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Abstract

We prove that ifX is a Tychonoff topological spacé, a subspace ok, and every bounded
continuous pseudometric dh can be extended to a continuous pseudometri& pthen the free
topological groupF,, (Y) coincides with the topological subgroup Bf; (X) generated by. For
this purpose, a new description for the topology of a free topological group in terms of continuous
pseudometrics and group seminorms is given. It follows from what has been shown by Uspenski
that this result implies the Weil completenessif (X) for any Dieudonné complet®. It is also
proved that if dimX = 0, then indF,,(X) = 0. 0 2000 Elsevier Science B.V. All rights reserved.
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The object we study in this paper is the free topological group in the sense of Markov,
introduced by Markov in [2]. Théee topological groupF,, (X) of a Tychonoff spac&
is the free algebraic group of the sEtwith the strongest group topology that induces
the original topology onX, or, equivalently, such that any continuous mappingXof
to an arbitrary topological groug can be extended to a continuous homomorphism of
Fu(X) to G. The reason why these groups are important is that any topological group
algebraically generated by its subspace homeomorplicisoa continuous homomorphic
image of the free topological group af, moreover, ifX is a continuous image df, then
G is a continuous homomorphic image Bj; (Y).

Let X be a Tychonoff spacé, a subspace of, Fy,(X) the free topological group of,
andFy (Y |X) the topological subgroup dfy; (X) generated by . This paper is concerned
with one of the most fundamental problems in the theory of free topological groups:
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When does the topology 6§, (Y| X) coincide with the topology of the free groufy (Y)?
Apparently, the problem was first tackled in 1948 by Samuel [6]; it has been extensively
studied since then (see, e.g., [1,4,8]). Samuel proved thatigf a Tychonoff space and

uX its Dieudonné completion, thefy, (X |1 X) = Fjr(X). An essential advancement was
made by Pestov [5]. First, he proved thatifc X and Fy (Y|X) is the free topological
group of Y, then the restriction of the universal uniformity &f to Y is the universal
uniformity of Y, or equivalently, every bounded continuous pseudometri¢’ aran be
extended to a continuous pseudometricbrSecondly, he showed that f&rdense inX

the converse is true. The latter result has naturally brought up the question if the condition
of density ofY in X is necessary. This work answers the question in the negative. Thus, a
complete description of all subspaceof a spaceX such thatFy, (Y|X) coincides with

Fy (Y) ensues. The description is:

Let X be a completely regulafi; space andY C X. The free topological
group Fy(Y) coincides with Fy,(Y|X) if and only if every bounded continuous
pseudometric oY can be extended to a continuous pseudometri¥ on

The scheme of the proof is as follows. First, we define a farfitlyof continuous
seminorms onFy, (X) using a series of auxiliary constructions. Next, we prove that this
family generates the topology dfy (X), i.e., for every open neighborhodd of the
identity in F;(X) there exist a seminortt|| in 9t anda > 0 such that

lge Fu(X): ligll <a}CU.

Finally, for an arbitrary bounded continuous semindfiy on Fy(Y), we construct a
continuous seminorni-|| € 91 (on Fy; (X)) such that|k||y < ||| for eachh in Fy(Y).

This gives the desired statement, because the family of all continuous seminorms generates
the topology ofFy, (Y).

0. Terminology and notation

Let X be a Tychonoff space, one and the same throughout the paper.

The lettersy, y, andz refer to elements of; k, [, m, n, r, s, andt denote nonnegative
integersg ands take values 1 and-1; N* stands for the set of all positive integers, ahd
for the set of all nonnegative integers.

For a pseudometrip on X, a > 0, andx € X,

By(x,a)= {y eX: px,y)< a}
is the ball of radius: with the center at relative top.
Thesupportof a functionf on X is the set supp = {x € X: f(x) #0}.
The semigroup of all (reduced and nonreduced) words in the alpiadpet 1 (X 1is
a homeomorphic copy of) is denoted as(X), and

2n
S*(X) = {xil,..x;fl" (S S(X) n EN, Zé‘i :O}
i=1
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The free algebraic group dof, i.e., the set of all irreducible words frof(X), is denoted
by F(X), and

2n
F*(X)={x;*...x;2 e F(X): neN, Zsi =0};
i=1
Fu (X) is the free topological group of in the sense of Markov.

The symbole stands for the empty word, which is the identity elemens@X) (and
F(X)).

For g,h € S(X), g = h means that the wordg and/ are equal as elements of the
semigroupS(X), i.e., they consist of the same number of letters and their corresponding
letters coincide. By = h we denote the equality of the reduced forms of these words.
Wheng andh are treated as elements of the semigrul) or its subsemigroug™(X),
gh denotes the semigroup product gfand 7, i.e., the word obtained by successively
writing g andiz. When we speak about (irreducible) worgland/ as elements of (X)
or its subgroupF*(X), the same combination denotes the usual group produgtasfd
h. Thus, when we writex;*...x,;" € F(X), we mean the reduced form of the word
x1t...x,", and when we writec;*...x;" € S(X), we mean the sequence of lettefs.
Forg=xi*...x;" € S(X), g~1 stands for the word, " ... x; .

Letg = xil ...x;" € §(X). The numben is thelength/(g) of the wordg. We use the
standard notatio, (X) for the set of all words irF'(X) whose length does not exceed

1. Schemes of words

Letg=xi'...x;* € §*(X), and let

(i].» jl)» ey (i}’h J}’l)
be a partition of the seftl, ..., 2n} into pairs such that; < j;, ¢, = —¢j,, and for all
s, t < n, either the segments;, j;1, [i;, j;] are disjoint, or one of them contains the other.
We say that the set

o= {(is» js>: 1 <s < n}

is aschemdor g. The wordg together with a fixed schemeis denoted akg, o] or simply
[¢]. The empty wor@ admits only one scheme, the empty set.
Put

[$*(X)] = {[g.0]: g € $*(X), o is ascheme fog}.

We retain the term “words” for elements [(§*(X)] as well asS*(X).
The symbob, always denotes a scheme fgrand it is always implied thdg] = [g, o, 1.
Let[al, [b] € [S*(X)] andl(a) = n. Put
oap =0, U{(i +n.j+n): (i, j) €ap}.

Theno,;, is a scheme for the worah. We write[g] = [a][b] wheng = ab and the scheme
o, coincides withay,.
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Let[g] € [S*(X)] andi(g) =n. Put
og1={(n—j+Ln—i+1): (i j)ecog}.
Thenagfl is a scheme fog~1. We write[g~1] to denote the worg 1 with the scheme

O'g—l.

Let g € [S*(X)], I(g) = n, and o, be a scheme fog. We call the word[g, a,]
nonfactorableif g is nonempty (i.e.p > 2) and(1, n) € a,. For[g], [g] € [S*(X)], the
relation[g] = [x®[g]y—¢] means thag = x°gy—* and

o = {(LI Ui +1j+1): G, ))€og).
Clearly, a word is nonfactorable if and only if it has the foi[g]y—¢].

Remark 1. Every nonemptyg] € [S*(X)] can be represented as a prodyel[g2], where
g1 1s an arbitrary (possibly, empty) arigo] a nonfactorable word frorpS* (X)], and this
representation is unique. Indeed, fo= xi ...x,", find the pair(k, n) € o, that contains
n and put

— €1 Ek—1 — .Ck g
S1=X ... X1, 82=x; R

O’glz{(l,1>€0g. j<k}, ogzz{(i—k+1,j—k+1): (i, j) €0y, i}k}.

Leth =x3t...x," € S(X) and[g], [g] € [S*(X)]. We write[g] = [h[g]h 1] if
[g]l= [xil[xgz[. g, o .]xz_gz]xl_gl].

We call a word[g] factorableif it is nonempty and not nonfactorable. Clearly] is
factorable if and only if there exist > 2 and nonfactorable wordg;], i =1, ...,n such
that[g] = [g1]...[gx], @and this representation ff] is unique.

Let [g] € [S*(X)], g = ax®x~°D for somea,b € S(X), ¢ =ab, andi(a) =k — 1.
Clearly,g € S*(X). Put

agA:{(z, ) €E0gl ] <k}
U{(l]— : )eag,i<k,j>k+1}
U{ti—2j-2):(i,j)€ag, i >k+1}

u{,j—2 >eag, (k+1,j)€ag}.

Note that if (k, k + 1) € o, then the last term in the union is empty.

It is readily verified thab; is a scheme for the worgl. We write[g] to denoteg with
the scheme;.

2. Definition of family &

Let (P, <) be a partially ordered set.
Define a relatiora on the family of all nonempty subsets i by the rule:

A < B if for everya € A there exists @ € B such thatx < 8.
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Obviously,« is transitive.
Fora € P andB C P, we put

B(a) ={B e B: a <B}
Remark 2. If A is a nonempty antichain iR andB C P, then the famil{ B(«): « € A}
is disjoint.
Fix a partially ordered setP, <).
Let.A be a collection of nonempty subsets®fabeled by nonnegative integers:
A={Ax: ke N}

Consider a seb = G(P) of tripless = (A, F, D) satisfying the following conditions:
0°. (a)

A={A;: ke N},
whereAj are disjoint nonempty antichains i;
(b)
F={F: keN}

is a collection of families
Fr ={fu: 0 € A}
of continuous nonnegative-valued functionsXmsuch that for every € X and
k e N, the sef{a € Ag: fy(x) # 0} is finite;
(©)
D={dy: keN}
is a family of continuous pseudometrics &n
When we refer to an elemenbf the family S, we always imply thas = (A, F, D)
and the setsA, F, andD have the form specified in conditiors.Primed, indexed,
or otherwise marked, F, D, A, F, f, andd correspond to the similarly marked
s. For examples’ = (A, 7', D), A'={A}: k e N}, etc.
1°. If k <m, then
(a) A < A,
(b) foranyx € X anda € Ay,
fa@) < Y0 fpo
BeAm (@)
(c) foranyx,ye X,

2-di(x,y) <dm(x,y).
2°. Forallx, y, andk,
(@)
Y fa) 21

aEAL
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(b)
23 | ful) = fu)| < di(x, ).

O(EAk
To formulate the last condition on the fami#y, we need to order its elements. Let
5,5 € &. We writes < ¢ if for any k € N, the following relations hold:
(1)
A < A;(;
(2) foranyx € X anda € Ay,

fa) < Y fh0:

BeA; (@)

(3) foranyx,y e X,
2-di(x, y) < dp(x, ).

3°. Toeverys = (A, F, D), there is assigned a family

{50, =(Ay. Fu. Do) €& e JA= Ak}
keN
such thas, >sforalla e JAandifs,s' €5, a e |JA o' e JA, s<¢, and
a <o, thens, < 5;,.
Note that condition 3 implies the presence of a complex structure®nsince the

tripless, assigned t@ belong toS, they are also assigned certain triples fré&mand so
on. This structure is discussed in more detail in the proof of Principal Statement 2; now we
only need the formal definition given above. Note also that not all partially ordere®sets
admit a nonempty familys with the properties B-3°: for example, 0(a) implies thatP
should be infinite and°3that P (@) should be infinite for infinitely mang € P; moreover,
3° implies thatP should contain an infinite number of infinite chains. In Sections 3-6,
we assume thab is a fixed nonempty family defined for a suitable ordered Beand
satisfying conditions 8-3°.

3. Definition of functions N and N

Takes € &. Let us construct function®/s; and N, on the set{S*(X)], i.e., define
numbersV, ([g]) andN ([g]) for eachg] from [$*(X)]. The functions will be constructed
by induction on the length af.

PutN([e]) = Ns([e]) =0 foralls € &.

Let s € G and[g] € [S*(X)], I(g) > 0. Let us assume that for all € & and[h] €
[$*(X)] with I(h) < I(g), the numbersVy ([1]) and N ([h]) are already defined. There
are two possibilities:

(A) The word[g] is factorable, i.e.[g] = [g1]...[gx], Wheren > 2 and all[g;] are

nonfactorable; clearly(g;) < I(g) for all i < n. Define
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Ns(lg1) =) Ns(lgi]) and

i<n
N, ([g]) = min{Ns([g])a 1}~

(B) The word[g] is nonfactorable, i.e[g] = [x°[g]y~¢] for somex, y, € andg. Put

. — - 1
Ne([g]) =2 Y min{fu(x), fu} - Ne, (12]) + > T2 di(x, y) and

€A

_ing [k

Ns(Lgl) _1!2111{ Ns (gD}
Finally, define

N (lgl) = min{*Ns([g]).1} and
Ne(1g]) = inf {Ns (gD} =min{Ns (gD, 1}.
The functionsV, andN ; are defined.

Let us introduce one more notation: put

“Bo(x, y, [h]) = Y min{ fu(x), fua(3} - Ne,([h])

aEAy

fors e G, [h] € [S*(X)], x,y € X, andk e N. Then

1
Ne([g]) = 2° - *Bs (x, y, [8]) + T 25 di(x, y).

The function€N, KN 4, and*B, will be used below.

The subscript will often be omitted. The function®/, N, N, KN, and*B are then
assumed to correspond to the triplévlarked N and B correspond to the similarly marked
s. For example, the function&,, N, N, N, and*B, correspond tos,, and the
functionsN’, N, *N’, XN" and*B’ to &'

Remark 3. If s € G and[g] = [a][b] € [S*(X)], then
N([g]) < N(lal) + N([b]) < N(Ig]),
and if N([a]) + N([b]) < 1 then

N(lg]) = N([al) + N([b]) = N([g]).

4. Lemmas

Everywhere below, letters denote inequalities and digits the last links in chains of
inequalities.

Lemma 1. Suppose thaf is a function onX, [g] € [S*(X)], ands € &. Then for any
andy,

F)-N([g]) < fO) - N([g]) + | Fx) — £
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and, therefore,
f@)-N(Lgl) <min{f (), fFD}-N([8]) +[f @) = FO).
Proof. Itis sufficient to apply the inequalitiesQN([g]) <1. O
Lemma 2. Suppose that, s’ € G, s < s/, and[g] € [S*(X)]. ThenN ([g]) < N'([g]).

Proof. Let us apply induction ori(g). For g = ¢, the assertion of Lemma 2 is trivial.
Assume thai(g) > 0 and the statement is already proved for words of smaller lengths.
There are two possibilities:

(A) The word|[g] is factorable. Thetig] = [g1]...[gn], Wheren > 2 and all[g;] are
nonfactorable. SincKg;) < I(g), we can apply the induction hypothesis and obtain

=Y N(lgl) <Y N'(Lgi) = N'(Lg]).
i<n i<n

(B) The word[g] is nonfactorable, i.e[g] = [x?[g]y¢]. Let us prove thatN ([g]) <
kN’([g]) for all k. To do this, it suffices to show that

“B(x, y,181) +di(x,y) < B'(x,y,[8]) +di(x, ). @
We have
“B(x,y,18]) = Y min{fu(x), fu} Ne(18) < D fulx)- Na(12]).
aEAy €A

Takea € Ax. According to condition (2) from the definition of the relatienon &,
fa@) < ) ).
BeA; (@)
For everyp € A, («), we haves, < 5;9 (by condition 3 from the definition of&) and
henceﬁ/ ([g]) > N« ([g]) (by the induction hypothesis). Therefore,

D fulx) - Ne(18]) < Z( > f,s(x)> Na([21)

€A €A ﬂeA ()

< Z( > f,é(x)-ﬂ([ﬂ))

€A " BeA;(a)
= > fi0)-Np(13)
BelUlA) (@): acAy}
<Y ) - N(121). (1)
BeA;
By Lemma 1,
M < Y min{ 500, 0} N(I8) + D [F0) — £0)]-

BeA; BeA],
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Condition 2 (b) from the definition ofS implies that

3500 - £ < k();’y);
BeA;
therefore,
d.(x,
“B(x,y, [2]) <*B'(x.y.[2]) + "(); 2N

Finally, condition (3) in the definition ok yields (a).

Thus,*N ([g]) < *N’([g]) for all k. Therefore N ([g]) < N'([g]).

We showed thai ([g]) < N’([g]) in both cases (A) and (B). This immediately implies
the desired inequality ([g]) < N'([g]). O

Lemma 3. Suppose thdt:] € [S*(X)], s €6, x,y,z€ X, andk,m e N, k <m. Then
(i) *B(x,y,[h]) < "B(x, z, [h]) + dum(x, 2)/2;
(i) *B(x,y, [h]) +di(x,y) < "B(x, y, [h]) + du(x, y);
(i) *B(y,z,[h]) <*B(x,y,[h]) +di(x,2)/2.

Proof. (i) By definition,
“B(x,y,[h1) =Y min{fu(x), fa(} - Ne(lh1)

aEAy

<Y falx) - Na([h1). 2

aEAy
Suppose& < m. Takea € Ag. By condition T(b), we have
fa@) < D0 fp).
BEAm(@)

For anyp € A, (), we haves, < sg (by condition 3) and henceV g ([h]) > N ([h]) (by
Lemma 2). Therefore,

@ < Z( > fﬁ(x)) Ne ([h1)

acAy " BeAn(a)
< Z( > fpx) - Ng([h] ) > fp(x) - Ng([h). 3)
acAy " BeAn(a) BEAN

We showed that2) < (3) for k < m; obviously, this inequality also holds fér=m. By
Lemma 1 and condition°Zb),

@< Y min{fp). fp@)} Np(hl)+ D [ fp(x) — f5()]

BEAm BeA,
<"B(x, 2, [h]) + dn(x,2)/2.

Therefore*B(x, y, [h]) <™B(x, z, [h]) + dn(x, z)/2, as required.
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(i) The casek = m does not need proving. Far< m, it is sufficient to apply (i) and
the relationdy (x, y) < d,, (x, y)/2, which is implied by condition%(c) from the definition
of &.

(iiif) By definition,
“B(y,z. [h]) =Y min{fa(y), fu(2)} - Na([h]).
€A
Takea € Ag. It min{ fo (x), fa(3), fa(2)} # fa(x), then

min{ fu ("), fu(@)} - Na((h]) < min{ fu(x), fu (M} - No([h]).
Ifmin{fo (x), fa(), fu(2)} = fo(x), then

min{ fu (). fu(2)} - Na([h]) < fa(2) - Nu([R])

< fa(x) - No([h]) + | fu(x) — fu(2)]
(by Lemma 1), and the last sum is equal to

min{ fo (x), fu (N} - Na([h]) + | fu(x) = fu(@)].

Therefore,

foranya € Ay, whence

min{fa()’)a fot(Z)} : ﬁa ([h]) < min{fot(x)» fa()’)} ﬁa([h]) + |fa(x) - fot(Z)|

“B(y, 2, [h]) <*B(x,y, [h]) + Y | fa(®) = fu(2)].
aEAL
The required inequality follows from this and the relation

D fal) = fu(2)| < a9

2 b
aEAy

which is implied by condition Zb). O

Lemma 4. Supposethate G, ke N, [a], [b] € [S*(X)], andx, y,z € X. Then

d
B(y, 2, [allb]) < “B(x, v, [a]) +B(x, 2, (b]) + L2

2
Proof. First, we show that for any € Ay,

min{ fo (). fu(2)} - Na([allb])

<min{ fu(x), fu(} - No([al) +min{ fo (x), foa (@)} - Na(b])
+ | fa ) = fu(2)].

(b)
Leta belong toAy. By definition, Ny ([al[b]) < N ([a]) + No ([b]).
If min{ fo (x), fa (), fa(2)} # fo(x), then
min{ fo (). fu(2)} - No(lal[b])
<min{ fo (), fu(@)} - No([al) + min{ fo(»), fu(2)} - Na([b])
<min{ fu (), fu(} - Na([al) + min{ fo (x), fu (@)} - Na(b1),
which immediately implies (b).
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Suppose that mirf, (x), fo (), fa(2)} # fu(x). Then
min{ fo (), fu(2)} - Na([al[b]) < fu(2) - Na([allb]). (4)
By Lemma 1,
(D < fo(x) - No([allb]) + | fu(x) — fu(2)]
< fu(®) - (No([a]) + No ([BD) + | fu (x) — fu(2)]
=min{ fu (%), f« (3} - Na([al)
+min{ fo (%), fu(@} - No([6]) + | fu (¥) — fu(2)].
Thus, (b) holds for allx from A; therefore

“B(y.z.[allb]) <*B(x.y.[al) + *B(x.2.[b]) + Y _ [ fu(®) — fu(2)|.

acAy
This and 2(b) imply the required inequality. O
Lemmabs. If s € &, [21], [g2] € [S*(X)], k€N, x,y€ X, ¢ € {—1,1}, and
N((x*[gallg2ly ")) < L.
then
25 kB(x, y, [811(g2]) = 2° - *B(x, y, [g1]) + N([22]).
Proof. By definition,

“B(x,y,[81[g2]) = Y_ min{fu(x), fa()} - Nu([Z11[521).

aEAL

Takea € Ag. If No([81]) + N« ([82]) < 1, then by Remark 3, the relatien< s, (implied
by 3°) and Lemma 2 yield

N ([211[22]) = No([21]) + Neo([22]) > No([21]) + N([22])-
Note that in this casey ([g1]1[32]) < 1. If No([g1]) + N« ([82]) > 1, then
Neo([811182]) =1 > No([81]) = Nu([82]) + N([82]) — N([82])
Thus,

> min{ fu (), fu(} - Nu(1811[22])

a€A)
> Y minf fu(). fa)} - (Nal(@1D) + N(1Z2D)
aEAL
_ Z min{ fo (x), fa ()} - N([82]). ©
acAy:

Na ([31]1g2D)=1
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Let us show that

. 1 1
> minf fu (). fu)} > 1= g + sy (@)
aEAy
Obviously,
Yo min{fu ), fa} = D fu) = 3 [ fal@) = fuly)]- ®)
€A ac€Ag a€AL

It follows from 2°(a) and (b) that5) > 1—di(x, y)/2. By assumption, + N ([x*[g1][g2]-
y~¢1), and by the definition ofN,

N([xF12llg2ly™¢]) = /28 + 2 - di(x, )

therefored; (x, y) < 1/28 — 1/2% and(5) > 1 — 1/2%t1 4+ 1/2%+1 which implies (d).
Let us show that

; 1
20 Y min{fut. o)} <1 ©
ﬁa(;iﬁ]};]):l
We have
2. Y minffa(). fa)
acAy:

Na ([31]1g2D)=1

=2 Y minfful). fu) - Na(l211122])

a€A:
Na([311(32)=1

<28 5B (x, y, [211122])-
By condition and the definition div,
1> N([x[81][g20y~°]) = 2" -*B(x, v, [21]Z2]) + 1/2",
whence
28 4B (x, y, [21ll22)) < 1- /2,
which gives (e).

Inequalities (c), (d), and (e) give

20 min{ fu (), fa)} - No (18111821

O(EAk

>25 %" min{ fu (x), fa(3)} - Na([81])

aEAL
+28 (1— 1724 4 1/2%H) N ([82]) — (1 - 1/2°) - N((g21),
whence
2 *B(x, y. [81][82])
> 2 4B (x, y, (1)) + (2 — 1172+ 172" + 1/24%) N ([2a1).
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Direct evaluation shows that 2- 1—1/2+1/2k+1/2k+1 > 1 for eachk, which completes
the proof of Lemma 5. O

Lemma 6. If N ([x¢[g]y—¢]) < 1, thenN ([g]) < 1/2*.

Proof. By the condition and the definition 6, we have
1> 28 4B (x, y,[8]) + 1/2° + 2° - di(x, y).

By Lemma 3(i),
“B(x, y,18]) + di(x, y) > *B(x, x, [8]);

therefore
1>2°*B(x,x, [8]) =2 > fulx)- Na(12)).

aEAL
Sinces < s, (see 3), Lemma 2 implies thav, ([g]) > N ([g]) forall « € A;; by condition
2°(a), we have K > fu(x). Hence, 1> 2¢ . N([g]), as required. O

aEAL

Lemma 7. If d;,(x,z) <1andm > 0, then
2" ."B(x,z,[h]) = N([h]).

Proof. By definition and because > 0, we have
2" "B(x,z,[h]) > 2-"B(x, 2, [h]) =2+ ) min{fu(x), fu(2)} - Na([h]).

aE€Ay

Sinces < s, forall o € |J A = Uy Ak (See 3), Lemma 2 implies that
No([h]) = N([h]) foralla € A,.

This and 2(a) and (b) imply that
2" -"B(x,z,[h])

>2. ( > min{fa<x>,fa<z)}) N ([1)

acAy,

>2W([h])~< PINAGEDS |fa<x>—fa(z>|>

a€A, acA,
>2-N([h]) - (1 —dn(x,2)/2).
By condition,d,, (x, z) < 1, whence
2-(1-du(x,2)/2)>2-(1-1/2)=1 and
2" -"B(x,z,[h]) = N([h]). O
Lemma 8. Suppose thate G and[g] = [x*[g]y¢] € [S*(X)]. Then either

(@) N(g]) =*N([g]) (andN([g]) > 1/2%) for somek, or
(b) *B(x, y, [g]) = di(x, y) =0 (@and N([g]) = O) for all k.
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Proof. Fork € N, put
ar ="B(x, y,[8]) + di(x, ).
We have
N(igl) =2 ar+1/2" and N([g]) =inf{2" - ac+1/2"}.

Lemma 3(ii) implies that; < a,, for k < m. Clearly, if ax, # O for someko, then the
sequencé2® - a; + 1/2"},310 has a minimal element, i.e., (a) holds. Otherwise (whes 0
forall k € N) (b) holds. O

5. Statements
As previously, we omit the subscriptat N, N, andB.

Statement 1.Suppose that € &, a,b € S(X), ab € S*(X), g = ax®x7%bh,[g] €
[S$*(X)], and[g] = [ab] has the scheme; defined at the end of SectidnThen

N(181) < N(lgl)-

Proof. Apply induction on/(g). If g = x°x~¢, then the assertion is obvious. Suppose that
[(g) > 2 and the required inequality holds for shorter words of the specified form. Consider
all possible cases.

QD) a,b#e.

(1.1)[g] is nonfactorablei.e.,a = y®a, b=bz"?, [g] = [y’[ax*x¢b]z %], and

. . — _ 1
N(lg]) = inf {2" : a;:k min{ fu (), fu(2)} - No([ax°x~b1) + >+ 2 di(y, z)}.

—

Clearly,[g] = [y°[ablz~?1, where[ab] = [ax?x—¢b]. By the induction hypothesis,
N'(lab]) < N'([axx~¢b])

for anys’ € G; therefore,

. . — = 1
N(L1) > inf {2" ZA min{ fu(@). fu )} Na(1ab]) + 5 +2°- di(y. z>}
=N([8]).
whenceN ([g]) > N ([2]).
(1.2)[g]is factorablei.e.,[g] = [g1]...[gn], Wwheren > 2 and all[g;] are nonfactorable.

(1.2.1a)(g1) <l(a),i.e.,a = gia for somea € $*(X) andgz. .. g, = ax®x~¢b. Endow
ax®x—¢b with the scheme such thgtxx—¢b] = [g2]...[g.]. We have

M) = Y ¥ (la) = ¥(lex) + YW (1a0)

i=2
> N([g1]) + N([g2]- . -[gn]) = N([g1]) + N([ax"x~°b]).
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Let [ab] = [&mb] (this, of course, refers to the choice of a schemeaigr Clearly,
[8] = [g1][ab]. By the induction hypothesi® ([ax*x ~*b]) > N ([ab]), hence,
N([g]) > N(lg1]) + N(lab]) > N([g1llab]) = N([&]).

Thus,N([g]) > N([g]), andN([g]) > N ([3]).

(1.2.1b)I(g,) < (). This is considered similarly to (1.2.1a).

(1.2.2)n =2, g1 =ax®, go=x"¢b. Because the wordg;] and[g2] are nonfactorable,
they can be represented as

lg1] = [y*lalx’],  [gal = [x~*[DIc"].
Clearly,[g] = [y —¢[al[b]z¢]. We have
N (lgal) = inf N ([y~"1a1e])},
N(ig2) =inf ("N ([x~ 517},
N(1g1) =inf {'N ([y~*1ablz])}.
Let us show that for any andm not both equal to zero, there existsuch that
'N([yLanble]) <N ([y~ake]) + "N ([ 1b1=°]). @)

For this purpose, we have to consider further subcases.
(1.2.2.1ak < m. Putl = k. By Lemma 4,

“B(y, z,[allb]) <*B(x,y, [@l) +*B(x, z, [b]) + di(x, 2)/2.
By Lemma 3(i),
“B(x,z,[b1) <"B(x, z, [b]) + dm(x, 2)/2.
By condition P(c) from the definition ofS, d(x, z) < d,(x, z). Thus, we have
“B(y, z, [allb]) <*B(x, y,[al) +"B(x, z, [b]) + du(x, 2),
and
N([y~*laliblz*])
=2° . *B(y, z, [allb]) + 1/2° + 2 - di (v, 2)
<28 %B(x,y,[@)) +2° - "B(x, z, [B]) + 2 - d (x, 2)
+1/2°+ 25 di(x, y) + 2 di(x, 2). (1)
Condition P(c) implies thatdy (x, z) < di (x, 2); therefore,
2% dy(x,2) + 28 dp(x,2) <2 dp(x,2) <2 - d(x, 2).

This proves inequality (a) far= k.
(1.2.2.1byn < k. This case is considered similarly to (1.2.2.1a).
(1.2.2.2ym =k > 0. Putl =k — 1. We have
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“1B(y, z, [alb]) <*'B(y.z. [al) +*B(y. z. [b))
2 )

< 1B(y, v, [al) +*1B(z, z, [b])

(this follows from the definition of~1B). By Lemma 3(i)
(2) <*B(x,y,[al) +di(x,y) +*B(x, 2, [b]) + di(x, 2)

therefore,

IN([y~*lallbiz])
= kL k1B (y, 2, [allb]) + 1/25 1+ 2L di_a(y, 2)
<2 RB(x, y, [a]) + 247 di(x, y) + 2 KB (x, 2, [B1) + 2L di(x, )

+1/25 + 172+ 2L g (e, )+ 25 dia(x, 2)
<N ([t lake]) + N ([ b1e’])
(we applied 2(c)). This proves (a) fok =m =1+1
Thus, for anyk andm not both equal to zero,
(i) there existd satisfying (a), hence,
(i) N([&D) <*N([g1]) +"N([g2]), and, therefore

(i) N (gD <*N(gaD) +"N([g2).
Obviously, the last inequality also holds foe=m = 0. We have

W([é’]) < N([gl]) + N([gzl)
and, finally,N ([g]) < N([g]).

(2)a#eandb=e,ie.,g=axtx%.

(2.1)[g] is nonfactorablei.e.,[¢] = [y*[g]x—¢]. According to Remark 1, th~ere exists a
(unique) representatidig] = [g1]1[g2] with nonfactorabldg,]. Let [g2] = [z7°[25]x°]. It
is directly verified that

[81=[y*[g1)~*][22]-
N(lg ]) To this end, it suffices to show that

We have to prove thav ([g]) <
N ([yaale"]) + N ([52]) <*N(1s))
for all k such thatN([g]) < 1. Note that all thesé are positive and meet the condition
N([g]) < 1/2F (Lemma 6), which implies thaV ([g2]) < 1/2.
g2]) < 1. By 1°(c), di(x, 2) <

N([g]
Thus, takek such thatN ([g]) < 1. Letm > k and”N([g2])

dm(x, z); therefore,

2L dy(x,2) <2 - di(x, 2)

and
2 di(x,2) + N([82]) 2" d(x.2) + N([22])-
) 1. By Lemma?7,
(b)

]
It follows from "N ([g2]) < 1 thatd,, (x, z) <
2 d(x, ) + N([82]) <2"-"B(x, 2, [82]) + 1/2" + 2" - d(x, 2)

forall m > k.
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As mentionedpN ([g2]) < 1/2". Becauséd'N ([g2]) > 1/2™ by the definition of”N, this
implies that

N([22]) = N([g2]) =inf{"N([g2]): m >k, "N([g2]) < 1}.
Inequality (b) implies that

24t dy(x.2) + N([22]) < N(122)).
Applying Lemma 5 yields

2 kB (x, v [81]) + 2 di(x, ) + N ([82]) < 2° - *B(x, v, [211[82]).
By Lemma 3(iii),

28 *B(y,z,[81]) <2° - *B(x, y,[81]) + 2 - di(x, 2),
hence,

2 kB (y, z,[81]) + 2° - di(x, 2) + N ([22]) <2°-*B(x, v, [g11(52)).
Finally, it follows fromd (y, z) < dk(x, z) + dik (y, z) that

25 5B (y, 2, [81]) + 2° - di (v, 2) + N ([22]) < 28 -*B(x, y, [81](82]) + 2¢ - dic(x, y)
and

“N([veIguz]) + N([g2]) <*N([y*lgulig21x¢]) = "N (1g1).

as required.
(2.2)[g]lisfactorablei.e.,[¢g] = [g1]...[gn], Wheren > 2 and all[g;] are nonfactorable.
We have

N([g)) =) N(l&il) =D N(l&il) + N(Igal)-
i<n i<n

The wordg, has the forng,x®x~¢. Let us endowg,, with the scheme such thgt, ] =[]
(i.e., [g.] is obtained from[g,] by deleting the pair®x~¢ in the manner described in
Section 2). Obviously,g] = [g1]...[g.—1][£.]. By the induction hypothesis,

([gn]) ([gn]) < N([gn])

therefore,

)= N(l&l) + N ([2]) < DY_N(lgi]) = N(lg),

i<n i<n

which proves thatv ([3]) < N([g]).
(3)a =e, b#e. Argumentis similar to that in case (2)O

Statement 2. Suppose that € G and[g] € [S*(X)]. ThenN ([g]) = N([g~1]).

Proof. Letus apply induction of(g). If ¢ = ¢, then the assertion is obvious. Suppose that
I(g) > 0 and the statement is valid for shorter words. There are two possibilities:
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(A) The word[g] is factorable, i.e.[g] = [g1]...[gn], Wheren > 2 and all[g;] are
nonfactorable. Obviouslylg ™1 = [g;%1...[g7 ] and i(g) < I(g) for i < n. By the
induction hypothesisy ([g; 1) = N ([g]) for i < n; therefore,

=D N(igl)=)_N(is; ) =N(1s™).
i<n i<n

whenceN ([g]) = N([g~1)).
(B) The word[g] is nonfactorable, i.e[g] = [x¢[g]y¢]. Clearly,[g 1] = [y* [~ 11x~¢].
We have

N(lgl) =2° -*B(x, y,18]) + 1/2° + 2¢ - di(x, y)

for all k. By the induction hypothesisy,([g]) = Nq([g~1]) for all @ € Ax, hence,
“B(x,y,[8]) =*B(x,y,[g71]). Thus,

‘N([gl) =2 *B(x,y,[g71) + 1/2" + 2 - di(x, y)
=N([y g e ]) = N (g 71)
for all k. By definition,N([g]) = N([g~1]) andN([g) = N(g~1]). O
Statement 3. Suppose thai € S(X), s € G, anda > 0. Then there exist e N, s1,...,

s, € &, and b > 0 such that if[g] € [S*(X)] and N;([g]) < b for all i < r, then
N([hlglh™]) <a.

Proof. Let us apply induction o(k). For i = e, the assertion is trivially true. Suppose
that/(h) > 0 and the statement is valid for shorter words.
Leth = x®h. For eachg] € [S*(X)], put[Z] = [k[g]h~1]. Then for anyg], we have

[Alglh ] = [*“[21x 7]
and
N[h[glh™t] = inf "N ([nig1h 1)}
Note that
N[hlglh™t] = 2" -*B(x, x, [g]) + 1/2,
becausel; (x, x) = 0. Take a positive integep such that 121 < 4. We have
N[higlh™1] < 2% .%o (x, x, [g]) + 1/2%

for any [g] from [$*(X)]; therefore, to prove the statement, it suffices to find N*,
s1,...,5. € &, andb > 0 such that iflg] € [S*(X)] and N;([g]) < b for all i < r, then
koB(x, x, [g]) < 1/2%o,

For any[g] € [S*(X)], we have

“B(x,x,[28]) = Y fu(x)-Ne(13)).

OtGAkO
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Consider

{a € At falx) # O} ={a1,..., 0}
(this set is finite by condition qb) from the definition of&). Sincel(h) < I(h), the

induction hypothesis implies that for eagh< s, there exist; € N*, 51, .. 5jr; €6,
and b; > 0 such that if[g] € & and Nj;([g]) < b; for all i <rj, then Ny, ([g]) <
1/(s - 2%0 - fo . (x)).

Put

{s1.....8:) = Jlsjin i <rj) and b=minb;.
i<s A

For eachg] € [S*(X)] such thatV; ([g]) < b for i < r, we have

©B(x,x,[8]) = Y fa)-Na(I8]) =) fu;(x)- No,(12])

O(EAkO J<s
1 1 1
<Zfolj(-x)~ 5 _22k0,fa_(x) =y - . -22](0 = %7
J<s /

as required. O

Before formulating the next statement, let us mention that each word of length 2 from
S*(X) admits the unique schenél, 2)}.
Statement 4. The set
U= {y e X: ﬁ([xaly]) < a}

is openinX foranyxp € X, s € G, anda < 1.

Proof. Note that ifN ([x *y]) < a, thenN([xy'y]) < 1 and
N(lxg 1) = N(Lxg y1) = inf{*N (Lxg *y1)
= igf{l/Zk + 25 di(x, )}

Take yo € U. We must show thalU contains an open neighborhodd of yo in X.
SinceN ([x tyol) < a < 1 andN ([xy “yo]) = 0, there existgo such that 12k 4- 2% x
dio(x0, ¥0) < a, i.e.,

o (x0, y0) < (a — 2740 /2%,
Find» > 0 for which

dio(x0, yo) < (a —2740)/20 — b
and put

V= {y € X: diy(yo, y) <b}.
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By condition G(c) from the definition of&, the pseudometrigy, is continuous onx;
therefore,V is open. Clearlyyo € V. For ally € V, we havedy,(xo, y) < (a — 27%0) /2ko,
whence

1/2%0 4 2% . gy (xo, y) = "N ([xg 'y]) <a and
N(lxg y1) <*oN(lxg y1) <a,

as required. O

6. Definition and properties of seminorms||-|| ¢

Let K be a nonempty finite subset of the famiy and K = {s1,...,s,}. For each
g € F(X), put

lgllk = { min{}"; <, Ni(lg, 0,]): o is ascheme fog} if g€ $*(X),
n otherwise.
Let us note some properties of the functipiik .

(1) Obviously,|le|lx = 0.

(2) If a,be F(X) andg = ab € F(X) (i.e., g is irreducible and obtained frorab
by successively deleting all pairs of letters of the foxfx —¢), then |g|lx <
lallx +15llk-

Indeed, ifa or b does not belong t6*(X), then|lal|x + ||b|lx = n. On the other hand,
lgllxk < n, becauseN ([h]) is never greater than 1; thereforgg|x < llallx + 2]k-
Suppose that, b € S*(X). Then, clearlyg € $*(X). Let o, ando;, be the schemes for
a andb, respectively, such that

lalk =) Ni(la,0al),  lIbllik =) Ni((b, o).
i<n i<n
For each < n, we have
ﬁi ([aba Uab]) < ﬁi ([aa Ua]) + ﬁi ([ba Ub])9
hence,
Y Ni(lab.ow]) < Y Ni(la.0al) + D Ni(1b. 1) = llallx + 5]k
i<n i<n i<n

Sinceg is obtained fromub by successively deleting pairs of the fonfix —¢, it follows
from Statement 1 that there exists a schemor g such thaiV; ([g, o,1) < N; ([ab, aup]);
this scheme is uniquely determined by the schepaeand the order of deleting the pairs
x¢x~¢. Therefore,

gk <Y Ni(lg, 0g]) < D Ni(lab, 0ap)) < llalix + Iblk .

i<n i<n

(3) If g € F(X), then|igllk =llg~ Ik
This follows from Statement 2 for € $*(X) and is obvious fog ¢ S*(X).
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(4) For anyh € F(X) anda > 0, there exist finiteL ¢ & andb > 0 such that if

g€ F(X), |lgllL <b,andu =hgh~t e F(X), then|lu| x <a.

Indeed, by Statement 3, there exist= {s/,...s,.} C & andb > 0 such that if[g] €
[S*(X)] and N/([g]) < b for i < r, thenN;([h[glh~1]) < a/n for i < n. Consider these
L andb. Without loss of generality, we will assume thiak 1 < n. Takeg € F(X) with
llgllz < b. We haveg € $*(X), because otherwisgg|, > 1 > b. Fix a scheme, for g
such that

gl =>_ N/(Ig. 05]):

i<r

clearly, ﬁi’([g, a,]) < b fori <r. Statement 1 implies that there exists a schegnéor
u = hgh~1 for which

Ni(lu, 0u1) < Ni([hlg. o510~ 1)).
SinceN/([g, o,1) < b fori <r, we haveN; ([h[g, 0,1h~1]) <a/n andN;([u,6,]) <a/n

fori < n. Therefore,

lull g < Zﬁi([u,au]) <n- g =aq.

i<n

Recall that a real-valued functign|| on an arbitrary grou is called aseminormif it
satisfies conditions (1)—(3) witl|| instead of||-| ¢ andG instead ofF (X). Seminorms
were introduced by Markov [3] (he called them norms). Thus,

N ={lllx: K is afinite subset of }

is a family of seminorms ot (X).
Using (1)-(4), we can easily verify that the family generates a group topology on
F(X); i.e., the family

B={Uk(a): K is afinite subset 0§, a > 0},
where
Uk (a)={g € F(X): lglk <a},

satisfies the axioms of an open neighborhood base at the identity element. Let us show, for
example, that for ank1, K» € [S]<™ anday, az > 0, there existL € [S]<N0 andb > 0
such that

Up(b) C Uk, (a1) NUk,(az).

Clearly,

Y Ns(lgl) = Y Ns(lgl) and

seKUK> seKj

> No(lgl) = Y No(1g)

seK1UK> seKp
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for any [g] € [S*(X)]; therefore,|gllx,uk, = llgllk, andligllkuk, > llgllk, for every
g € S(X). Because the cardinality &1 U K> is not less than each of the cardinalities of
K1 andK>, this inequality is also valid fog € F(X) \ S(X). Thereforel = K1 U K2 and
b = min{ay, az} meet the requirement.

Thus, the family\ generates a group topology @i(X). Each word fron{S*(X)] of
length 2 admits only one schenjél, 2)}; therefore, for all finiteK ¢ & andg € Fao(X),
we have

lellx =" Ns([e. (1 2}]),
seK

and Statement 4 implies that the topologies generated by the semifidrmen X are
coarser than the original topology &f.

7. Principal statements
The last paragraph of the preceding section implies our first principal statement.

Principal Statement 1. The family of seminorms

N= U {{||~||1<2 K is afinite subset a&(P)}: P is a partially ordered set and
S(P) is a family satisfying condition®-3°}

generates a group topolodgy on F(X) that is coarser than the topology &, (X).
Principal Statement 2 implies that coincides with the topology afy; (X).

Principal Statement 2. Let Y be a nonempty subspace ¥fsuch that any continuous
bounded pseudometric an can be extended to a continuous pseudometrickorand
|-Ily be a continuous seminorm any, (Y) with an upper bound of/8. Then there exist
a partially ordered setP, a family & satisfying the condition8°-3°, and ans € & such
that|iglly < ligllis) forall g € F(Y) C F(X).

Proof. As mentioned, by condition°3 the sought familyS (and the underlying ordered
setP) should have a fairly complex structure: to evert (A, F, D) € G we must assign
triples

5o = (Aa, Fu. Do) €6 forallae| JA=( A
keN
to everys, (as it belongs t@® and hence satisfies 3 triples
sup = (Aup. Fup. Dap) €6 forall pe| J Ay =] Aur.
keN

etc. Thus, the sought triptefrom & draws chains of other triples according to the scheme
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areJA azelJ Aq
5= (A, F, D) —— 54, = (Auy» Fay» Day) ——— Suyr

a3€U "4"‘1"‘2 ap EU Aalaz...an,]_
= <A¢x1a2» -Falolza Day)lz) e 5(110{2...0{,,

an+1€UAa1a2...an
% e,

= <A¢x1a2...a,, P falaz...a,, P Dam{g...o{,,)

This scheme shows only one chain drawnsbin reality, each triple draws a tree of other
triples:

o{]_GUA Sy OZZEUAal

5 Saqan - -
: ; : Do
: ﬁUA : X/Z\TUAQI
50/1... 50110/2
a3€UAa1a/2
5a1a/2a3 .

It is natural to label the triples (and their elements) by multiindices that indicate their
positions in the trees. For example, the multindexsdé empty and has zero length;
the tripless, with @ € | J.A that are assigned to (= (A, F, D)) have multiindicesx

of length one; for everyy; € | J A, the triplessy,, with o € | JA,, that are assigned

t0 5o, (= (Aay, Fay» Doy )) have multiindicesrio of length two; the tripleSy,q,o With

o € |J Ay, assigned tosy,q,, Wherear € |JA and a2 € | J Ay, have multiindices
a1 Of length three; etc. Thus, the multiindices of the triples draws bgve the form
aq02...a,, Wheren e N and

a1€UA=UAk,

keN

o2 € UAozl = U Aalk»

keN

oy € UAalaz...an,l = U Aviao...an_1k>
keN

and can be treated as points|(ify. .y P* (i.e., k-tuples of elements oP with variable
lengthk).

We will construct a familyS whose all elements (triples) are determined by the sought
triple s according to condition3as described above. The underlying partially ordered set
P and the se€ of multiindices (identified with tuples frorgJ, . P¥) will be constructed
by induction as the unions of certain sdtg; andCy ;, respectively, over alk,/ € N in
such a way thaPy  C Py andCy r C Cy; for k' < k and!’ < I. Simultaneously with
constructingP ; andCy ;, we will introduce partial orders on these sets such that the order
on Py (Cx;) is an extension of that oRy i (Cy 7)) wheneverPy  C Py (Cxr.;r C Cr ).
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Bearing this in mind, we will denote the orders on &I} ; by the same symbak and
the orders orfx ; by <. The order< will have the following special features, which are
important for our inductive construction:

if B € Pr;anda < B, thena € Py (%)
(this allows us to extend. from smaller sets to larger ones) and
for everya € P, the set off € P such tha < « is finite. (%)

The order or€ C |,y P" will be induced by the following natural ordef on( J, .y P".
Forai,...,om, B1,..., By € P, we define

(a1, ..., am) < (B1, ... Bu)

if there exists a strictly increasing function{l, ..., m} — {1, ..., n} such thaty < 8,)
forall k € {1, ..., m} (this, in particular, implies that < n).
We also define

(ala“-vamak)%(ﬁla""ﬁl’hl>

If k <land<al9"'9am> —\< <ﬂ19~~~9ﬂ}’l)'
We write

(ala"'vamak> < (ﬁla""ﬂl’l’l>
if (@1,...,0m,k)<{(B1,...,Bn, 1) and (a1,...,a;,, k) #{B1,...,Bu,1);
the relation(as, . .., o) < (B1, ..., By) is defined similarly.

Note that if P satisfies condition(xx), then the set of<-predecessors of any
(a1, ....,cm, k) € U, ey P" x Nisfinite.

Simultaneously with constructinB ; andCx;, we will construct families4, F, and
D labeled by multiindices frong, ; and some auxiliary families. Elements dfwill be
related toPy ; andCy ; by

Coo=|J{ea. ... an): @1 € Aty 02 € Agpiye .. 0 € Ay.y ik ):
ngla kla"'ak}’l <k}a

or equivalently,

Coo=|J{lea. ... an): (o1, ... o 1) €Chit. @ € Aay oy ym):
n<l, m< k},
and

Pri=|J{Aus cm: (ea.....an) €Crs m <k},

SinceCy; C Uizo(Pk,l_l)”, the order< on Py ;—1 determines the ordet onCy ;.

The construction involves induction dgnand/: first, we definePg, Co.1, Cn.0, and
P, _1 for n € N and then construcPy ; andCy ;41 for (k, 1) # (0, 0) assuming thafy ;
and Py p for k’ <k, I’ <1 are defined. Obviously, such induction is valid.
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Let us proceed to the construction.
PutPgo= {0}, Co1={(0)}, Cho=1{4},andP, _1=¢foralln eN.
Define a (continuous) pseudometsit onY by

p" (y1.y2) =max{4- ly§y;°lly: e==+1} foryi, y2€¥.

Since||-||y is bounded by 18, the pseudometria” is bounded by 12. Take a continuous
pseudometrip on X that extendg? and is bounded by/P.

Choose an arbitrary pointg € Y. Put Up = X, Ag = {0}, do =0 on X2, yp =
{Uo}, Mo = {x0}, fo=1onX, and Fo = {fo}. Note that sincep is bounded by 12,
the coverny is a refinement of the covéB,, (x, 1): x € X}.

Suppose that,l € N, (k,1) # (0,0), Cr,; with the orderx is defined, andP;’ ;» with
the order< are defined for all pairgk’,!’) ¢ N x (NU {—1}) such that’ < k and!’ <!

(in particular, Py ;—1 is defined). Suppose also that everg P ;1 has a finite number
of <-predecessors; then every elementjin x N has a finite number ok-predecessors.
Take (a1, ...,ay) € Cry andm < k. If (a1, ..., a,, m) has no predecessor with respect
to %, thenn andm are necessarily zero, i.€q1,...,a,,m) = (0) = (¢, 0); we have
already defined the objecis Ao, do, yo, Mo and Fp that correspond to thig: + 1)-
tuple. Let{aa, ..., a,, m) have precisely predecessors, where- 0. Suppose that for all
(B1,y .-y Bs, 1) € Cry x {0, ..., k} with less tharnr predecessors, we have already defined
the objectsog, .5, Ap,...s,+ (@long with the extension of to this set)dg,. g+ Vpy...8:1»
Mg, .p,:, andFg, g, satisfying the following conditions:

0°° (1) pg,...s, is a continuous pseudometric ahbounded by 12;

(2) Ag,..p, is a nonempty set, and every its element has a finite numbet- of
predecessors;

(3) dg,..p,: is a continuous pseudometric af

(4) vp,..pe =1{Ug: B € Ap,. g1} is acover ofX thatis open and locally finite with
respect to the topology generateddyy g, and indexed by the elements of
Ap,. g, (this means, in particular, thatdf # g, thenU, andUg are different
elements of/ even if they coincide as sets);

(5) Mg, p;:=1{xp: B Ap, p:}isasubsetok suchthatg € Ug for anyg and
xg € Y whenevelUg NY #;

(6) Fp,.p:=1fp: B € Ap,. g} is a family of continuous nonnegative-valued
functions onX such that supgg = Uy for eachg.

1°° If (61,...,0,,q) is an immediate predecessor @i, ..., s, ¢) in Cr; x N with
respect to the ordeg, then
1)

A6y..6pq QABy_pits
(2) foranyx from X and6 from Ag,_g,4,
o)=Y fpx)
BeAp,...ps1(0)

(we remind the reader that(9) stands fofa € A: 0 < «a});
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(3) for anyx andy from X,

2. del..ﬂpq (-x’ y) < dﬂlmﬂxt('x’ y)’
(4) forany6 € Ap,. 0,4,

U {Up: BeApy.p:(0)) =Us.
2°° (1) If {xp,, ..., x5} C Y, then the restriction obg,. g, to Y2 is

Ppy..p, (V1. ¥2)
= max{4- ||xgi .. .x;‘:_yiyz_sng“ .. .x/;fllly: €, 8 = :I:l};

otherwise g, g, = 0 onX?;
(2) foranyx € X,

Y. =L

BEAB, .. st

(3) foranyx,ye X,
2 > £ = frO)| <dpypor(x, 3);

BeApy. st
(4) vp,..p,: refines the cover

{Bop, s (2, 1/2): x € X}.

3°If (61,....0p,q9) € Cki, g <k, (61,...,0,,q) has less tham predecessors in
Ck, x N with respect to, and (61, ...,0,,q) # (B1,.... Bs. 1), thenAgl._.gpq n
Ap,. gt = ¥; if in addition, there exist e Avy..0,q and g € Ag,.g,: such that
0 < B, then(ba,...,0,,q) < (P1,..., s, 1).
Let us define similar objects foiB, ..., Bs,t) = (@1, ..., a,, m) in such a way that
conditions 0°-2°° be fulfilled.

We start with introducing one more notation: put
Predas, ..., a,, m)
= {(ﬁla M) ﬂSvt) € Ck,l X N
{(B1,...,Bs,t) is an immediate predecessor{af, ..., «,, m)
in Cy,; x N with respect tox }.
Choose a continuous pseudomefsig. o, on X satisfying condition 2°(1) and bounded
by 1/2. Refine the cover
1={Bp, o (x,1/2"): x € X}

of X to a coven open and locally finite with respect to the topology generateg,py., -
Let us indexv using an arbitrary set: v ={V,: a € A}.

Each(g1,..., Bs,t) € Predas, ..., a,, m) has no more tham — 1 predecessors and
belongs ta’y; x {0, ..., k}; for all these sets the required objects are already defined. Take
(B1,...,Bs,t) e Preday, ..., a,,m)andp € Ag, g, and put
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Ag=laecA: V,NUs#0} and
Aal...anm[ﬁ] = {(a7 ﬂ)a (alv "'7an7m): ace Aﬁ} - A S {ﬂ} X {(ala "'7al’lvm>}'
Foranya = (a, B), (a1, ..., 0y, m) € Aal...o{nm[ﬁ]a putlU, =V, N U/S- The fam”y

Val...anm[ﬂ] = {Ua: a € Aal...anm[ﬂ]}

forms a cover of the subspatg of X, consists of sets open with respect to the topology
7’ generated orX by the pseudometric méds, . g,1. Po;..a, ), @nd is locally finite with
respect to the same topology (this follows from the definition ahd condition €°(4)).
Take a partition of unity o/g subordinated tgy, ..., [8], i.€., a family
{ga: a e Aal...anm[ﬁ]}

of nonnegative-valued functions drg continuous with respect t6” [ Ug and such that
suppgy = Uy fora € Ay, ..a,m[B] and

> =1
aer{lmo{nm [B]

for eachx € Ug (the sum is defined, becaugg, . «,»[p] is locally finite). Such a family
can be constructed, for example, by settingx) = g4 (x)/ Y g (x), Whereg, (x) is the
distance betweem and X \ U, with respect to the pseudometric ntax,.. g,:, Lay...cn)-
Foreachy € Ay, o, m[B] @ndx € X, put

_ 0 if x ¢ Ug,
Ju(¥) = {go,(x) - fa(x) if x € Ug.

We have

DYoo L= Y galx) fpx) = fp(x)

aEAal...anm[ﬂ] aEAal...anm[ﬂ]

for all x from X.
Put

Aarcom = {{Aar..com[B: B € Apy._poi}:
(B1.....Bs.1) €Preday, ..., oy, m)},
Vor.owm = {(Var..aum Bl B € Apy_py1}:

(B1,....Bs.t) €Preda, ..., o, m)}
={Uy: a € Aozl...oz,,m}a
Fotl...otnm ={foa: @€ Aal...anm}~

For eachy € Ay, a,m, fiX x4 € Uy such thaty, € Y whenevetU, intersects and put

Mozl...a,,m ={xq: x € Aozl...a,,m}-
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Finally, put
dotl...anm(x, y)
- max{ P @, 20 3 [ fal) = a3

€Ay ..anm

’

max{2-dg, gt (B1....,Bs. 1) € Predea, ..., an,m)}}

forall x, y € X.

The desired objects are constructed. It remains to extend the refatiwer Ay, ¢, m-
Let(B1,...,Bs.t) €Cry, t <k, {B1,..., Bs, ) have no more than predecessors, the set
Ag,..p,: be already defined; € Ay, o,m, aNdB € Ap, . p,:. We set

(i) B <aifandonlyifeitherf =« orthere existo, ..., 0,,q) € Preday, ..., oy, m)
ando € Ag,. 9,4 suchthap <0 anda € Ay, .. .a,ml0];

(i) a < Bifandonlyifa=g.

Note that by construction, the setg, .4, »[0'] andAq, ..q,»[0"] are disjoint if¢’ £ 6.
Therefore, for every € Aq,..o,m, there exists exactly o such thaix € Aq, ..., ml[0];
this 6 belongs to SOM&Ay;..0,q: where (01, ...,6,,q) € Preday, ..., a,, m). Because
(61,...,0p,q) has less tham <-predecessors, by the induction hypothesis (condition
0°°(2)), the number of<-predecessors df is finite; therefore, the number of-pre-
decessors af is also finite.

The construction immediately implies the fulfilment of condition®-2°° with
(B1,..-,Bs,t) = {1, ..., a,, m). It directly follows from the definition o& on the sets
Aq,..a,m that after we constructy, . o,m for all (o, ..., a,, m) € Cr,; x N with no more
thanr predecessors, conditioi®with (a1, ..., a,, m) instead of(B1, ..., Bs, t) andr + 1
instead of- will also be fulfilled.

After Ag,..o,m are constructed for alky, . .., a,) € Cr; andm < k, put

Pk,l = U {Aal...o{nm: (a1, ...,0,) € Ck,l» m < k}

and

Cri+1= U o, .. aug1): (e, .. ) €Criy 0141 € Aay.apm ) m <k} UCry.

The construction is completed.

Put P = Uk,, Py, andC = Uk,, Cr. The partially ordered set®; ; satisfy condi-
tion (x) by construction; their orders. extend each other, anBl is also a partially or-
dered set. PuB = {sq,..q,: (@1,...,a,) € C}. Conditions 0°-3°° and the transitivity of
the relations< and< ensure the fulfillment of conditions82° from Section 2. Note that
SBy..Bs < Say.a, fandonlyif(By, ..., Bs) < {a1,...,a,). Thus, 3 also holds. Applying
the following lemma completes the proof of Principal Statement 2.

Lemma. If n € N, (oq,...,a,) € Cis such thatx,,, ..., xy, belong toY, e1,...,8, =
+1,andg € F*(Y), then

& € —& —&
”xai coe X, 8%, " Xy l”Y < ||g||{5a1 on
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Proof. Let us apply induction o#(g). For g = e, the assertion of the lemma is obvious.
Suppose thdt(g) > 0 and the lemma is valid for shorter words. gt be g endowed with
a scheme such thag”{ﬁal._an} = No,l_._o,n ([g])- There are two possibilities:

(A) The word[g] is factorable, i.e.[g] = [g1]...[gr], wherek > 2 and all[g;] are
nonfactorable. Sincg is irreducible andg = g1...g, all g; are also irreducible and,
thereforeg; € F*(Y). In addition,/(g;) < I(g). The induction hypothesis can be applied.
We have

&1 £ —& —81
[xes - xe gxg,™ - Iy
— & & —& & & —é&, *8
= ”xai...xa';glxan ...xall Ky X kX 1”)/
3 3 —8 Nz
<O xEr i gixg L xgt ||Y D o gillisuy e} < D Ny (I8i1)
i<k i<k i<k

=Noy..a, ([8]) = & ll{say....an}-
(B) The word[g] is nonfactorable, i.e[¢g] = [x*[g]y¢] (andi(g) < I(g)). We have
N, (18]) =inf{Ny_a (I81)}
Let us show that for eache N,
Noy..a ([81) > |33 - x5 gxg " x|y
Clearly, this inequality holds Whé?z}\lal._un ([g]) = 1. Now suppose that
Ny (18]) < 1
(this, in particular, implies that > 0). We have
Ny, (12])
=2 T minf ). e} Ny (8) F o +2 - day k5, )

aEAotlmotnk

<1
therefore,

doy.opk (X, ¥) <1/28 <1 and

> min{ fu(x). fu(0} > Zfam - Z | fu ) = fa ()|

aEAotlmotnk
DIOE >1
* >3
(by conditions 2(a) and (b) from the definition of5). Let us denote the element of the
finite set

{@ € Agy.apk: min{ fu(x), fu(y)} # 0}

that minimizesNVy, ., «([§]) @Samin. Fork > 0, we have
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kNal...a,, ([g])

>2. > min{fa@). fu} " Noag...cnomn([8]) +

€Ay . .ank

2k
2 Nozl...ol,,amin ([g]) + g

Sinceg € S(Y) and g = x®gy~ ¢, we havex,y € Y and g € F*(Y). The relation
MIiN{ funin (X), famn ()} # 0 and 06°(6) imply that suppfy,i, = U, @Ndx, y € Ugp, €
Yar..ank- Therefore, Uy, intersectsY. It follows from condition 0°(5) that xy,,, €
Uq,in N Y. By the induction hypothesis,

N2 ~ £1 En € ~ —& _—&n 781
Nal"'a”amin([g]) 2 ||x011 xanxolmlng amm‘xa,, ||Y’

and by conditions 2(1) and (4), since, y, xmin € Un, € Yar...anks

2. ||)c81 .. .x;:'lxsx;rﬁinx;rf" Xt I, < y < <1725,
2. ”)C xérrlt 2m|ny x : xa_lgl ”Y = 1/2k

Thus,

"Noy...an (181)

> ” €1 &n € ~ —& _—&p —81 ”
Z Xy -+ Xay *amin8 XaminYan Y
ey |
+ ||)C x .X xamlnxan e al Y
s,, 3 —&1 ”
+ ”)C xan Olmmy x : xal Y

&1
> ||xa1...xanx gy~ xan

as required. O

Principal Statement 2 immediately follows from the lemma witk= 0 (the words
Xeb . xgh andxg, ™ ... xe, t are then empty, ang,, , coincides withs = sy) and the

definition of||-||(sy: for g € F(Y) \ F*(Y), ligllis} is equal to the cardinality df}, i.e., 1,
while | g|ly has an upper bound of&. O

Remark. If ¥ = X and dimX = 0, then all pseudometrics froM and functions fromF

in the proof of Principal Statement 2 can be chosen rational-valued. Using Lemma 10, it
is easy to verify by induction on word lengths that the functiéris then also rational-
valued. Therefore, the seminoif|s; is rational-valued, too. Thus, if ditki = O, then the
topology of Fj; (X) is generated by a family of rational-valued seminorms.

8. Main theorems

Theorem 1. Let X be a completely regula¥; space andy be its subspace. Then the
topological subgroup of; (X) generated by is the free topological grouy, (Y) if
and only if each bounded continuous pseudometri¢’aan be extended to a continuous
pseudometric OIX .
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Proof. Sufficiency was proved by Pestov [5]. To prove necessity, we need the following
Markov theorem [3]:

Theorem. Let G be a topological group and’ be an open neighborhood of the identity
element inG. Then there exists a continuous semingjfrh on G such that the set
{x € X: ||x|| <1} is contained inU.

Clearly, we can replace 1 by/& and assume thdt| has an upper bound of/& in
Markov's theorem. Applying Principal Statements 1 and 2 completes the proof.

Corollary 1 (see also papers [7] by this authdf)ja completely regulaily spaceX is
Dieudonné complete, then the grofpy (X) is Weil complete.

Proof. Since X is Dieudonné complete, it can be embedded into a proguat metric

spaces as a closed subspace in such a way that every bounded continuous pseudometric
on X can be extended ovét; therefore, Theorem 1 can be applied. It says MatX) is

a topological subgroup afy; (P); obviously, F;(X) is closed inFy, (P). Uspenski[9]

proved that the free topological group of a product of metric spaces is Weil complete.
Therefore,Fy; (P) and its closed subgrouy, (X) are Weil complete. O

Pestov proved that the Dieudonné completenessXofs also necessary for the
completeness of 'y (X) (see the proof of Theorem 1 in [5]). This result and Corollary 1
imply the equivalence of the Dieudonné completeness of a completely régudpaceX
and the Weil completeness of its free topological group.

Corollary 2. Any Ty topological groupG is a quotient group of a Weil complet®
topological group.

Proof. Any completely regularT; space is an image of a paracompact space under
a quotient map. LetX be a paracompact space apidbe a quotient map oX onto

G. Consider an extension of to a continuous homomorphisifi: Fj;(X) — G. This
homomorphismis open, becaugés quotient. Therefore; is a quotient group of, (X).

The spac« is Dieudonné complete as a paracompact space. According to Corollary 1, the
group Fuy (X) is Weil complete. O

Theorem 2 (see also [7])If dimX = 0, thenind Fy;(X) = 0.

This immediately follows from the remark to Principal Statement 2.
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