} \ast b(x/s)},
\]
\[
\mathcal{S}^{\delta(p)}_{e_{d}} a(x) = s^{-n/p} \left(\int_{0}^{\infty} \left| K^{\delta(p)}_{e_{d,t}} \ast b(x/s) \right|^2 dt \right)^{1/2}.
\] (2.22)

If \(x \in B(0; 2) \), then it follows from Lemma 2.5, Corollary 2.8, and Minkowski’s integral inequality that
\[
\left(\int_{0}^{\infty} \left| K^{\delta(p)}_{e_{d,t}} \ast b(x/s) \right|^2 dt \right)^{1/2} \lesssim \int_{B(0; 1)} \Phi \left(\frac{x-y}{|x-y|} \right) \left(\int_{1}^{\infty} t^{2n} \frac{dt}{(1+t|x|)^{2n/p}} \right)^{1/2} dy
\]
\[
\lesssim \Phi \left(\frac{x}{|x|} \right) \left(\int_{1+|x|}^{\infty} t^{2n-1-\frac{2n}{p}} dt \right)^{1/2}
\]
\[
\lesssim \frac{1}{(1+|x|)^{n/p}} \Phi \left(\frac{x}{|x|} \right).
\] (2.23)

Thus by (2.22) and (2.23) we have that
\[
s^{-n/p} \left(\int_{0}^{\infty} \left| K^{\delta(p)}_{e_{d,t}} \ast b(x/s) \right|^2 dt \right)^{1/2} \lesssim \frac{1}{(s+|x|)^{n/p}} \Phi \left(\frac{x}{|x|} \right).
\] (2.24)

provided that \(x \in B(0; 2s) \). Let \(N_0 \) be an integer satisfying \(N_0 < n/(1/p - 1) \leq N_0 + 1 \), i.e. \(n/(n + N_0 + 1) \leq p < n/(n + N_0) \). If \(x \in B(0; 2) \), let \(Q_{x,x}(y) \) be the \(N_0 \)th order Taylor polynomial of the function \(y \to K^{\delta(p)}_{e_{d}} (t(x-y)) \) expanded near the origin. If \(x \in B(0; 2) \), then it follows from the moment condition on the atom \(b \), Taylor’s theorem, Minkowski’s integral inequality, Lemma 2.5, and Corollary 2.8 that
\[
\left(\int_{0}^{\infty} \left| K^{\delta(p)}_{e_{d,t}} \ast b(x/s) \right|^2 dt \right)^{1/2} \lesssim \left(\int_{0}^{\infty} \left| \frac{1}{B(0; 1)} \int_{|y|=N_0+1} \frac{1}{\alpha!} |D^{\alpha} K^{\delta(p)}_{e_{d}} (t(x-y))| dy \right|^2 t^{2n+2(N_0+1)-1} dt \right)^{1/2}
\]
\[
\lesssim \left(\int_{0}^{\infty} \left(\int_{B(0; 1)} \frac{1}{(1+t|x-y|)^{n/p}} \Phi \left(\frac{x-y}{|x-y|} \right) dy \right)^2 t^{2n+2(N_0+1)-1} dt \right)^{1/2}
\]
\[
\lesssim \left(\int_{0}^{\infty} \left(\int_{B(0; 1)} \frac{1}{(1+t|x-y|)^{n/p}} \Phi \left(\frac{x-y}{|x-y|} \right) dy \right)^2 t^{2n+2(N_0+1)-1} dt \right)^{1/2} d\tau
\]
\[
\lesssim \int_{0}^{\infty} \Phi \left(\frac{x-y}{|x-y|} \right) \left(\int_{0}^{\infty} \frac{t^{2n+2(N_0+1)-1}}{(1+t|x-y|)^{2n/p}} dt \right)^{1/2} dy d\tau
\]
\[
\lesssim \Phi \left(\frac{x}{|x|} \right) \left(\int_{0}^{\infty} \frac{t^{2n+2(N_0+1)-1}}{(1+t|x|)^{2n/p}} dt \right)^{1/2}
\]
because \(n + (N_0 + 1) - n/p \geq 0 \). Combining this with (2.22), we have that

\[
S^{-n/p} \left(\int_0^1 |K^{(p)}_{\delta d} \ast b(x/s)|^2 \frac{dt}{t} \right)^{1/2} \lesssim \frac{1}{(s + |x|)^{n/p}} \Phi \left(\frac{x}{|x|} \right),
\]

(2.25)

provided that \(x \in B(0; 2s) \). Thus by (2.22), (2.24), and (2.25) we conclude that

\[
\Phi^{(p)}(r) \leq \frac{1}{(s + |x|)^{n/p}} \Phi \left(\frac{x}{|x|} \right),
\]

whenever \(x \in B(0; 2s) \). Hence we have the following estimate

\[
\int_{\{x \in B(0; 2s) : \Phi^{(p)}(r) > \lambda \}} dx \lesssim \int \left(\int_{2s} r^{n-1} dr \right) d\theta \lesssim \lambda^{-p}
\]

because \(\Omega \in L^p(S^{n-1}) \) for any \(p < 1 \) by Lemma 2.2. Therefore by Lemma 2.3 we complete the proof.

3. \((H^p, L^p)\)-estimate for the case that \(\varrho_d \in C^\infty(\mathbb{R}_0^n) \) and \(\delta > \delta(p) \), \(0 < p < 1 \)

We shall adopt another decomposition of the Bochner–Riesz type multiplier \(\varrho_d(1 - \varrho_d)_{+}^\delta \) as in Córdoba [3] where \(\varrho_d \in C^\infty(\mathbb{R}_0^n) \) is a non-radial homogeneous distance function of degree \(d \in \mathbb{N} \). Let a function \(\phi \in C^\infty_c(1/2, 2) \) satisfy

\[
\sum_{k \in \mathbb{Z}} \phi(2^k t) = 1 \quad \text{for all } t > 0.
\]

For \(k \in \mathbb{N} \), let \(\Phi_k^\delta = \phi(2^{k+1}(1 - \varrho_d))\varrho_d(1 - \varrho_d)_+^\delta \) and \(\Phi_0^\delta = \varrho_d(1 - \varrho_d)_+^\delta - \sum_{k \in \mathbb{N}} \Phi_k^\delta \). For each \(k \in \mathbb{Z} \), we now introduce a partition of unity \(\Sigma_{\varrho_d} \), \(\ell = 1, 2, \ldots, N_k \), on the unit sphere \(\Sigma_{\varrho_d} \) which we extend to \(\mathbb{R}^n \) by way of \(\Pi_{\varrho_d}(A; \xi) = \Sigma_{\varrho_d}(\xi), t > 0, \xi \in \Sigma_{\varrho_d}, \delta \) and which satisfies the following properties; there are a finite number of points \(\varsigma_{k1}, \varsigma_{k2}, \ldots, \varsigma_{kN_k} \in \Sigma_{\varrho_d} \) such that for \(\ell = 1, 2, \ldots, N_k \),

(i) \(\sum_{\ell=1}^{N_k} \Pi_{\varrho_d}(\varsigma) = 1 \) for all \(\varsigma \in \Sigma_{\varrho_d} \),

(ii) \(\Sigma_{\varrho_d}(\varsigma) = 1 \) for all \(\varsigma \in \Sigma_{\varrho_d} \cap B(\varsigma_{k\ell}; 2^{-k/2}) \),

(iii) \(\Sigma_{\varrho_d} \) is supported in \(\Sigma_{\varrho_d} \cap B(\varsigma_{k\ell}; c_3 2^{-k/2}) \),

(iv) \(|D^\alpha \Pi_{\varrho_d}(\varsigma)| \leq c_2 2^{\alpha|k/2|} \) for any multi-index \(\alpha \), if \(1/2 \leq \varrho_d(\varsigma) \leq 2 \),

(v) \(N_k \leq c_3 2^{(n-1)/2} \) for fixed \(k \),

where \(B(\varsigma; s) \) denotes the ball in \(\mathbb{R}^n \) with center \(\varsigma \in \Sigma_{\varrho_d} \) and radius \(s > 0 \) and the positive constants \(c_1, c_2, c_3 \) do not depend upon \(k \). For each \(k \in \mathbb{Z} \), let \(\mathcal{H}_{\varrho_d, k\ell}^\delta = \mathcal{F}^{-1} \Phi_k^\delta \Pi_{\varrho_d} \) and \(\mathcal{H}_0 = \mathcal{F}^{-1} \Phi_0^\delta \).

Next we invoke a simple observation as in Section 2 to obtain decay estimate for kernels \(\mathcal{H}_{\varrho_d, k\ell} \), \(\mathcal{H}_0 \) corresponding to the decomposition of the Bochner–Riesz multiplier defined above. Without loss of generality, we can assume that \(\varrho_d \in C^\infty(\mathbb{R}^n) \) because we can replace \(\varrho_d \) by \(\varrho_d^N \) for sufficiently large \(N > 0 \) by a subordination argument in [4]. Then we easily see that the kernel \(\mathcal{H}_0 \) has a nice decay, and so its corresponding square function admits \((H^p, L^p)\)-estimate for the index \(\delta > n(1/p - 1/2) - 1/2 \) and \(0 < p < 1 \). Thus we concentrate upon obtaining the decay estimate for the kernels \(\mathcal{H}_{\varrho_d, k\ell}^\delta \).
Lemma 3.1. Suppose that \(\varrho_d \in C^\infty(\mathbb{R}^d_0) \) is a non-radial homogeneous distance function of degree \(d \in \mathbb{N} \). For fixed \(k \in \mathbb{N} \) and for \(\ell = 1, 2, \ldots, N_k \), let \(T_{\xi_k}(\Sigma_{\varrho_d}) \) be the tangent space of \(\Sigma_{\varrho_d} \) at \(\xi_k \in \Sigma_{\varrho_d} \), \(\{\varrho_d^{j_n} \} \) be an orthonormal basis of \(T_{\xi_k}(\Sigma_{\varrho_d}) \), and \(\varrho_d^{j_n} \) be the outer unit normal vector to \(\Sigma_{\varrho_d} \) at \(\xi_k \in \Sigma_{\varrho_d} \). Then we have the following estimate

\[
|H_{\varrho_d, k\ell}(x)| \leq \frac{C_N 2^{-k(\delta + 1 + (n-1)/2)}}{(1 + 2^{-k}|x, \varrho_d^0|)|n|^{-1} (1 + 2^{-k/2}|x, \varrho_d^0|)|N|^{-1}}
\]

for any \(N \in \mathbb{N} \).

Proof. We need the following simple observation: let \(\varrho_d \in C^\infty(\mathbb{R}^d_0) \) and \(F \in C^N(\mathbb{R}^+) \). For \(e \in S^{n-1} \), let \(D_e f \) be the directional derivative \(\langle e, \nabla f \rangle \). Then by simple calculation one can have the following formula

\[
D_e^N (F \circ \varrho_d) = \sum_{v=1}^{N} \sum_{\beta \in \gamma^N} c_{N, \beta} D_e^\beta \varrho_d
\]

where \(\gamma^N = \{\beta; \sum_{m=1}^{v} \beta_m = N, \text{ at least } v - N \} \) of the numbers \(\beta_m \) are equal to 1, \(\beta = (\beta_1, \ldots, \beta_v) \) is a multi-index, and \(c_{N, \beta} \)'s are some constants. For \(k \in \mathbb{N} \), let \(F_k(t) = \phi(2^{k+1}(1-t))-(1-t)\delta \). Then it follows from simple computation that

\[
F_k^{(v)}(t) = (-1)^v \sum_{i=0}^{v} C(v, i) C(\delta, v-i) 2^i (k+1) \phi(i) (2^{k+1}(1-t))(1-t)^{\delta-v+i}
\]

where \(C(v, i) = \frac{v(v-1)(v-2)\cdots(v-i+1)}{i!} \) for positive integers \(v, i \), and \(C(v, 0) = 1 \). If we set \(G_k(t) = \phi(2^{k+1}(1-t))t(1-t)^\delta \) for \(k \in \mathbb{N} \), then we have that

\[
G_k^{(v)}(t) = vF_k^{(v-1)}(t) + t F_k^{(v)}(t).
\]

For fixed \(k, \ell \), by (3.1), (3.2), and (3.3), we have the estimate

\[
\left\| D_{\xi_k}^N \left[\Phi_k^\delta \Lambda_{k\ell} \right] \right\|_{L^1} \leq c 2^{-k(\frac{\delta+1}{2})} 2^{-k\delta} 2^{kN}
\]

for any \(N \in \mathbb{N} \). Since we have the better estimate \(|D_{\xi_k}^N \varrho_d| \leq c 2^{-k/2} \) on the support of \(F[H_{\varrho_d, k\ell}^\delta] \) for fixed \(j, k, \ell \), it follows from (3.1) and Taylor’s theorem that

\[
\left\| D_{\xi_k}^N \left[\Phi_k^\delta \Lambda_{k\ell} \right] \right\|_{L^1} \leq c 2^{-k(\frac{\delta+1}{2})} 2^{-k\delta} 2^{kN/2}
\]

for any \(N \in \mathbb{N} \). Using the integration by parts, it follows from (3.4) and (3.5) that

\[
|H_{\varrho_d, k\ell}(x)| \leq \frac{C_N 2^{-k(\delta + 1 + (n-1)/2)}}{(1 + 2^{-k}|x, \varrho_d^0|)|n|^{-1} (1 + 2^{-k/2}|x, \varrho_d^0|)|N|^{-1}}
\]

for any \(N \in \mathbb{N} \). □

Lemma 3.2. Suppose that \(\varrho_d \in C^\infty(\mathbb{R}^d_0) \) is a non-radial homogeneous distance function of degree \(d \in \mathbb{N} \). If \(\delta > n(1/p - 1/2) - 1/2 \) for \(0 < p < 1 \), let a positive number \(p' < p \) be chosen so that \(\delta = n(1/p' - 1/2) - 1/2 \). For fixed \(k \in \mathbb{N} \) and for \(\ell = 1, 2, \ldots, N_k \), let \(T_{\xi_k}(\Sigma_{\varrho_d}) \) be the tangent space of \(\Sigma_{\varrho_d} \) at \(\xi_k \in \Sigma_{\varrho_d} \), \(\{\varrho_d^{j_n} \} \) be an orthonormal basis of \(T_{\xi_k}(\Sigma_{\varrho_d}) \), and \(\varrho_d^{j_n} \) be the outer unit normal vector to \(\Sigma_{\varrho_d} \) at \(\xi_k \in \Sigma_{\varrho_d} \). Then we have the following estimate

\[
|H_{\varrho_d, k\ell}(x)| + |\nabla H_{\varrho_d, k\ell}(x)| \leq \frac{C_p 2^{-k(\frac{\delta+1}{2p})}}{\prod_{j=0}^{n-1} (1 + |x, \varrho_d^{j_n}|)^{1/p'}} \leq C_p 2^{-k(\frac{\delta+1}{2p'})} Q_{k\ell}(x).
\]
Proof. This can easily be obtained by choosing \(\delta = n(1/p' - 1/2) - 1/2 \) and \(N = 1/p' \) in Lemma 2.1. We also observe that \(\nabla t H_{\delta, k} = \varphi \ast H_{\delta, k} \) for some \(\varphi \in \mathcal{S}(\mathbb{R}^n) \). ∎

For \(f \in \mathcal{G}(\mathbb{R}^n) \), \(\delta \in \mathbb{R} \), \(k \in \mathbb{N} \), and \(\ell = 1, 2, \ldots, N_k \), let

\[
\mathcal{G}_{\delta, k} f(x) = \left(\int_0^\infty \left| \mathcal{H}_{\delta, k} f(x) \right|^2 \frac{dt}{t} \right)^{1/2}
\]

where \(\mathcal{H}_{\delta, k} f(x) = t^n \mathcal{H}_{\delta, k}^\delta(t x) \). We now need an elementary inequality to obtain the decay estimate of square functions \(\mathcal{G}_{\delta, k} \) corresponding to such kernels \(\mathcal{H}_{\delta, k}^\delta \) which act on certain atoms. We shall now state it without proof.

Lemma 3.3. For any \(a \geq 1 \) and \(b \geq 0 \), we have that \(\frac{1}{a^p} \leq \left(\frac{1 + b}{a+b} \right)^{1/p} \) for \(p > 0 \).

Lemma 3.4. Suppose that \(\varphi_d \in C^\infty(\mathbb{R}^n) \) is a non-radial homogeneous distance function of degree \(d \in \mathbb{N} \). If \(\delta > n(1/p - 1/2) - 1/2 \) for \(0 < p < 1 \), let a positive number \(p' < p \) be chosen so that \(\delta = n(1/p' - 1/2) - 1/2 \). Suppose that \(a \) is a \((p, n(1/p' - 1))\)-atom on \(\mathbb{R}^n \) which is supported in the ball \(B(x_0; s) \) with center \(x_0 \in \mathbb{R}^n \) and radius \(s > 0 \). Then there is a constant \(C = C(n, p) > 0 \) such that

(a) \(\mathcal{G}_{\delta, k} a(x) \leq C s^{-n/p} 2^{-k(n-1)/p'} Q_k \delta(\frac{|x-y|}{s}) \) for any \(x \in B(x_0; 2s) \),

(b) \(\| (\mathcal{G}_{\delta, k} a) \chi_{B(x_0; 2s)} \|_{L^p} \leq C 2^{-k(n-1)/p'} \),

where \(Q_k(\delta) \) is the function given in Lemma 3.2.

Proof. (a) We first assume that \(a \) is a \((p, n(1/p' - 1))\)-atom which is supported in the unit ball \(B(0; 1) \) centered at the origin. If \(x \in B(0; 2s) \), then it easily follows from Lemmas 3.2, 3.3, and Minkowski’s integral inequality that

\[
\left(\int_{B(0;1)} \left| \mathcal{H}_{\delta, k}^\delta(t x - y) \right|^2 \frac{dt}{t} \right)^{1/2} \leq 2^{-k(n-1)/p'} \int_{B(0;1)} \sum_{j=0}^{n-1} \frac{(1 + |\langle y, e_{k \ell}^j \rangle|)^{1/p'}}{(1 + |x - y, e_{k \ell}^j|)} dy
\]

\[
\leq 2^{-k(n-1)/p'} Q_k(\delta)(x).
\]

because \(n(1 - 1/p') < 0 \) and \(|\langle x, e_{k \ell}^j \rangle| \leq |\langle x - y, e_{k \ell}^j \rangle| + |\langle y, e_{k \ell}^j \rangle| \). Let \(N_1 \in \mathbb{N} \) be an integer satisfying that \(N_1 < n(1/p' - 1) \leq N_1 + 1 \), i.e. \(n/(n + N_1 + 1) \leq p' < n/(n + N_1) \). If \(x \in B(0; 2s) \), let \(\mathcal{Q}_{t, x}(y) \) be the \(N_1 \)th order Taylor polynomial of the function \(y \rightarrow \mathcal{H}_{\delta, k}^\delta(t (x - y)) \) expanded near the origin. If \(x \in B(0; 2s) \), then it follows from the moment condition on the atom \(a \), Taylor’s theorem, Minkowski’s integral inequality, Lemmas 3.2, and 3.3 that
Then it easily follows from the change of variable and (3.10) that whenever $n + (N_1 + 1) - n/p' \geq 0$ and $\|\{x, e^j_{k\ell}\} \leq |\{x - \tau y, e^j_{k\ell}\}| + \tau |\{y, e^j_{k\ell}\}|$ for $0 < \tau < 1$. Combining this with (3.7), we have that
\[
\mathcal{G}^\delta_{\tilde{R}^\ell} a(x) \lesssim 2^{-k(D^*_{\tilde{R}^\ell})} \mathcal{Q}_{k\ell}(x), \quad \text{(3.8)}
\]
whenever $x \in \mathcal{B}(0; 2)^c$.

Finally, let a be a $(p, n(1/p' - 1))$-atom supported in the ball $B(x_0; s)$. If we set $b(x) = s^{n/p} a(s(x - x_0))$, then b is clearly a $(p, n(1/p' - 1))$-atom supported in the unit ball $B(0; 1)$. We also observe that
\[
\mathcal{H}^\delta_{\tilde{R}^\ell} \ast a(x) = s^{-n/p} \mathcal{H}^\delta_{\tilde{R}^\ell} \ast b((x - x_0)/s),
\]
\[
\mathcal{G}^\delta_{\tilde{R}^\ell} a(x) = s^{-n/p} \left(\int_0^1 |\mathcal{H}^\delta \ast b((x - x_0)/s)|^2 \frac{dt}{t} \right)^{1/2}.
\quad \text{(3.9)}
\]

Thus by (3.8) and (3.9) we can complete the part (a).

(b) We observe that there is a constant $C = C(n, p) > 0$ such that for any $x_0 \in \mathbb{R}^n$ and for any $k \in \mathbb{N}$, $\ell = 1, 2, \ldots, N_k$,
\[
\|\mathcal{Q}_{k\ell}(\cdot - x_0)/s\|_{L^p} \leq Cs^{n/p}. \quad \text{(3.10)}
\]

Then it easily follows from the change of variable and (3.10) that
\[
\left\| \mathcal{G}^\delta_{\tilde{R}^\ell} a(x) \mathcal{X}_{B(x_0; 2s)} \right\|_{L^p} \leq Cs^{-n/p} \frac{1}{p} \left\|\mathcal{Q}_{k\ell}(\cdot - x_0)/s\right\|_{L^p} \leq C 2^{-k(D^*_{\tilde{R}^\ell})}. \quad \square
\]

Proof of Theorem 1.2. First of all, we prove that if $\delta > n(1/p - 1/2) - 1/2$ for $0 < p < 1$ then $\mathcal{G}^\delta_{\tilde{R}^\ell} a \in L^p(\mathbb{R}^n)$ for any $(p, n(1/p' - 1))$-atom on \mathbb{R}^n where $p' < p$ is a positive number satisfying $\delta = n(1/p' - 1/2) - 1/2$, and moreover there is a constant $C > 0$ independent of such atoms such that $\|\mathcal{G}^\delta_{\tilde{R}^\ell} a\|_{L^p} \leq C$. Let a be a $(p, n(1/p' - 1))$-atom supported in the ball $B(x_0; s)$ with center $x_0 \in \mathbb{R}^n$ and radius $s > 0$. Then it follows from Plancherel’s theorem, (2.21), and Hölder’s inequality with $p/2 + 1/q = 1$ that
\[
\int_{B(x_0; 2s)} \left|\mathcal{G}^\delta_{\tilde{R}^\ell} a(x)\right|^p dx \lesssim \|\mathcal{G}^\delta_{\tilde{R}^\ell} a\|_{L^2}^p \|B(x_0; 2s)\|_1^{1/q} \leq C. \quad \text{(3.11)}
\]

Since $0 < p < 1$, it easily follows from (3.11), (v) of p. 276, and (b) of Lemma 3.4 that
\[
\|\mathcal{G}^\delta_{\tilde{R}^\ell} a\|_{L^p}^p = \left\| \left(\mathcal{G}^\delta_{\tilde{R}^\ell} a\right) \mathcal{X}_{B(x_0; 2s)} \right\|_{L^p}^p + \left\| \left(\mathcal{G}^\delta_{\tilde{R}^\ell} a\right) \mathcal{X}_{B(x_0; 2s)^c} \right\|_{L^p}^p
\lesssim 2^{n/q} + \sum_{k=1}^{\infty} \sum_{\ell=1}^{N_k} \left\| \left(\mathcal{G}^\delta_{\tilde{R}^\ell} a\right) \mathcal{X}_{B(x_0; 2s)^c} \right\|_{L^p}^p
\lesssim 2^{n/q} + \sum_{k=1}^{\infty} 2^{-k(D^*_{\tilde{R}^\ell})} \leq C. \quad \text{(3.12)}
\]
Finally, if \(f = \sum_{j=1}^{\infty} c_j a_j \) where the \(a_j \)'s are \((p, n(1/p' - 1))\)-atoms and \(\{c_j\} \in \ell^p \), then by (3.12) we have the estimate
\[
\left\| \mathcal{G}_{\delta}^{\varrho} f \right\|_{L^p} \leq \sum_{j} |c_j|^p \left\| \mathcal{G}_{\delta}^{\varrho} a_j \right\|_{L^p} \lesssim \sum_{j} |c_j|^p.
\]
Hence this completes the proof. \(\square \)

Acknowledgments

The author thanks for the referee’s kind and helpful comments.

References