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0. Introduction

In the literature there exist many criteria for selfadjointness of symmetric operators. As a root of the present research
one should mention the paper by Driessler and Summers [8], which presents a criterion for selfadjointness connected
with the notion of domination (relative boundedness) and the first commutator. Later on that result has been extended by
Cichoń, Stochel and Szafraniec [5] and by the author of the present paper [25,26]. The aim of this note is to generalize
this result in such way that it serves simultaneously as a criterion for normality of a formally normal operator as well as a
criterion for selfadjointness of symmetric operator in a Krein space. Furthermore, an important issue will be illustrating this
generalization with various examples.

Let us describe now the framework of the present research. Given a pair (A, A0) of operators in a Hilbert space, with
A closable and densely defined and A0 ⊆ A∗ , we want to provide a necessary condition for the equality Ā0 = A∗ . This
condition should not involve the operator A∗ itself but the operators A and A0 only. The main interest will lie in the
following instances:

(a0) A is a symmetric operator, A0 = A;
(a1) A is a formally normal operator, A0 = A∗|D(A);
(a2) A is a q-formally normal operator with q ∈ (0,∞), A0 = A∗|D(A);
(a3) D(A) ⊆D(A∗) and the graph norms of A and A∗ are equivalent on D(A), A0 = A∗|D(A);
(a4) A is an H-symmetric operator, where H ∈ B(K) is selfadjoint and boundedly invertible, A0 = H AH−1.

Note that the equality Ā0 = A∗ means in the above cases that, respectively, Ā is selfadjoint, Ā is normal, Ā is q-normal,
D( Ā) = D(A∗), and Ā is H-selfadjoint (see the Preliminaries for this and for definitions of the classes appearing above).
After these explanations we can present the main result of the paper. The theorem is proved later on in a slightly stronger
form as Theorem 3, cf. Remark 4. If S is an operator in a Hilbert space K then D(S) and R(S) denote, respectively, the
domain and the range of S and WOT lim stands for the limit in the weak operator topology.
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Theorem 1. Let A be a closable, densely defined operator in a Hilbert space K and let A0 ⊆ A∗ . If there exists a sequence (Tn)∞n=0 ⊆
B(K) such that

WOT lim
n→∞ Tn = IK,

R(Tn) ⊆ D( Ā), R
(
T ∗

n

) ⊆ D( Ā0), n ∈N (1)

and

sup
n∈N

‖ ĀTn − Tn Ā‖ < +∞, (2)

then Ā0 = A∗ .

In the classical literature like [2,13,21] one can find a technique of proving selfadjointness based on computing the
relative bound. The method presented above is an alternative approach, based rather on the notions of commutativity and
domination. An example of a first order symmetric differential operator from [26] shows the difference between those two
approaches.

In the symmetric case (a0) the technique presented in the theorem above was already used in the literature in the
context of differential operators on manifolds [4,9,10] and graphs [11]. In [6] one can find examples of applications of the
domination techniques to symmetric integral operators. Therefore, in the present paper we do not focus our attention on
the (a0) class, but show possible applications of the main result in the classes (a1)–(a4).

The content of the present paper is the following. Section 1 has a preliminary character, but already in the consecu-
tive section we prove the main result of the paper. In Section 3 we consider the class (a1) of formally normal operators,
extending the results from [26]. In Section 4 we will consider H-symmetric operators (class (a4)) given by infinite matrices.

In Sections 5 we make a link with a theory of commutative domination in the sense of [20,22,27]. Namely, the sequence
(Tn)∞n=0 in Theorem 1 above may be in many cases chosen as

Tn = nm(S − i · n)−m, n ∈ N,

where S is a selfadjoint operator and m � 1, examples can be found in the already mentioned work [6]. However, this
approach requires computing the commutator (2). In Theorem 11 we replace (2) by a condition involving the commutator
S A − A S , the new assumption being stronger then (2) but nevertheless easier to calculate. Again, we formulate the result
in the general setting of the pair (A0, A), the case S A − A S = 0 is the announced link with commutative domination. In
Section 6 we apply Theorem 11 to a first order differential operator A with nonconstant coefficients. A necessary conditions,
expressed in terms of coefficients, for A being of class (a3) and for D( Ā) =D(A∗) are provided. As the reader noticed there
are so far no applications of the main result to the class (a2).

1. Preliminaries

Through the whole paper (K, 〈·,−〉) stands for a Hilbert space. The sum and the product of unbounded operators is
understood in a standard way, see e.g. [7]. We put

ad(S, T ) := ST − T S.

We say that an operator S in K is bounded if ‖S f ‖� c‖ f ‖ for all f ∈D(S) and some c � 0. We write B(K) for the space of
all bounded operators with domain equal K, stressing the fact that not every bounded operator is in B(K).

Let A be a closable, densely defined operator. We say that A is symmetric if A ⊆ A∗ , selfadjoint if A = A∗ .
Let q ∈ (0,+∞), we say that A is q-formally normal if D(A) ⊆D(A∗) and ‖A∗ f ‖ = √

q‖A f ‖ for f ∈D(A). We say that A
is q-normal if A is q-formally normal and D(A) = D(A∗). We refer the reader to [18,19] for a treatment on q-normals and
related classes of operators. Note that (a2) together with Ā0 = A∗ gives q-normality of Ā. Indeed, since the graph norms of
A0 = A∗|D(A) and A are equivalent on D(A), we get D( Ā) = D(A∗), i.e. Ā is q-normal. We call A formally normal (normal)
if it is 1-formally normal (1-normal, respectively).

Let H ∈ B(K) be selfadjoint and boundedly invertible. We say that A is H-symmetric if A ⊆ H−1 A∗H , H-selfadjoint if
A = H−1 A∗H . If we introduce an indefinite inner product on K by [ f , g] = 〈H f , g〉, f , g ∈ K, then (K, [·,−]) is a Krein
space, see [1,3]. Defining A+ as the adjoint of A with respect to [·,−] we easily see that A+ = H−1 A∗H . Hence, Theorem 1
can suite as a criterion for selfadjointness of a closed symmetric operator in a Krein space, cf. [26]. Nevertheless, we will
not use neither the indefinite inner product nor the operator A+ in the present paper.

We also say that A is essentially selfadjoint (respectively, essentially q-normal, essentially H-selfadjoint) if Ā is selfadjoint
(respectively, q-normal, H-selfadjoint).

The following facts will be frequently used later on. If S and T are densely defined operators in K and ST is densely
defined then (ST )∗ ⊇ T ∗ S∗ . If additionally S ∈ B(K) then

(ST )∗ = T ∗ S∗. (3)
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We say that an operator A dominates an operator B on a linear space E if E ⊆D(A)∩D(B) and there exists c > 0 such that

‖B f ‖ � c
(‖A f ‖ + ‖ f ‖), f ∈ E .

If E = D(B) then we say that A dominates B . Note that if both operators are closed, then A dominates B if and only if
D(B) ⊆D(A), by the closed graph theorem.

2. Approximate units for an unbounded operator. Main result

Let A be closable and densely defined, let A0 ⊆ A∗ and let T ∈ B(K). Consider the following conditions:

(f1) the commutator ad(T , Ā) is densely defined and bounded in K;
(f2) T ∗D(A∗) ⊆D( Ā0).

If a sequence (Tn)∞n=0 ⊆ B(K) tends in the weak operator topology to IK and is such that each of the operators Tn
(n ∈ N) satisfies (f1), (f2) we will call it an (f)-approximate unit for the pair (A, A0). This notion has some connections with
quasicentral approximate units and the unbounded derivation, see [23] and the papers quoted therein.

Proposition 2. Let A be closable and densely defined, let A0 ⊆ A∗ and let (Tn)∞n=0 ⊆ B(K) be an (f)-approximate unit for (A, A0).
Then the following conditions are equivalent:

sup
n∈N

∥∥ad(Tn, Ā)
∥∥ < +∞; (4)

sup
n∈N

∥∥ad
(
T ∗

n , A∗)∥∥ < +∞; (5)

WOT lim
n→∞ ad(Tn, Ā) = 0; (6)

WOT lim
n→∞ ad

(
T ∗

n , A∗) = 0. (7)

Proof. Fix n ∈ N. The operator ad(A∗, T ∗
n ) is densely defined by (f2) and is contained in ad(Tn, Ā)∗ . By (f1) the operator

ad(Tn, Ā)∗ belongs to B(K). Hence,

ad
(

A∗, T ∗
n
) = ad(Tn, Ā)∗.

This shows the equivalences (4) ⇔ (5) and (6) ⇔ (7).
Suppose now that (4) is satisfied. The weak convergence of (Tn)∞n=0 to identity implies that for f ∈ D(ad(Tn, Ā)), g ∈

D(A∗) one has〈
ad(Tn, Ā) f , g

〉 = 〈
Ā f , T ∗

n g
〉 − 〈

Tn f , A∗g
〉 n→∞−→ 〈 Ā f , g〉 − 〈

f , A∗g
〉 = 0.

Since D(ad(Tn, Ā)) and D(A∗) are dense in K we have (6) by a standard triangle inequality argument.
The implication (6) ⇒ (4) holds, since every sequence convergent in the weak operator topology is bounded in the norm,

by the uniform boundedness principle. �
After these preparations we can easily derive the main result of the paper.

Theorem 3. Let A be closable and densely defined, let A0 ⊆ A∗ and let (Tn)∞n=0 ⊆ B(K) be an (f)-approximate unit for (A, A0). If

sup
n∈N

∥∥ad(Tn, Ā)
∥∥ < +∞,

then Ā0 = A∗ .

Proof. Fix an arbitrary f ∈ D(A∗) and consider the sequence fn := T ∗
n f (n ∈ N), which is contained in D( Ā0) by (f2).

Observe that

〈 fn, g〉 → 〈 f , g〉 (n → ∞), g ∈ K, (8)

since T ∗
n tends to IK in the weak operator topology. Furthermore, note that〈
A∗ fn, g

〉 → 〈
A∗ f , g

〉
(n → ∞), g ∈ K. (9)

Indeed, since f belongs to D(A∗), which is contained in D(ad(A∗, T ∗
n )) by (f2), we have〈

A∗T ∗
n f , g

〉 = 〈
T ∗

n A∗ f , g
〉 + 〈

ad
(

A∗, T ∗
n

)
f , g

〉
, g ∈ K.
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The first summand tends with n → ∞ to 〈A∗ f , g〉 by the convergence of T ∗
n , the second summand goes to zero by Proposi-

tion 2. Hence, (9) is shown.
Consider now the graph norm ‖ · ‖A∗ on D(A∗), which makes D(A∗) a Banach space. Formulas (8) and (9) and the fact

that f ∈ D(A∗) was taken arbitrary imply that D( Ā0) is weakly dense in (D(A∗),‖ · ‖A∗ ). Since D( Ā0) is a linear space, it
is dense in D(A∗) in the ‖ · ‖A∗ -topology as well. But D( Ā0) is closed in ‖ · ‖A∗ -topology as A0 ⊆ A∗ . Hence, Ā0 = A∗ . �
Remark 4. Observe that the following condition

(e) R(T ) ⊆D( Ā), R(T ∗) ⊆D( Ā0)

implies (f1), (f2). Indeed, if (e) holds then D( Ā) ⊆D(ad(T , Ā)). Furthermore, ĀT ∈ B(K), by the closed graph theorem. Since
R(T ∗) ⊆ D( Ā0) ⊆ D(A∗), we have A∗T ∗ ∈ B(K), again by the closeness of the graph. By (T Ā)∗ = A∗T ∗ , the operator T Ā is
bounded. Hence (f1) is showed, (f2) is obvious. Therefore Theorem 1 is proved as well.

Remark 5. It was shown in [26] that in the (a4) case conditions

(d1) the operators T A and AT are bounded and the domain of the commutator D(ad(T , A)) is dense in K,
(d2) the operator A0T ∗ is densely defined

(presented here in an equivalent form) imply (e), see Proposition 2 and the consecutive remarks. Hence, (d1), (d2) together
with (a4) imply (f1), (f2). Therefore, Theorem 3 of [26] can be seen as a special case of Theorem 3 above.

3. Some normal operators

In this section we will concentrate on the (a1) class. We begin with a proposition that unifies Theorem 6 of [26] and
Proposition 1 of [17]. If E is the spectral measure of a normal operator N and D is the closed unit disc then we set

B(N) :=
⋃
n∈N

R
(

E(nD)
)
.

Proposition 6. Let K be a Hilbert space, and let A be a formally normal operator in K. If there exists a normal operator N in K such
that B(N) ⊆D(A) and the spectral measure E of N satisfies the condition

sup
n∈N

∥∥ad
(

A, E(nD)
)∥∥ < +∞,

then A is essentially normal.

Proof. We set Tn := E(nD) (n ∈ N) and apply Theorem 1. �
Next let us provide an analogue of Theorem 7 of [26], see also there for references to works on selfadjoint Dirac op-

erators. Take the Hilbert space K := (L2(Rm))k , where k,m ∈ N and let C∞
0 (Rm) denote the complex space of infinitely

differentiable functions on R
m with compact supports. Consider the differential operator A in H given by

Au := i−1
m∑

l=1

αl
∂u

∂xl
+ Q u, u ∈ D(A) = (

C∞
0

(
R

m))k
,

where α1, . . . ,αm are complex k × k matrices and Q : Rm → C
k×k is a locally integrable matrix-valued function. Note that

(C∞
0 (Rm))k ⊆D(A∗) and

A∗u = i−1
m∑

l=1

α∗
l

∂u

∂xl
+ Q ∗u, u ∈ (

C∞
0

(
R

m))k
.

A direct calculation shows that the following conditions

α∗
l αr = αlα

∗
r , for r, l = 1, . . . ,m;

Q (x)Q ∗(x) = Q ∗(x)Q (x) for a.e. x ∈R
m;

α∗ Q (x) = αl Q ∗(x), for a.e. x ∈R
m, l = 1, . . . ,m (10)
l
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imply ‖Au‖ = ‖A∗u‖ for u ∈ (C∞
0 (Rm))k , i.e. formal normality of A. We say that Q satisfies the local Hölder condition if for

every n ∈N there exists a bn ∈ (0,1] such that

sup
|x|,|y|�n, x�=y

|Q (x) − Q (y)|
|x − y|bn

< ∞,

where | · | denotes the Euclidean norm on R
m and R

k .

Proposition 7. Assume that conditions (10) hold and that the function Q satisfies the local Hölder condition. Then A is essentially
normal in K.

Sketch of the proof. We apply Theorem 1 to the (a1) instance. The construction of the sequence Tn follows exactly the
same lines as in the proof of Theorem 7 of [26]. �
4. Infinite H -selfadjoint matrices

In [6] Cichoń, Stochel and Szafraniec investigated symmetric integral and matrix operators. The main tools were the
domination techniques from their previous paper [5] based on the computation of the first and second commutator. The
discussion on applicability of these criteria in the Jacobi matrix case can be found in [5], in the present work we will
show how the first commutator reasonings can be applied to H-symmetric operators, restricting to the matrix operators
on �2 = �2(N) (N = {1,2, . . .}). By �2

0 we denote the space of all complex sequences with finite number of nonzero entries.
Given a matrix [ak,l]k,l∈N , we define the matrix operator Ã by

D( Ã) =
{
{ξk}k∈N ∈ �2:

∑
k∈N

∣∣∣∣
∑
l∈N

|ak,lξl|
∣∣∣∣
2

< +∞
}
,

Ã{ξk}k∈N =
{∑

l∈N
ak,lξl

}
k∈N

.

Let us suppose that the matrices [hk,l]k,l∈N and [gk,l]k,l∈N have the following properties:

(h1) [hk,l]k,l∈N and [gk,l]k,l∈N are Hermitian-symmetric matrices;
(h2) [gk,l]k,l∈N is a band matrix, i.e. there exists a p ∈N such that gk,l = 0 for |k − l| > p;
(h3) sg := supk,l∈N |gk,l| < +∞ and [hk,l]k,l∈N defines a bounded operator;
(h4)

∑
j∈N hk, j g j,l = ∑

j∈N gk, jh j,l = δk,l for k, l ∈N.

Then [hk,l]k,l∈N and [gk,l]k,l∈N define bonded, selfadjoint operators on �2, which will be called G and H , respectively; obvi-
ously G = H−1. An example of such a matrix [hk,l]k,l∈N , additionally equal to [gk,l]k,l∈N , is a block-diagonal matrix with each
block on the diagonal being of the anti-diagonal form

±
⎛
⎝

0 . . . 1
...

...

1 . . . 0

⎞
⎠ ,

and with the size of all blocks being bounded from above. The proposition below is an H-symmetric version of Theorem 13
of [6].

Proposition 8. Let {cn}n∈N be a sequence of real numbers and m � 0 be an integer such that the matrices[ |ak,l+q|
1 + |cl|m

]
k,l∈N

, q ∈ {−p, . . . , p} (11)

(with ak,r := 0 for r � 0) and[
|ak,l| |ck − cl|

1 + |ck| + |cl|
]

k,l∈N
(12)

define bounded operators on K. If

p∑
q=−p

ak,l+q gl+q,l =
p∑

q=−p

gk,k+qāl,k+q, k, l ∈N, (13)

then the operator A = Ã| 2 is essentially H-selfadjoint and Ã = Ā.
�0(N)
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Note that (11) implies that �2
0 ⊆ D(A) and condition (13) obviously means that A is H-symmetric. For the proof of the

proposition we will need the following lemma, also to be used in the next section. As usually, ρ(S) stands for the resolvent
set of S .

Lemma 9. Let A be a closable, densely defined operator, let S be a closed densely defined operator and let z ∈ ρ(S). If

D
(

Sm) ⊆ D( Ā), D
(

S∗m) ⊆ D
(

A∗) for some m ∈N,

then ad((S − z)−1, Ā) is a closable densely defined operator. If it is additionally bounded then∥∥ad
(
(S − z)−m, Ā

)∥∥� m
∥∥(S − z)−1

∥∥m−1∥∥ad
(
(S − z)−1, Ā

)∥∥. (14)

Proof. First note that since z ∈ ρ(S), one has z̄ ∈ ρ(S∗). Hence, the operators Sm and S∗m are closed and densely defined
with nonempty resolvent sets [7, Thm. VII.9.7]. Since (S − z)−1D(Sm) =D(Sm+1) ⊆ D( Ā), the commutator ad((S − z)−1, Ā)

is densely defined. Furthermore, note that

ad
(
(S − z)−1, Ā

)∗ ⊇ ad
(

A∗,
(

S∗ − z̄
)−1)

.

The domain of the operator on the right-hand side contains D(S∗m), which is dense in K. By von Neumann’s theorem
ad((S − z)−1, Ā) is closable. Suppose now that it is also bounded. Since D(Sm) is dense in K, the formula ([5, Prop. 2(i)])

ad
(
(S − z)−m, Ā

)
f =

m−1∑
j=0

(S − z)− jad
(
(S − z)−1, Ā

)
(S − z)−m+1+ j f , f ∈ D

(
Sm)

gives the desired estimate. �
Proof of Proposition 8. First note that by (11) we have �2

0 ⊆ D(A). Now define the selfadjoint operator S by the diagonal
matrix [δk,lcl]k,l∈N . By (11) with q = 1 we obtain that A(Sm − z)−1 is a bounded operator, hence Ā(Sm − z)−1 ∈ B(�2) and
consequently

D
(

Sm) ⊆ D( Ā). (15)

Let now {ξl}l∈N ∈ �2
0, then G(Sm − z̄)−1{ξl}l∈N ∈ �2

0 =D(A) and

AG
(

Sm − z̄
)−1{ξl}l∈N = AG

{
ξl

cm
l − z̄

}
l∈N

=
{∑

k∈N
ar,k

∑
|k−l|�p

gk,l
ξl

cm
l − z̄

}
r∈N

=
p∑

q=−p

{∑
k∈N

ar,l+q gl+q,l
ξl

cm
l − z̄

}
r∈N

.

It follows now easily from (11) and the assumption (h3) that the operator C := AG(Sm − z̄)−1 is bounded on �2
0. Since

C∗ ⊇ (S∗m − z̄)−1G A∗ , C is closable. Hence, ĀG(Sm − z̄)−1 = C̄ ∈ B(�2) and consequently

D
(

Sm) ⊆ D( Ā0), (16)

where A0 = H AG , according to (a4). This together with (15) implies that assumption (1) is satisfied with

Tn = nm(S − ni)−m, n ∈N.

Obviously, Tn tends with n → ∞ to I�2 in the strong operator topology. To apply Theorem 1 one needs to show that (Tn)n∈N
and A satisfy (2). Observe that for ξ = {ξk}k∈N ∈ �2

0 one has

ad
(
(S − ni)−1, Ā

)
ξ =

{∑
l∈N

aklξl(ck − cl)

(ni − ck)(ni − cl)

}
k∈N

.

Since (cf. [6, p. 769])

n

|ni − ck||ni − cl| �
√

3

1 + |ck| + |cl| , n,k, l ∈N

we conclude that

n
∥∥ad

(
(S − ni)−1, A

)
ξ
∥∥2 � 3‖K‖2‖ξ‖2, ξ ∈ �2

0, n ∈ N,

where K is the bounded operator given by (12). Thanks to (15) and (16) we can apply Lemma 9 and obtain that the
commutator ad((S − ni)−1, Ā) is closable. Hence, it is bounded and

n
∥∥ad

(
(S − n i)−1, Ā

)∥∥�
√

3‖K‖, n ∈N.
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By the second part of Lemma 9

sup
n∈N

nm
∥∥ad

(
(S − ni)−m, Ā

)∥∥ < +∞,

which is the desired inequality (2). Applying Theorem 1 we get Ā0 = A∗ , i.e. the operator A is essentially H-selfadjoint.
Since Ã is H-symmetric and contains Ā, one has Ã = Ā. �
Proposition 10. Suppose that we are given real numbers d � 0, s � 0, α > 2. If (13) is satisfied and

|ak,l| �
{

d(1 + k + l)/(|k − l|α), k �= l,
d(k + 1)s, k = l,

k, l � 0 (17)

the operator A = Ã|�2
0(N) is essentially H-selfadjoint and Ã = Ā.

This proposition has again its symmetric origin in [6], namely of Proposition 14. Note that besides the assumption of
H-symmetry in (13) the matrices [gkl]kl∈N and [gkl]kl∈N are not involved in the assumptions.

Proof. We need to show that (cf. [6])

∑
k,l∈N

|ak,l+q|2
(1 + |cl|m)2

< +∞, q = −p, . . . , p, (18)

with cl = l, which will guarantee boundedness of all operators in (11). It was shown in [6] that∑
k∈N

|ak,l|2 �O
(
l2 + l2s).

Hence,∑
k∈N

|ak,l+q|2 �O
(
(l + q)2 + (l + q)2s) = O

(
l2 + l2s), q = −p, . . . , p

and (18) holds with m > s+3/2. Boundedness of the operator in (12) follows the same lines as in the proof of Proposition 14
of [6]. �
5. Towards commutative domination

In this section we will show a relation between the results on commutative [22,24,27] and noncommutative domination
[5,6,25,26]. One should mention here the work by Nelson [16], which deals with the symmetric case and analytic vectors.
Nevertheless, the aim of the present paper is to consider classes different then symmetric operators using simple graph
arguments only. We say that E ⊆ D(S) is a core for S if the graph of S is contained in the closure of the graph S|E . The
symbol D∞(A) stands for

⋂∞
n=0 D(An).

Theorem 11. Let A be a closable, densely defined operator, let A0 ⊆ A∗ and let S be a closed densely defined operator such that there
exists a sequence (zn)∞n=0 ⊆ ρ(S) satisfying

WOT lim
n→∞ zn(S − zn)

−1 = IK. (19)

Assume that

(i) D∞(S) ⊆D( Ā), D∞(S∗) ⊆D( Ā0),
(ii) ad(A0, S∗) is densely defined,

(iii) there exists a linear subspace D ⊆D(ad(S, Ā)), which is a core for S and S dominates ad(S, Ā) on D,

then Ā0 = A∗ . If, additionally, the resolvent set of A is nonempty and

(i′) D(S) ⊆D( Ā),
(iii′) ad(S, Ā) f = 0 for f ∈D,

then the resolvents of A and S commute.
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The problem of existence of a sequence (zn)∞n=0 satisfying (19) was discussed in [26] in detail. In case S is (similar
to) a selfadjoint operators in Hilbert spaces such a sequence exists. Note that precise knowledge of the sequence is not
necessary to apply the theorem.

Proof. By assumption (ii) and von Neumann’s theorem we get ad(S, A) closable. Standard domination technique (see e.g.
Lemma 1 of [26]) gives

D(S) = D(S|D) ⊆ D
(
ad(S, Ā)

)
.

Hence, S dominates ad(S, Ā), i.e. for some c � 0 we have∥∥ad(S, Ā) f
∥∥� c

(‖ f ‖ + ‖S f ‖), f ∈ D(S). (20)

We apply (20) to f := (S − zn)−1 g ∈D(S) with arbitrary n ∈N and g ∈K, getting∥∥ad(S, Ā)(S − zn)
−1 g

∥∥� c
(∥∥(S − zn)

−1 g
∥∥ + ∥∥S(S − zn)

−1 g
∥∥)

� c
(∥∥(S − zn)

−1
∥∥ + ∥∥zn(S − zn)

−1 + I
∥∥)‖g‖. (21)

It is now apparent that there exists a constant d � 0, such that∥∥ad(S, Ā)(S − zn)
−1

∥∥� d, n ∈ N. (22)

Fix z ∈ ρ(S), then

ad
(
(S − z)−1, Ā

) ⊇ (S − z)−1 Ā(S − z)(S − z)−1 − (S − z)−1(S − z) Ā(S − z)−1

= (S − z)−1 ad
(

Ā, (S − z)
)
(S − z)−1 = (S − z)−1 ad( Ā, S)(S − z)−1 =: C .

By (21) the operator C is bounded, furthermore, it is also densely defined. Indeed, the linear space F = (S − z)D is contained
in D(C) because (S − z)−1F =D ⊆D(ad( Ā, S)) and F is dense in K because z ∈ ρ(S) and D is a core for S .

By Proposition 8.1 of [25] there exists m ∈N such that D(Sm) ⊆D( Ā) and D(S∗m) ⊆D( Ā0). By Lemma 9 the commuta-
tor ad((S − z)−1, Ā) is closable. Since it contains the densely defined and bounded operator C , its closure belongs to B(K).
By (22) we have

|zn|
∥∥ad

(
(S − zn)

−1, Ā
)∥∥ � |zn|

∥∥(S − zn)
−1

∥∥∥∥ad( Ā, S)(S − zn)
−1

∥∥� td, (23)

with t = supn∈N ‖zn(S − zn)−1‖, which is finite because of (19). By the second part of Lemma 9 we have

sup
n∈N

|zn|m
∥∥ad

(
(S − zn)

−m, Ā
)∥∥ < ∞. (24)

By Theorem 1 applied to Tn = zm
n (S − zn)−m we get Ā0 = A∗ .

To prove the second statement of the theorem fix z ∈ ρ(S) and w ∈ ρ(A). One can easily check, that (iii′) implies that
C f = 0 for f ∈D(C), consequently ad((S − z)−1, A) = 0. Observe that

(A − w)−1 ad
(
(S − z)−1, A

)
(A − w)−1 = ad

(
(A − w)−1, (S − z)−1),

where both operators are in B(K) by (i′). In consequence both of them are zero. �
6. Differential operators

As an application of Theorem 11 consider the differential operator

Au := i−1
m∑

l=1

Q l
∂u

∂xl
, u ∈ D(A) = (

C∞
0

(
R

m))k
,

in the Hilbert space K = (L2(Rm))k (k,m ∈ N). We assume that Q 1, . . . , Q m : Rm → C
k×k are C2-functions. First let us also

note, that if P1, P2 are complex polynomials of m variables then the operator P1(
∂u
∂x1

, . . . , ∂u
∂xm

) dominates P2(
∂u
∂x1

, . . . , ∂u
∂xm

)

on (C∞
0 (Rm))k if and only if for some c > 0∣∣P2(ζ )

∣∣ � c
(
1 + ∣∣P1(ζ )

∣∣), ζ ∈ R
m. (25)

Indeed, the case k = 1 is well known (see e.g. [14]) and the multidimensional case is a simple consequence of the one-
dimensional one. For other types of domination inequalities for differential operators we refer the reader to [12,15] and the
papers quoted therein. Let us introduce the following notation:

Q (x) = (
Q ∗

r (x)Q l(x)
)m

r,l=1 ∈C
mk×mk, x ∈R

m,

Q (∗)(x) = (
Q r(x)Q ∗

l (x)
)m

r,l=1 ∈C
mk×mk, x ∈ R

m.
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Proposition 12. If

∂ Q j

∂xi
,
∂2 Q j

∂xixh
,∈ L∞(

R
m)

, h, i, j = 1, . . . ,m (26)

and for some c1 > 0 one has

c−1
1 Q (x) � Q (∗)(x) � c1 Q (x), x ∈R

m (27)

and for some c2 > 0

Q (x) � c2 I
Cmk×mk , x ∈ R

m, (28)

then D( Ā) =D(A∗).

Proof. First we will show that the graph norms of A and A∗ are equivalent on (C∞
0 (Rm))k . Denoting by 〈·,−〉 the standard

inner product in C
k and C

mk and setting

∂u :=
(

∂u1

∂x1
, . . . ,

∂uk

∂x1
, . . . ,

∂u1

∂xm
, . . . ,

∂uk

∂xm

)

one has

‖Au‖2 =
∫
Rm

m∑
l,r=1

〈
Q ∗

r (x)Q l(x)
∂u

∂xl
(x),

∂u

∂xr
(x)

〉
dx

=
∫
Rm

〈
Q (x)∂u(x), ∂u(x)

〉
dx. (29)

Furthermore, note that

A∗u = i−1
m∑

l=1

∂

∂xl
Q ∗

l u = i−1
m∑

l=1

∂ Q ∗
l

∂xl
u + i−1

m∑
l=1

Q ∗
l

∂u

∂xl
u.

By (26) the first summand on the right-hand side is a bounded operator of u. Thus the graph norms of A∗ and B =∑m
l=1 Q ∗

l
∂u
∂xl

are equivalent on (C0(R
m))k . Furthermore, for u ∈ (C0(R

m))k one has

‖Bu‖2 =
∫
Rm

m∑
l,r=1

〈
Q r(x)Q ∗

l (x)
∂u

∂xl
(x),

∂u

∂xr
(x)

〉
dx

=
∫
Rm

〈
Q (∗)(x)∂u(x), ∂u(x)

〉
dx,

which, together with (27) and (29) implies the equivalence of graph norms of B and A, and hence A∗ and A, on (C0(R
m))k .

Consider the essentially selfadjoint, nonnegative operator

Su = −∂2u

∂x2
1

− · · · − ∂2u

∂x2
m

, u ∈ (
C∞

0

(
R

m))k = D(S).

Note that by (28) and (29) one has

‖Au‖2 � c2

∫
Rm

〈
∂u(x), ∂u(x)

〉
dx = 〈Su, u〉 = ∥∥S1/2u

∥∥2
.

Therefore S1/2, and in consequence S , dominates A on (C∞
0 (Rm))k . Furthermore,

i · ad(S, A)u = −
m∑

l,r=1

∂2

∂x2
l

(
Q r

∂u

∂xr

)
+

m∑
l,r=1

Q l
∂

∂xl

(
∂2u

∂x2
r

)

= −
m∑ ∂ Q r

∂xl

∂2u

∂xlxr
−

m∑ ∂2 Q r

∂x2
l

∂u

∂xr
.

l,r=1 l,r=1
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Application of (25) to the right-hand side of the inequality

∥∥ad(S, A)u
∥∥ �

m∑
l,r=1

∥∥∥∥∂ Q r

∂xl

∥∥∥∥
L∞(Rm)

∥∥∥∥ ∂2u

∂xlxr

∥∥∥∥ +
m∑

l,r=1

∥∥∥∥∂2 Q r

∂x2
l

∥∥∥∥
L∞(Rm)

∥∥∥∥ ∂u

∂xr

∥∥∥∥,

shows that S dominates ad(S, A) on (C∞
0 (Rm))k . Hence, by Theorem 11 we get D( Ā) =D(A∗). �
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