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0. INTRODUCTION 

In the study of the Brauer group, Br(D), of a commutative ring D, the 
subgroup Br(S/D), consisting of the classes a E Br(D) split by the ringex- 
tension S of D, play, a fundamental role. If S is a Galois extension of D with 
Galois group G and Pit(S) = 1, then it is well-known that Br(S/D) = 
H*(G, U(S)), where U(S) denotes the multiplicative group of units of S. This 
states exactly that any Azumaya algebra R over D which represents a class 
a E Br(S/D) is equivalent (in the sense of the Brauer group) to a crossed 
product algebra S[U,, u E G] which is a free S-module generated by 
elements u,, o E G, with multiplication defined by the following relations: 
U,S=O(S)U, for all s E S, aE G; U,U, = c,,,~,,, for all u, 7E G, where 
c: G x G + U(S) is a 2-cocycle, i.e., the element of H*(G, U(S)) corresponds 
to a. In general, Br(D) is not necessarily described completely by crossed 
product algebras but this problem can be avoid by introducing &ale splitting 
rings and &ale cohomology instead of Galois splitting rings and Galois 
cohomology. In case D is a local ring, it is known that every Azumaya 
algebra over D is equivalent to a crossed product algebra. 

All of the facts stated are well documented in the litterature, e.g., 
Auslander and Goldman’s fundamental paper [2], or [7,9]. 

If D is a commutative Z-graded ring, then one may be interested in the 
properties of the “graded” Brauer group of D, Brg(D), introduced by the 
author in [ 161. The relation between Br(D) and B?(D) is easily described in 
case D is a generalised Rees ring, cf. [ 151. More generally, if D is a Gr- 
Dedekind ring, cf. 1151, then a result from [ 161 states that BrR(D) is a 
subgroup of Br(D). The aim of this paper is twofold. First, we aim to use the 
exact sequences of cohomology groups for Br(D) and BrR(D) in relating 
crossed products and graded crossed products over D. Second, we aim to 
establish explicit at least one good class of Gr-Dedekind rings for which the 
first-mentioned cohomological methods may be successfully applied. This 
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class will be the class of Gr-local Gr-Dedekind rings, i.e., the discrete Gr- 
valuation rings. Clearly, a ring which is Gr-local is far from being local, as 
consideration of the Gr-Dedekind ring k[X] shows. Therefore some of the 
graded techniques developed in [ 11, 16, 17) will be fundamental in proving 
that there is a crossed product theory over discrete Gr-valuation rings. which 
turns out to yield results which are very similar to the local theory. 

Since any Gr-Dedekind ring is a regular domain of global-dimension at 
most two, it follows that we may say that Br(D), (Brg(D)), is “determined” 
by crossed products (graded crossed products). One of the corollaries of our 
results is that we have solved a problem that arose in [ 161, i.e., 
Br(kjT, T-‘I) = U, W(k[T,,,, T;,‘]) w ere h k is a perfect field and 
k[L, 7 T,;,‘] is the ring k[T. Tp’1 but with gradation defined by deg T = e, 
deg k = 0. In other words, it follows that each Azumaya algebra A, graded 
or not over k[ T, T-l], is equivalent to a twisted polynomial ring 
+LJ-‘.a,], where A is a finite dimensional skewfield, v, is an 
automorphism of A such that cpe is inner (and this e is exactly the e for which 
the class of A is in Brg(k[Tc,,, T&‘]). 

1. GRADED GALOIS SPLITTING RINGS 
OVER DISCRETE Gr-VALUATION RINGS 

Recall that a Grzfield is a graded ring such that each of its homogeneous 
elements is invertible. Every graded field is of the form A[X, Xp ‘, a,] where A 
is a skewfield and v, is an automorphism of A, X a variable, and 
multiplication defined by XI = &)X for all 1 E A, cf. [ 111. A commutative 
Gr-field will be denoted by k( T, T- ‘1, k a field. A Gr-valuation ring in a Gr- 
field is a graded subring such that for each homogeneous element x of the 
Gr-field, x or x ~’ is in the subring. If 0, is a valuation ring of k, then it is 
clear that 0, [T. T-l] is a Gr-valuation ring; but there are more complicated 
examples of Gr-valuation rings, even if they are discrete! A graded domain 
D is said to be a Gr-Dedekind ring if every graded ideal of D is (in essen- 
tially a unique way) a product of graded prime ideals of D. The graded 
analogues of the equivalent characterizations of Dedekind rings hold too, cf. 
[ 141. A Gr-Dedekind ring D such that DD, = D is called a generalized Rees 
ring because its structure is easily described as follows: D = x:neHInXn, 
where I is a fractional ideal of the Dedekind ring D,, the part of degree zero 
of D, and X is a variable, cf. [ 151. For a generalized Rees ring D, Brg(D) = 
Br(D,) holds, cf. [ 161, but for a general Gr-Dedekind ring, even if it is Gr- 
local, i.e., a discrete Gr-valuation ring, BP(D) + Br(D) is all that is known. 

After these preliminaries we now turn to some basic lemmas, which we 
will use frequently throughout the paper. 
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1.1. LEMMA. A Gr-Dedekind ring D is a regular domain of global 
dimension at most two. 

Proof. In view of Theorem 2.3 in [ 121, D is regular if and only if all 
localizations Qp(D) are regular, for all graded prime ideals P of D. Since D 
is a Gr-Dedekind ring, Q:(D) is a discrete Gr-valuation ring (cf. [ 171 for 
details about graded localization in abstracto). Now Q,(D) is obtained from 
Q;(D) by localization at the Gr-maxima1 ideal A4 = Qi(D)P. Now recall that 
there is associated a valuation of K, the field of fractions of D, to any Gr- 
valuation ring in Kg = Q:(D). Therefore the ring Qr(D) = Q,(Qi(D)) is a 
valuation ring of K and since D is Noetherian, Q,(D) is a discrete valuation 
ring, hence a regular domain. In this situation we have that global dimension 
and Krull dimension of D coincide. On the other hand, since the Gr-Krull 
dimension of D is by definition at most one, and since Gr-K-dim D < K- 
dim D < 1 + Gr-K-dim D (Corollary 4.18. [ 111) it follows that the Krull 
dimension if D is at most 2. 

1.2. COROLLARIES. (1) From [ 121 recall that Br(D) = ,,o), Br(Q,(D)), 

where the intersection is taken over the prime ideals of height 1. 

(2) It is a direct consequence of the proof that every non-zero graded 
prime ideal of D is a minimal prime ideal (if we exclude the positively graded 
case). 

(3) The following diagram of injective group homomorphisms is a 
commutative diagram: 

BP(D) c Br(D) c Br(K) 

I r ~ 
BrR(Kg) c Br(KR) L Br(K) 

(a) The injection Brg(D) -+ Br(D) has been established in [ 161. 

(b) The injection Br(D)+ Br(K) is Corollary 1.2.1 above. 

(c) The injection Brg(Kg) + Br(Kg) follows from (a) with Kg = D. 

(d) The injection Br(K”)+ Br(K) is well known since Kg is a 
Dedekind ring (Kg z k[ T, T-l]). 

Commutativity of the diagram is easily checked and so injectivity of 
Brg(D) + Brg(Kg) follows from it (a direct proof is obtained by following the 
lines of proof for the ungraded analogue). 

(4) If P is a prime ideal of D, then either P, f 0 is a graded prime 
ideal of D or P, = 0 in which case all homogeneous elements of D are inver- 
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tible in Qr(D), i.e., Qr(D) contains k[ T, T-‘I. In combination with thefirst 
corollary above it follows that Br(D) = Br(K”) A (npgraded ,,( pz, Br(Q,(D)). 

Because of the foregoing corollary we deduce: 

BrR(D) = n Br”(Q;(D)). 
P graded 

htP=l 

If P is a graded prime ideal of the Gr-Dedekind ring D such that P does 
not contain D,, then Q;(D) contains an invertible element of degree one, i.e., 
Q;(D) = (QW))o IX X- ’ 1 with deg X = 1 and (Q:(D)),, a discrete 
valuation ring. If P does contain D,, then the structure of Q:(D) is 
somewhat more complicated. From [ 151 recall that if ep is the ramification 
of the valuation associated to Q;(D) compared with the valuation of 
(Q:(D)),. then ep is exactly the maximal number such tha D, c P’ and also 
e,, is exactly the minimal number (positive) such that (Q;(D)), contains a 
unit. 

1.3. LEMMA. (1) If R is graded Galois over a Gr-local ring then every 
finitely generated graded projective R-module M of constant rank is Grfree, 
i.e.. has a basis of homogeneous elements. 

(2) Let R be a Noetherian graded ring and M a jinitely generated 
graded projective module. Let I be any graded ideal of R contained in the 
graded Jacobson, radical, J”(R), of R (cf [ 111 for details about Jg(R)), and 
assume that M/IM is Gr-free as an R/I-module. Then M is a Gr-free R- 
module. 

Proof: Formally similar to the proof of the corresponding ungraded 
statement. 

1.4. COROLLARIES. (1) If R is as in the lemma and moreover a domain, 
then the condition about M being of constant rank may be dropped in 1.3.1. 

(2) If R is Gr-semilocal then every invertible graded module of rank 
one is Gr-free, thus Picg(R) = 1. 

(3) If R is a uniformly Gr-semilocal graded Krull domain, then 
1 = Picg(R) = Pit(R), because equality of Picg(R) and Pit(R) holds for any 
graded Krull domain. In particular, if S is the integral closure of a discrete 
Gr-valuation ring D in some separable field extension L of K = Q(D), then 
Picg(S) = 1. 

1.5. LEMMA. Any graded Azumaya algebra over a discrete Gr-valuation 
ring D is Gr-equivalent to a graded Azumaya algebra over D which is a 
domain. 
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Proof: Let A be a graded Azumaya algebra over D. The total graded 
ring of fractions Q”(A) = A a0 Kg is a Gr-central simple algebra; hence it is 
isomorphic to M,(d[X, X-‘, 9]&, d E Z” as described in [ 111. Let B be a 
graded maximal D-order in the Gr-field A[X, X-‘, 91. It is easily verified 
that M,(B), can be identified with a maximal graded order in Qg(A). 
Consider I, = {x E Qg(A), xM,(B),cA}, the conductor of M,(B), into A. 
Clearly, 1, is a graded left ideal of A and a graded right ideal of M,(B),. 
Write M, for the unique Gr-maximal ideal of D and let M =AM, be the 
unique Gr-maximal ideal of A lying over M,. Let L be any graded left ideal 
of A. then L/ML is a graded left ideal of A/AM g M,(A, [Y, Y-‘, ~1)~~ 
where A, is a skewfield, 9 an automorphism of A,. Now from [ 111 we know 
that L/ML is generated by one homogeneous element, say jr. Select a 
homogeneous element J’ E L representing 7. Then L = AJ~ + ML (note that A 
and L are both Gr-free D-modules and L is a direct summand of A, so 
M n L = ML), but the graded version of Nakayama’s lemma entails L = Ay. 
Applying this to I, it follows that 1, = Au for some homogeneous U. From 
A On KP = M,(B) oD KR it follows that I, f7 D # 0, but then au is a unit in 
Q’(A) for some homogeneous a E A, hence u is a unit Q”(A). In this way we 
obtain that M,,(B),, c u -‘Au, but as u -‘AU is a graded D-order in Qg(A), the 
max;mality of M,(B), entails M,(B),? u-‘Au. Finally, M,(B), is a graded 
Azumaya algebra, hence so is B and A is Gr-equivalent to B, moreover 
B c A[X, X-‘. 91 yields that B is domain. 

The idea of the above proof is a mixture of some ideas which have proven 
succesful in the ungraded theory, e.g., see the proof of 6.32 in [ 121. However 
it is essential that this proof is carried out in Qg(A) and not in Q(A) because, 
if Q(A) = M,(A) for some skewfield A over K, then it is not clear how a 
maximal D-order in A may be graded in such way that there exists a d E E” 
such that M,(B), is a maximal graded order in M,(A) since the gradations of 
subrings of M,(A) are fairly arbitrary. 

Equivalent to proving Lemma 1.5 using orders in Q(A) instead of in 
Qg(A) is the problem of proving Lemma 1.5 for arbitrary Azumaya algebras 
over D. This could be possible but I do not see how, now. 

1.6. PROPOSITION. A graded Azumaya algebra A over a graded field 
k[ T, T-l] may be split by an extension in degree zero: l[T. T-l]. 

ProoJ From [ 1 l] we know that A = M,(A[X,X-‘, (~1)~ where A is a 
skewlield, 9 an automorphism of A such that 9” is inner in A for some 
m E N, and d E H” describes the gradation on the matrix ring. It will suffice 
to split A[X, X-‘, 91. Let k’ = Z(A) and 1, an extension of k’ splitting A, 
e.g., a maximal commutative subring of A. Consider: R, = 
A[X,X-‘,(D] 0 ~[r.r-lll, [T T-t where T is a central element of minimal 
positive degree. Since (R ,)0 contains zero-divisors it follows that R, - 
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M,,(A,[X,,X;‘,~,I)a,, d,Eerv with n, > 1. The center of A, [X, , X; ‘, cp, ] 
is I, [T, T-l]. Let I, be an extension of I, splitting A, and repeat the above 
argumentation. In each step the degree of the skewfield over its center goes 
down; since [A: k[ T, T-l]] is finite, this proces stops and in the final step we 
obtain an extension in degree zero Z[T, T-‘1 splitting A. Note that in this 
proof, the fact that A is graded allows us to avoid the use of Tsen’s theorem, 
what would have forced us to assuming the field k to be perfect. Note also 
that, at each step, the extension of degree zero, may be chosen to be 
separable, i.e., I/k may be chosen to be separable. 

1.7. PROPOSITION. Etlery class a E B?(D) may! be represented by) a 
graded Azumaya algebra over D containing a maximal commutative subring 
S with the following properties: 

(1) S is a graded domain and a Gr-free D-module of rank v. 

(2) S is of the form S, at,, D where S, is a separable extension of D,. 

Consequently, S is Gr-semilocal and actually, S is a Gr-principal ideal 
domain. 

Proof Let B be a graded Azumaya algebra representing a and write 
M = BMu, B= B/M and m’ = [B : D]. Since B is a graded Azumaya 
algebra of rank m’ over DZ k[T, T-l], it follows that g may be split by 
/[T, T- ‘1 for some separable finite field extension l/k, I= k(O), by 
Proposition 1.6. Note that deg 0 = 0, and let f E k[X] be the minimal 
polynomial satisfied by 0 over k. Consider a manic polynomial FE D[X] of 
the same degree in X as f and such that F mod MD [X] =A obtained by 
lifting the coefficients off to D,. Because D, is U.F.D. and F is easily seen 
to be irreducible, (F) is a prime ideal of D, [Xl. It follows that TO = 
D, [X]/(F) is a separable Do-algebra which is a domain and free of rank 
deg, F = deg,f as a D,-module. Immediate from this it follows that 
T = D[X]/(F) is a separable D-algebra and graded free of rank deg,f as a 
D-module. In order to show that T is a domain it will suffice to establish that 
T has no homogeneous zero divisors. Suppose u, g, h E h(D[X]) (the 
gradation on D[X] is defined by deg X= 0) such that uF = gh. As pointed 
out before, D contains an invertible element of degree e, say w,. Pick 
0 f d, E De-degg’ 0 f dz E De.degh. Then (w; ’ d, g)(w; ’ d, h) = 
(MI;’ d, d,u)F. However D[X]F is prime in D,[X], hence w;’ d, g or 
WJ d, h is in D, [X] F, say w;’ d, g = u,F with u, E D, [Xl. Now if 
d, 6Z M,, then g E D[X] F and on the other hand d, E. MD yields 
u.p ’ d, E Mb hence z!,, F E MD [Xl. But D[X] z k[X, T. T- ‘1 is prime and 
F & M, [Xl, hence ug E MD [Xl,. Let rr be the homogeneous generator for 
M,, then v,,= rt’t’:. w;’ d, = rr”,? with VA E D[X] - MD [X] and 
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1 E D-M, (same u in both relations!). Therefore 1g= v;F but then 
A-’ ED yields gE D[X]F. 

Next consider the commutative diagram: 

(*) I I 
Dgk[T, T-l] --t /[T, T-‘1 

where DC’ is the integral closure of D in the field of fractions Q(T) of T. 
Clearly DC’ is the integral closure of T in Q(7) and since T is graded, it 
follows that DC’ is a graded ring. That DC’ is also a Gr-Dedekind ring 
follows from the graded version of the Krull-Akizuki theorem for which we 
refer to [ 141. We have established that [Q(7): Q(D)] = [T:D] = [I:k], so 
DC’/DC’M, = I[ T, T- ‘1 while D”M, c Jg(Dc’). Separability of Q(T) over 
Q(D) entails that DC’ is a finite D-module, so we can apply the graded 
version of Nakayama’s lemma and obtain DC’ = T. By construction, T is Gr- 
local, and from T= DC’ it then follows that T is a discrete graded valuation 
ring. We have reached the situation where B a0 T is a graded Azumaya 
algebra over the discrete graded valuation ring T, such that 
B 62~~ T/(B 0” T)M, = B@, T is a graded matrix ring over ?;. So we may 
change notation, i.e., assume that B is such that B= M,(k[ T, T-l], where 
d E S” describes the gradation on the matrices as in [ 111. By Lemma 1.5 we 
may find a graded Azumaya algebra A over D, Gr-equivalent to B, and such 
t_hat A is_a domain. Then B-2 M,(A), ( see construction in Lemma 1.5) yields 
B z M,(A), and M,(A), = M,(k[ T, Tm ’ ])d yields 2 wGT 1, say 
AzMM,(k[T, T-‘])f for somefE Z’. 

In M,(k) we find a comutative subring k[a] such that [k[a] :k] = t, e.g., 
let a be a diagonal matrix with different entries. Consider k[T, T-‘][a] and 
lift a to PEA,. Clearly D[p] is a commutative subring of A, hence also a 
domain; but Q(D)[p] is a commutative subring in the skewfield Q(A), hence 
it follows from [Q(D)[/?]: Q(D)] <t = m and the fact that l,P,...,p’- ’ 
are D-independent, that p’ = C::A k,Pi with ki E Q(D), i.e., d/Y = C::A diPi, 
with d, di E D and utilizing the graded structure of B it follows that we may 
assume that d, di are homogeneous. Moreover since deg p = 0, deg d = deg di 
for all i. If d E M,, then 0 = xi:: Liifl = xi;; diai implies di E MD for all 
i. Therefore the assumption d E MD leads to simplification by K (the 
homogeneous generator of M,), and after a finite number of repetitions of 
this we obtain a relation: 

I-1 
,‘p’ = 1 &Pi 

i=O 

with d; df E h(D) and d’ 65 M,. 
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Then d’ is a unit of D, hence /I’ E D + D/I + . . . + D/3- ‘, stating that the D- 
module S generated by the D-independent elements 1, p,..., /?-’ is a subring 
of A, hence also a domain. Put F = X’ - C::A (d’)-’ d,x’. Obviously F is a 
lifting of the minimal polynomial of a over k, and it is clear that 
S = DLWF) = 4 F]/(F) Oo, D and the properties of S listed in the 
statement of the proposition are easily checked. That S splits A is a direct 
consequence of the fact that Q(S) splits Q(A) because it is a field of 
dimension r within a skewtield of dimension t* over Q(D), and from the 
injectivity of Brg(D)+ Br(Q(D)). Finally, by Corollary 1.4.3 it follows that 
S is Gr-semilocal, and moreover a Gr-Dedekind ring, i.e., a Gr-principal 
ideal domain. 

1.8. Remark. The above proof owes part of its ideas to a proof given by 
Auslander and Goldman in 121, for which they credit Serre. It is exactly the 
difference between D and a generalized Rees ring, D, [r, T-~ ‘1 with 
deg T= 1, which makes it impossible to reduce the whole proof to a 
construction in degree zero. The fact that we consider Gr-Dedekind rings 
which need not be generalized Rees rings is very essential; see. for example, 
Section 2. 

1.9. THEOREM. Let D be a discrete Gr-oaluation ring. Euery a E Brg(D) 
may be represented by a graded Azumaya algebra A ouer D which contains a 
maximal commutative subring S with the following properties: 

( 1) S is a graded Galois extension of D. 

(2) S is a Gr-principal ideal domain, hence we have: 

Pit S = PicR S = 1. 

(3) S = S, an, D. 

(4) The units of S are homogeneous elements. 

Proof: Let A, and S, be as A and S in Proposition 1.7. Since S, does not 
contain idempotent elements different from 0. 1, it follows, cf. [7], that the 
normalization S of S, does not contain idempotents different from 0, 1. Let 
G be the Galois group of S over D. The trace t: S -+ D is given by t(x) = 

c aeC a(x), and it is a free generator of the right S-module Hom,(S, D). If 
x E S is nilpotent, then t(xs) = xuEG a(xs) is nilpotent and in D, for all 
s E S; consequently t(xs) = 0 for all s E S. However this establishes a 
relation tx = 0 in Hom,(S, D) and since t is a free generator, x = 0 follows. 
Thus S is semiprime and also Noetherian and hence we obtain an imbedding 
S+S,@...@S, where Si = SIP, i = l...., r, Pi being a graded minimal 
prime ideal. Hence U(S) -+ U(S,)@ ... @ U(S) but U(SJ c h(S,) because S 
is a graded domain, so U(S) c h(S) follows. In Proposition 1.5 we have 
shown that S, = (S,), OD, D and so it is clear that S can be obtained by 
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constructing a D,-normalization of (S,), and then tensoring by D over D,. 
In view of the above remarks we obtain that S, has no other idempotents 
than 0 and 1. The total ring of fractions L of S, is a Galois extension of the 
field of fractions K of D,, hence semisimple, say L = L ,@ ... 0 L,. We 
have the commutative diagram: 

D OC s o p 0;’ = (D;‘) ,@ . . . @ (D;‘), 

I I 
k = Do/W,), Q SoIS,( = s, 

where 0:’ is the integral closure of Do in L, which obviously splits as a 
direct sum of the integral closures of Do in the fields L, ,..., L,; and where So 
has Galois group G over k. From [L : K] = ]G] = [So : k] it follows that 
0:’ = So + Df(M,), and again from the graded version of Nakayama’s 
lemma we find So = DE’. However the only idempotents of S, are 0 and 1, so 
DE’= (DE’),, i.e., r= 1 and So is a domain. By the (ungraded) 
Krull-Akizuki theorem, 0:’ is a Dedekind ring and a finite module over the 
valuation ring Do, hence a principal ideal domain. If S has zero-divisors, 
then it has homogeneous zero-divisors too, say u,u, = 0 with 0 # u, E S,, 
0 # ~1, E ‘jr. If e is the least positive integer such that D, contains a unit w,, 
then (,v;~u~)(~;‘D;) = 0 yields zero-divisors of degree zero. Hence 
we -“‘ui = 0 and u’, = 0, but as S does not contain nonzero nilpotent 
elements, u, = 0. 

Now knowing that S is a domain we may repeat the argument of 
Proposition 1.7 concerning the diagram (*) and we obtain that S = DC’ is a 
Gr-semilocal Gr-Dedekind ring, i.e., a Gr-principal ideal domain. Thus 
PicR S = Pit S = 1. Let A be Gr-equivalent to A, and such that A contains S 
as a maximal commutative subring, then A and S satisfy all the requirements 
of the theorem. 

1.10. COROLLARY. Every graded Azumaya algebra over a discrete Gr- 
valuation ring is equivalent to a crossed product S[u,, u E G] where S is a 
Gr-principal ideal domain, and a Galois extension of D. 

1.11. Remark. In the proof of 1.9 it has been used implicitly that a 
normal closure S, of a graded ring can be made into a graded ring 
containing S, as a graded subring. That this is indeed true is easily verified if 
one runs along the lines of proof of Theorem 2.9 in [7] (or the implication 
1 * 2 on p. 89 of [9]). In connection to this, note that a graded separable 
extension S of D has a separability idempotent e E S a0 S which may be 
chosen in (S an S), (not in So @DO So in general). Indeed e = s( 1) for some 
section of p: S a0 S + S, since p is graded of degree zero, the section 
s may be chosen to be a graded morphism of degree zero, i.e., 
e=s(I)E(S@DS)o. 
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2. COHOMOLOGICAL INTERPRETATIONS 

If S is a Galois extension of D with Galois group G, then we have the 
following well-known exact sequence: 

I + Pit(D) + (Pit(S))’ L H’(G, U(S)) A Br(S/D) + H’(G, Pit(S)) 

In case S and D are graded rings there is an analog for this sequence in the 
graded setting but we need not go into this here because for Gr-Dedekind 
rings both sequences are easily related, as we will show in the sequel. 

Since U(S) consists of homogeneous elements, because S is a graded 
domain there exists a group homomorphism deg’: H’(G, U(S)) + H*(G, Z), 
defined by (deg*(c)),,, = deg c,~, (G acting trivially on Z). Let us define: 
H:(G. U(S)) = Ker deg*. 

2.1. THEOREM. Let D be a Gr-Dedekind domain and S a Gr-Dedekind 
domain which is a Galois extension of D with Galois group G, then the 
following diagram (* *) is commutative and exact. 

I+ 1 - H*(G, U(S))/H;(G U(S)) 

I I I 
1 + Pit(D) -+ (Pit(S))” --% H*(G, U(S)) 

I I I 
1 --i PicR(D)+ (Picg(S)’ 2 H*(G, U(S)) 

1 1 1 

-+ Br(S/D)/Brg(S/D) 

A Br(S/D) + H’(G, Pit(S)) 

I 
2 Brg(S/D) + H’(G, Picg(S)) 

(**) 

where A, is the restriction of A to H:(G, U(S)) and 6, = 6. 
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Proof In view of Corollary 1.2.3 we only have to check that 
A(H’(G, U(S)) n Brg(S/D) = J.(H:(G, U(S)). By definition, a E H*(G, U(S)) 
is in Hi(G, U(S)) if and only if the 2-cocycle CZ~,~ defines a crossed product 
A = S[u,] with multiplication defined by SU, = u(s)u, and U,U, = ao,r~,, 
which is graded over D. 

Since r is an automorphism of S over D which is graded of degree zero, 
we may deduce from u,s = a(s) U, taking s E h(S), that (u,)~s = a(s)(u,),, 
where (u,), is the homogeneous component of highest degree appearing in 
the decomposition of U, in A. Then (u,),,u; ’ commutes with S and hence 
(%)/I u, ’ E S. But S[u,] is a free S-module and S is a domain, therefore the 
elements of S are regular in S[u,] and consequently (u,), is then also a 
regular element in S[u,] = A. Writing (u,), = su, for some s E S and 
decomposing s as si,, + .a. + si, with sij of degree ij and i, > .a. > i,, yields 
the relation (u,), = (si, + ..a + si,) (u,), + lower degree terms. Therefore, the 
fact that sih(u,),, # 0 ((u,), is regular in A!) implies (u,), = (si,)(u,),, i.e., 
i, = 0. However we see that the homogeneous component (u,), of lowest 
degree in the decomposition of u, is also regular in A (repeat the above 
argument). But then si,(uO), = 0 yields that si, = 0, a contradiction unless 
(u,), = (u,), , i.e., u, is homogeneous. Taking degrees in u,u, = aU,=uor 
yields that deg’a is trivial in H*(G, E). 

Conversely if a is such that deg* a is trivial in H*(G, Z), then the crossed 
product S[u,] defined by a may be graded by putting deg u, = d,, where the 
d, E Z are obtained from deg a,, = d, + d, - d,,. All this establishes that 
we have an injective group morphism 

H*(G, U(S))/H;(G, U(S)) -, G* z H*(G, Z). 

From Zfi(G, U(S))=Ker(deg*) one easily deduces that L(H*(G, U(S))n 
Brg(S/D) = A,(Hi(G, U(S)) an exactness of the diagram follows easily. d 

2.2. Note. Since 1 = S((Pic(S))‘) = 8((Picg(S))‘), it is clear that dg = 6 
maps (Picg(S))” to a graded matrix ring. Let us recall for completeness sake 
how 6 acts and give the graded version of it. If 1 VI E (Picg(S))’ = (Pit(S))‘, 
where V is graded invertible S module of rank one, then lu . V( = 1 VI implies 
the existence of a D-isomorphism y 0: V--+ V such that w,(sx) = a(s) w,(x) 
for all s E S, x E V. The map w,, w, IJ; ’ is a D-isomorphism V-, V and it is 
moreover S-linear, i.e., v/,, I+V; ’ w; ’ E Hom,(V, v) r S. It follows that 
War v; ’ w, ’ is just multiplication by an element ao,= in U(S), hence a,,, is 
homogeneous. Again from the relations V, v/, = a,+, I,,, and v/,s = u(s)I+v,, 
within the graded ring Hom,(V, I’) (graded because V is graded of finite 
type over D) one may deduce as in the proof of the theorem that t,u, is 
homogeneous, i.e., a graded morphism, for each u E G. Therefore S(l VI) is a 
graded matrix ring. 
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2.3. PROPOSITION. Let D be a Gr-Dedekind ring and let e E N be the 
smallest number such that D, contains a unit, say T. If S is a graded domain 
which is a Galois extension of D with Galois group G, then the following 
sequence is exact: 

1 + H;(G, U(S)) + H’(G, U(S)) -J+% G” -+ M+ 1 

where M is an e-torsion group. 

Proof: Pick d E H*(G, Z); then ed is a 2-cocycle such that (ed),,, E eH. 
Put c,., = POT. Then it is clear that c: G x G-+ U(S) defined by 
4-T 5) = c, r is an element of H’(G, U(S)) with deg’c = ed. Consequently 
G*/Im(deg”) is e-torsion. 

2.4. Note. The 2cocycle c constructed above lies in H&,,(G, U(D)): this 
is especially meaningful in case G is an abelian group. 

2.5. THEOREM. Let D be a Gr-Dedekind ring and let e E iN be the 
smallest number such that D, contains a unit, say T. Let S be a domain and 
a Galois extension of D with group G, assume furthermore that 
S = S, On, D where S, is a Galois extension of D,. Then we have: 

(a) Br(S/D)/Br(S,/D,) x G* is e-torsion. 

(b) BrR(S/D)/Br(S,/D,) is e-torsion. 

Proof We identify Br(S/D) = H’(G, U(S)) and Brg(S/D) = 
H:(G. U(S)). If c E H’(G, U(S)), then cO = c’T-~~,~, where d = deg’(c), 
represents an element of H’(G, U(S,). Consequently ce = c,T~~.~ may be 
viewed as an element of H’(G. U(S,)) X H’(G, Z). 

Note. Pic(S,) = Pit(S) = 1. Hence Br(S/D)/Br(S,/D,) x G* is an e- 
torsion group. Second, if c E H:(G, U(S)), then c E Ker(deg’), i.e., d,., = 
d, + d, - d,,, for certain d, E Z. Now ce = T’c,, as above, entails that c’ 
and c, represent the same element of Brg(S/D) because r’ is trivial (indeed 
T”n.7 = (Tdo) . (Tdr) . (Ted,.,)). Therefore, B?(S/D)/Br(S,/D,) is e-torsion 
too. 

2.6. COROLLARIES. (1) If D is a generalised Rees ring, i.e., e = 1, then 
Br(S/D) = Br(S,/D,) x G* and Brg(S/D) = Br(S,/D,). Moreover, since 
every a E Br(D) can be split by a Galois domain extension S of D as 
required in 2.5, it follows that Br(D) = Br(D,) x G*, Brg(D) = Br(D,), 
where G * is the direct limit over splitting Galois groups of H2(G, Z ). 

(2) If D is of the form D, [X, X- ’ ] with deg X = e, then we may 
change the gradation of D by giving deg X any other value in E. Hence 
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Br(S/D)/Br(S,/D,) x G* is e-torsion for every e E Z, hence Br(S/D) = 
Br(S,/D,) x G*. It will be established hereafier that, although Brg(S/D) is 
e-torsion over Br(S,/D,) ( e varying with the gradation considered but 
Brg(S/D) varying too!), the groups Brg(S/D) may be large in Br(S/D) if the 
gradation is suitably defined. 

(3) If D is a discrete Gr-valuation ring, then the results of Section 1 
imp& the existence of the domain S reguired in the theorem, for every graded 
Azumaya algebra over D. So we have established so far that 

(4 Brg(D) = limG=G,l~s,D, fJi(G WV). 

(b) !i!%=GallS!“, H2(G, U(S))/Hi(G, U(S)) is e-torsion. 

(c) Brg(D)/Br(D,) is e-torsion. 

2.7. THEOREM. Let D be a Gr-Dedekind ring and let S be a graded 
domain and a Galois extension of D with group G. Let St,,, be the graded 
ring, isomorphic to S as an ungraded ring but with gradation defined by 
(SCn,)np = S,. We identify Hi(G, U(S,,,)) with the subgroup of H*(G, U(S)) 
isomorphic to it (by forgetting gradation). Then H’(G, U(S)) = 
Unez H:G W,,,). 

Proof Take c E H2(G, U(S)). Then deg2(c) = d E H2(G, Z) has finite 
order, n say, because H2(G, Z) is a torsion group. 

Consequently ndo,T = d, + d, - d,,, for all u, r E G, some d, E Z. In the 
fradation of S, c,,, has degree d,., but in the gradation of SC”), 
deg c,,, = nd,., ; in other words deg2c,,, = nd, where cc,) is the 2-cocycle c 
but with the degrees from the gradation on S,“,. From deg*c,,, = nd which is 
trivial in H2(G, Z) it follows that cc,, represents an element of 
Hi(G, U(S,,,)). In other words, the crossed product S[u,, o E G] with 
ucru, = c,.,%q,~ u,s = o(s)u, becomes a graded Azumaya algebra over D, if 
we change the gradation of S and of D and consider S,“, over D,,,), by 
putting deg u, = d,, where d, is as above. 

2.8. COROLLARIES. (1) If D is a discrete Gr-valuation ring then 

lim 
Cd($) =G 

H*(G, U(S)) = U Brg(D,,,), 
n 

the limit being taken over the Galois extensions of D which are Gr-principal 
ideal domains of the form S, BOO D. 

(2) IfD=D,[X,X-‘] h w ere D, is a valuation ring, then 

Br(D) = U Brg(D,,,). 

Proof Section 1 and Theorem 2.7. 
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2.9. THEOREM. Let D be a graded field k[ T, T- ’ ] with deg T = e and 
with k a perfect field. Then Br(D) = U,, Brg(D,,,). 

Consequently, every Azumaya algebra, graded or not, over k[ T, T- ‘1 is 
equivalent to a skew polynomial Ore domain d [X, X- ‘, a,], where A is a 
finite-dimensional skewtield, (D an automorphism of A such that @’ is inner, 
degX= 1 and T=lXe, AE U(A). 

Proof Any Azumaya algebra k[ T, T- ‘1 can be split by some I[ T, T- ’ ] 
where l/k is a Galois field extension (Tsen’s theorem). Therefore we may 
take direct limits in Theorem 2.7 and we obtain Br(k[T, T-’ 1) = 
(J, BrK(k[ T’,,, T;,:]), where T,,,, = T but with deg T,,,, = n. Any graded 
Azumaya algebra A over k[ T, T-‘I is of the form M,(A[X, X-‘, (PI),,, 
d E I”, cf. [ 111, hence A is equivalent to A[X, X-l, u, 1. 

Since any Azumaya algebra over k[ T, T- ’ ] may be regarded as a graded 
algebra if we put deg T = n for some suitable n, the theorem follows. 

2.10. Remark. Theorem 2.9 is just an easy corollary to 2.7 but I guess it 
is interesting to see how the graded techniques have led to structural results 
about the elements of the Brauer group. Since no such result seems to be 
available in the literature I stated the property as a theorem in its own right. 

2.11. PROPOSITION. Let D be a Gr-Dedekind ring and let S be a graded 
domain which is a Galois extension of D with abelian Galois group G, then 
we haue 

H*(G, U(O/H:(G, U(S)) = f&,(G, U(S))/H;(G, U(S)) n f&,G WV). 

ProoJ: Consider d = deg*f, f E H’(G, U(S)). By definition, a symmetric 
2-cocycle for the abelian group G is given by the system c,., satisfying 
relations: 

A result of [lo] states that we may fix n = IGI couples (a,, r,),..., (on, 5,) 
such that the relations (*) can be solved in the free multiplicative group 
generated by the elements c,~~,,,..., c~,,~“. Since d,,, satisfies (*) (additively 
notated), it follows that d,,,,, ,..., du,,rn determine d. Now f,,,,, ,..., f,,,,, are 
units of S of degree d, ,,=,,..., d,,,=,. Calculate the symmetric 2cocycle f’ 
satisfying (*) by putting c,~,~~ = f,,., , i = I,..., n, (i.e., specialize the free 
group on the elements c,,~,~~, i = l,..., n: into U(S) by sending c,,~.=~ onto f, I.=[ 1. 
Since the f,‘., are expressions in the fyi,T,, i = l,..., n, and the d,,, are given by 
exactly the same (but additively wrnten) expressions in dOi.Ti, i = l,..., n, it 
follows that deg’f’ = d. So we have lifted any d E Im(deg’) to some 
f’ E H&,,(G, U(S)); hence the statement of the proposition follows. 
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2.12. COROLLARY. If the group G of a Gr-Dedekind extension S of D is 
abelian, then Im(deg2) = Im(deg’ ( H&,,( g? U(S)), this simplifies calculation 
of Im(deg*) in some examples. 
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