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The entropy-area spectrum of a black hole has been a long-standing and unsolved problem. Based on a
recent methodology introduced by two of the authors, for the black hole radiation (Hawking effect) as
tunneling effect, we obtain the entropy spectrum of a black hole. In Einstein’s gravity, we show that both
entropy and area spectrum are evenly spaced. But in more general theories (like Einstein–Gauss–Bonnet
gravity), although the entropy spectrum is equispaced, the corresponding area spectrum is not.
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1. Introduction

Since the birth of Einstein’s theory of gravitation, black holes
have been one of the main topics that attracted the attention and
consumed a big part of the working time of the scientific com-
munity. In particular, the computation of black hole entropy in the
semiclassical and furthermore in the quantum regime has been a
very difficult and (in its full extent) unsolved problem that has cre-
ated a lot of controversy. A closely related issue is the spectrum of
this entropy as well as that of the horizon area. This will be our
main concern.

Bekenstein was the first to show that there is a lower bound
(quantum) in the increase of the area of the black hole horizon
when a neutral (test) particle is absorbed [1]

(�A)min = 8π l2pl (1)

where we use gravitational units, i.e. G = c = 1, and lpl =
(Gh̄/c3)1/2 is the Planck length. Later on, Hod considered the case
of a charged particle assimilated by a Reissner–Nordström black
hole and derived a smaller bound for the increase of the black
hole area [2]

(�A)min = 4l2pl. (2)

At the same time, a new research direction was pursued; namely
the derivation of the area and thus the entropy spectrum of black

* Corresponding author.
E-mail addresses: rabin@bose.res.in (R. Banerjee), bibhas@bose.res.in (B.R. Majhi),

evagenas@academyofathens.gr (E.C. Vagenas).
0370-2693 © 2010 Elsevier B.V.
doi:10.1016/j.physletb.2010.02.067

Open access under CC BY license.
holes utilizing the quasinormal modes of black holes [3].1 In this
framework, the result obtained is of the form

(�A)min = 4l2pl ln k (3)

where k = 3. A similar expression was first put forward by Beken-
stein and Mukhanov [4] who employed the “bit counting” process.
However in that case k is equal to 2. Such a spectrum can also
be derived in the context of quantum geometrodynamics [5]. Fur-
thermore, using this result one can find the corrections to entropy
consistent with Gibbs’ paradox [6].

Another significant attempt was to fix the Immirzi parameter in
the framework of Loop Quantum Gravity [7] but it was unsuccess-
ful [8]. Furthermore, contrary to Hod’s statement for a uniformly
spaced area spectrum of generic Kerr–Newman black holes, it was
proven that the area spacing of Kerr black hole is not equidis-
tant [10]. However, a new interpretation for the black hole quasi-
normal modes was proposed [11] which rejuvenated the interest
in this direction. In this framework the area spectrum is evenly
spaced and the area quantum for the Schwarschild as well as for
the Kerr black hole is given by (1) [12]. While this is in agreement
with the old result of Bekenstein, it disagrees with (2).

In this Letter we will use a modified version of the tunnel-
ing mechanism [13–20] proposed by two of the authors (R.B. and
B.R.M.) [21,22], to derive the entropy-area spectrum of a black
hole. In this formalism, a virtual pair of particles is produced just
inside the black hole. One member of this pair is trapped inside

1 For some works on this direction see, for instance, [9] and the references
therein.

https://core.ac.uk/display/82426697?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
mailto:rabin@bose.res.in
mailto:bibhas@bose.res.in
mailto:evagenas@academyofathens.gr
http://dx.doi.org/10.1016/j.physletb.2010.02.067
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


280 R. Banerjee et al. / Physics Letters B 686 (2010) 279–282
the black hole while the other member can quantum mechanically
tunnel through the horizon. This is ultimately observed at infinity,
giving rise to the Hawking flux. Now the uncertainty in the energy
of the emitted particle is calculated from a simple quantum me-
chanical point of view. Then exploiting information theory (entropy
as lack of information) and the first law of thermodynamics, we in-
fer that the entropy spectrum is evenly spaced for both Einstein’s
gravity as well as Einstein–Gauss–Bonnet gravity. Now, since in Ein-
stein gravity, entropy is proportional to horizon area of black hole,
the area spectrum is also evenly spaced and the spacing is shown
to be exactly identical with one computed by Hod [2] who stud-
ied the assimilation of charged particle by a Reissner–Nordström
black hole. On the contrary, in more general theories like Einstein–
Gauss–Bonnet gravity, the entropy is not proportional to the area
and therefore area spacing is not equidistant. This also agrees with
recent conclusions [23,24].

The organization of the Letter goes as follows. In Section 2, we
briefly present the modified tunneling method. In Section 3, we
compute the entropy and area spectrum of a black hole solutions
of both Einstein gravity and Einstein–Gauss–Bonnet gravity. Finally,
Section 4 is devoted to a brief summary of our results and con-
cluding remarks.

2. The tunneling methodology

In this section we briefly present the modified tunneling
method as developed by two of us [21,22]. According to the no
hair theorem, collapse leads to a black hole endowed with mass, charge,
angular momentum and no other free parameters. The most general
black hole in 4-dimensional Einstein theory is given by the Kerr–
Newman metric [26].

Now considering complex scalar fields in the Kerr–Newman
black hole background and then substituting the partial wave de-
composition of the scalar field in terms of spherical harmonics, it
has been shown that near the horizon the action reduces to an ef-
fective 2-dimensional action for a free complex scalar field [25,26].

Now from this 2-dimensional action one can easily derive the
equation of motion of the scalar field φ corresponding to the l = 0
mode. The equation of motion for φ is given by [26],[

1

F (r)
(∂t − i At)

2 − F (r)∂2
r − F ′(r)∂r

]
φ = 0 (4)

where

At = eV (r) + mΩ(r);
V (r) = − Q r

r2 + a2
, Ω(r) = − a

r2 + a2
, a = J

M
(5)

and

F (r) = �

r2 + a2
; � = r2 − 2Mr + a2 + Q 2. (6)

Here M , J and Q are the mass, angular momentum and electrical
charge of the black hole, respectively while e is the charge of the
scalar field φ. Observe that this is just the Klein–Gordon equation
for a free scalar field with U (1) gauge field At in the following
2-dimensional space–time metric

ds2 = −F (r)dt2 + dr2

F (r)
. (7)

This shows that near the horizon the theory is dimensionally re-
duced to a 2-dimensional theory with the metric (7) [25,26].

Now to solve (4) we employ the standard WKB ansatz for φ

φ(r, t) = e− i
h̄ S(r,t). (8)
Then proceeding in a similar way as presented in [21,22], we ob-
tain the relations between the modes defined inside and outside
of the black hole event horizon:

φ
(R)
in = e− πω

h̄κ φ
(R)
out , (9)

φ
(L)
in = φ

(L)
out (10)

where κ is the surface gravity defined by

κ = 1

2

dF (r)

dr

∣∣∣∣
r=r+

. (11)

Here “in” (“out”) refers to inside (outside) the event horizon and L
(R) represents the ingoing (outgoing) mode. In this case ω is given
by the following relation

ω = E − eV (r+) − mΩ(r+). (12)

Here E is the conserved quantity corresponding to a timelike
Killing vector. The other variables V (r+) and Ω(r+) are the electric
potential and the angular velocity calculated on the horizon. This
ω is identified as the effective energy experienced by the particle
at asymptotic infinity. The modes (9), (10) can also be obtained by
other approaches [27].

Since the left moving mode travels towards the center of the
black hole, its probability to go inside, as measured by an external
observer, is expected to be unity. This is easily verified by comput-
ing

P (L) = ∣∣φ(L)
in

∣∣2 = ∣∣φ(L)
out

∣∣2 = 1 (13)

where we have used (10) to recast φ
(L)
in in terms of φ

(L)
out since mea-

surements are done by an outside observer. This shows that the
left moving (ingoing) mode is trapped inside the black hole, as ex-
pected. On the other hand the right moving mode, i.e. φ

(R)
in , tunnels

through the event horizon and its probability, to go outside the
horizon, as measured by an external observer is P (R) = |φ(R)

in |2 =
|e− πω

h̄κ φ
(R)
out |2 = e− 2πω

h̄κ .
The same analysis also goes through for a D-dimensional spher-

ically symmetric static black hole which is a solution for Einstein–
Gauss–Bonnet theory [28]. This is because the dimensional reduc-
tion technique near the horizon once again tells that the physics
can be effectively described by the 2-dimensional form (7). Here
F (r) is given by

F (r) = 1 + r2

2α

[
1 −

(
1 + 4αω

rD−1

) 1
2
]

(14)

with

α = (D − 3)(D − 4)αGB, (15)

ω = 16π

(D − 2)ΣD−2
M (16)

where αGB , ΣD−2 and M are the coupling constant for the Gauss–
Bonnet term in the action, the volume of unit (D − 2) sphere
and the ADM mass, respectively. Therefore, in the Einstein–Gauss–
Bonnet theory one will obtain the same transformations, namely
Eqs. (9) and (10), between the inside and outside modes.

In the analysis to follow, using the aforementioned transforma-
tions, i.e. Eqs. (9) and (10), we will discuss about the spectroscopy
of the entropy and area of black holes.
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3. Entropy and area spectrum

In this section we will derive the spectrum for the entropy as
well as the area of the black hole defined both in Einstein and
Einstein–Gauss–Bonnet gravity. It has already been mentioned that
the pair production occurs inside the horizon. The relevant modes
are φ

(L)
in and φ

(R)
in . It has also been shown in the previous section

that the left mode is trapped inside the black hole while the right
mode can tunnel through the horizon which is observed at asymp-
totic infinity. Therefore, the average value of ω will be computed
as

〈ω〉 =
∫ ∞

0 (φ
(R)
in )∗ωφ

(R)
in dω∫ ∞

0 (φ
(R)
in )∗φ(R)

in dω
. (17)

It should be stressed that the above definition is unique since the
pair production occurs inside the black hole and it is the right
moving mode that eventually escapes (tunnels) through the hori-
zon.

To compute this expression it is important to recall that the
observer is located outside the event horizon. Therefore it is es-
sential to recast the “in” expressions into their corresponding “out”
expressions using the map (9) and then perform the integrations.
Consequently, using (9) in the above we will obtain the average en-
ergy of the particle, as seen by the external observer. This is given
by

〈ω〉 =
∫ ∞

0 e− πω
h̄κ (φ

(R)
out )

∗ωe− πω
h̄κ φ

(R)
out dω∫ ∞

0 e− πω
h̄κ (φ

(R)
out )

∗e− πω
h̄κ φ

(R)
out dω

=
∫ ∞

0 ωe−βω dω∫ ∞
0 e−βω dω

= − ∂
∂β

(
∫ ∞

0 e−βω dω)∫ ∞
0 e−βω dω

= β−1 (18)

where β is the inverse Hawking temperature

β = 2π

h̄κ
= 1

T H
. (19)

In a similar way one can compute the average squared energy of
the particle detected by the asymptotic observer

〈
ω2〉 =

∫ ∞
0 e− πω

h̄κ (φ
(R)
out )

∗ω2e− πω
h̄κ φ

(R)
out dω∫ ∞

0 e− πω
h̄κ (φ

(R)
out )

∗e− πω
h̄κ φ

(R)
out dω

= 2

β2
. (20)

Now it is straightforward to evaluate the uncertainty, employing
Eqs. (18) and (20), in the detected energy ω

(�ω) =
√〈

ω2
〉 − 〈ω〉2 = β−1 = T H (21)

which is nothing but the Hawking temperature T H . Hence the
characteristic frequency of the outgoing mode is given by

� f = �ω

h̄
= T H

h̄
. (22)

Now the uncertainty (21) in ω can be seen as the lack of in-
formation in energy of the black hole due to the particle emission.
This is because ω is the effective energy defined in (12). Also, since
in information theory the entropy is lack of information, then the
first law of black hole mechanics can be exploited to connect these
quantities,

Sbh =
∫

�ω
. (23)
T H
Substituting the value of T H from (22) in the above we obtain

Sbh = 1

h̄

∫
�ω

� f
. (24)

Now according to the Bohr–Sommerfeld quantization rule∫
�ω

� f
= nh̄ (25)

where n = 1,2,3 . . . . Hence, combining (24) and (25), we can im-
mediately infer that the entropy is quantized and the spectrum is
given by

Sbh = n. (26)

This shows that the entropy of the black hole is quantized in units
of the identity, �Sbh = (n + 1) − n = 1. Thus the corresponding
spectrum is equidistant for both Einstein as well as Einstein–Gauss–
Bonnet theory.

Moreover the entropy of a black hole in Einstein theory is given
by the Bekenstein–Hawking formula

Sbh = A

4l2pl

. (27)

Consequently, the area of the black hole horizon is also quantized
with the area quantum given by

�A = 4l2pl (28)

implying that the area spectrum is evenly spaced

An = 4l2pln (29)

with n = 1,2,3, . . . .
A couple of comments are in order here. First, the area quantum

is universal in the sense that it is independent of the black hole
parameters. This universality was also derived in the context of
the new interpretation of quasinormal moles of black holes [11,12].
Second, the same value was also obtained earlier by Hod by con-
sidering the Heisenberg uncertainty principle and Schwinger-type
charge emission process [2].

On the contrary, in Einstein–Gauss–Bonnet theory, the black
hole entropy is given by

Sbh = A

4

[
1 + 2α

(
D − 2

D − 4

)(
A

ΣD−2

)− 2
D−2

]
(30)

which shows that entropy is not proportional to area. Therefore
in this case the area spacing is not equidistant. This is compatible
with recent findings [23,24].

4. Conclusions

We have calculated the entropy and area spectra of a black hole
which is a solution of either Einstein or Einstein–Gauss–Bonnet
(EGB) theory. The computations were pursued in the framework
of the tunneling method as reformulated by two of the authors
[21,22]. In both cases entropy spectrum is equispaced and the
quantum of spacing is identical. Since in Einstein gravity, the en-
tropy is proportional to the horizon area, the spectrum for the
corresponding area is also equally spaced. The area quantum ob-
tained here is equal to 4l2pl . This exactly reproduces the result
of Hod who studied the assimilation of a charged particle by a
Reissner–Nordström black hole [2]. In addition, the area quantum
4l2pl is smaller than that given by Bekenstein for neutral particles
[1] as well as the one computed in the context of black hole quasi-
normal modes [11,12].
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Furthermore, for the computation of the area quantum ob-
tained here, concepts from statistical physics, quantum mechan-
ics and black hole physics were combined. Therefore, it seems
that the result reached in our analysis is a much better approx-
imation (since a quantum theory of gravity which will give a
definite answer to the quantization of black hole entropy/area is
still lacking). Finally, the equality between our result and that
of Hod for the area quantum may be due to the similarity be-
tween the tunneling mechanism and the Schwinger mechanism
(for a further discussion on this similarity see [14,29]). On the
other hand in EGB gravity, since entropy is not proportional to
area, the spectrum of area is not evenly spaced. Hence, for EGB
gravity, the notion of the quantum of entropy is more natural than the
quantum of area. However, one should mention that since our cal-
culations are based on a semiclassical approximation, the spacing
obtained here is valid for large values of n and for s-wave (l = 0
mode).
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