elevate correct percentage of surgical prophylactic antibiotic usage by educa-
tion and computer assistance.

Methods: In this study, we made two interventions. First, we educated sur-
gery surgeons regarding the specifications of in-hospital antibiotic usage that current infection control allows. Four points we educated including to make sure a clean-contaminated surgery, to adjust dosage after checking estimated CClr, to prescribe first dose in one hour before surgery, and to prescribe a bolus dose each 4 hours after operation starts. A standard operation procedure(SOP) was established after our education. Second, we made a computer sys-
tem to monitor antibiotic-prescribing condition. The coputer system can inform surgeons of patients body weight and updated surem Cr level. Our infection control nurses could easily get the operation starting time, oper-
ated duration, and antibiotic prescribing record of each case. We sent a feed-back note when incorrect usage was found. We prepared cefazolin in operation rooms to make sure a 2nd dose could be given immediately when necess-
ary.

Results: After our intervention, correct cefazolin prescription of body weight reached 94.3% (2011) and 96.2% (2012), correct first dose prescription reached 93.8% (2011) and 95.4% (2012), and correct bonus dose prescription in cardiovascular surgery reached 91.5% (2011) and 98.1% (2012).

Conclusions: Education, feedback and monitoring by information systems can enhance the use of prophylactic antibiotics by surgeons, and reporting and analysis of date. In the future, we wish to design a computer auto-sta-
tistic system to offer a real-time condition of prophylactic antibiotic usage.

Keywords:Alcaligenes xylosoxidans, distribution, antibiotic susceptibility

A SURVEY ANTIBIOTIC EDUCATIONAL INTERVENTION
Hsiow-Yun Hsue, Chien-Huei Lin, Wen-Po Tseng, Po-Ying Chiu, Wy-Chan Lee . Chuang Shan Hospital Infection Control Committee, Taiwan

Purpose: The knowledge and attitude of the public toward the use of anti-
biotics are the key factors influencing the antibiotics prescription and the consequence regarding the afterward antibiotics resistance.

Methods: The intervention of antibiotics education is an event to deliver the correct knowledge regarding the appropriate use of antibiotics in order to reduce the possibility of antibiotics resistance.

Results: Participants still prefer to take their antibiotics by the ways rather than followed the doctors' prescription, mostly because they didn't realize the important consequence of antibiotics resistance.

Conclusions: Also, it was suggested that a suitable way to deliver the correct knowledge regarding the use of antibiotics to the public is still an issue of concern to the authority.

THE STRATEGY OF PIPERACILLIN-TAZOBACTAM USE FOR 11 YEARS IN A TERTIARY HOSPITAL IN TAIWAN
Hsin-Yi Liu 1, Yi-Cheng Lin 1, Li-Yuan Chen 1, Yuan-Jang Lee 1, 2, 3, 4, Division of Infection Diseases, Department of Internal Medicine, Taipei Medical University Hospital, Taiwan; 5Division of Pharmacy, Taipei Medical University Hospital, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taiwan

Purpose: Piperacillin-tazobactam (pip/tazo) is one of the most important antibiotics used in severe infection diseases. The amount of pip/tazo use increased in our hospital after we decreased the usage of third generation cephalosporins since 2004. This study aimed to present the strategy of increasing pip/tazo use with maintenance of its susceptibility.

Methods: Taipei medical university hospital is a university-affiliated tertiary hospital. In northern Taiwan. During 2003 to 2013, we decreased usage of third generation cephalosporins, and use the pip/tazo as the first choice of hospital-acquired infection instead of ceftazidime. The pip/tazo changed from brand drug to generic drug since August 2007 in our hospital. We started the dosing strategy of extended infusion of pip/tazo in intensive care units since November 2008. The dosing strategy extended to the whole hospital since 2011. The resistance of hospital-acquired P. aeruginosa to pip/tazo was collected by Infection control department every six months.

Results: The mean usage amount of pip/tazo was 10.63 DDD/1000PDs during January 2003 to June 2004, and increased to about double amount since the second half of 2004. The mean pip/tazo use during July 2004 to December 2013 was 21.30 DDD/1000PDs (p < 0.001). After pip/tazo being changed to generic drug in August 2007, the resistance rate of P. aeruginosa to pip/ tazo increased to 24% in the first half of 2008. The resistance rate decreased after we started extended infusion strategy of pip/tazo and has not been over 20% again in the following years.