

brought to you by to provided by Elsevier - Publisher Co



Topology and its Applications 101 (2000) 181-212

www.elsevier.com/locate/topol

# Free topological groups of spaces and their subspaces

Ol'ga V. Sipacheva<sup>1</sup>

Department of General Topology and Geometry, Mechanics and Mathematics Faculty, Moscow State University, Moscow 119899, Russia

Received 19 April 1993; received in revised form 30 June 1998

#### Abstract

We prove that if X is a Tychonoff topological space, Y a subspace of X, and every bounded continuous pseudometric on Y can be extended to a continuous pseudometric on X, then the free topological group  $F_M(Y)$  coincides with the topological subgroup of  $F_M(X)$  generated by Y. For this purpose, a new description for the topology of a free topological group in terms of continuous pseudometrics and group seminorms is given. It follows from what has been shown by Uspenskiï that this result implies the Weil completeness of  $F_M(X)$  for any Dieudonné complete X. It is also proved that if dim X = 0, then ind  $F_M(X) = 0$ . © 2000 Elsevier Science B.V. All rights reserved.

*Keywords:* Free topological group; Pseudometric; Topological subgroup; Seminorm; *P*-embedded subspace; Weil completeness; Dieudonné completeness

AMS classification: 22A05; 54B05; 54D30

The object we study in this paper is the free topological group in the sense of Markov, introduced by Markov in [2]. The *free topological group*  $F_M(X)$  of a Tychonoff space X is the free algebraic group of the set X with the strongest group topology that induces the original topology on X, or, equivalently, such that any continuous mapping of X to an arbitrary topological group G can be extended to a continuous homomorphism of  $F_M(X)$  to G. The reason why these groups are important is that any topological group G algebraically generated by its subspace homeomorphic to X is a continuous homomorphic image of the free topological group of X; moreover, if X is a continuous image of Y, then G is a continuous homomorphic image of  $F_M(Y)$ .

Let X be a Tychonoff space, Y a subspace of X,  $F_M(X)$  the free topological group of X, and  $F_M(Y|X)$  the topological subgroup of  $F_M(X)$  generated by Y. This paper is concerned with one of the most fundamental problems in the theory of free topological groups:

<sup>&</sup>lt;sup>1</sup> E-mail: sipa@sipa.mccme.ru.

<sup>0166-8641/00/</sup>\$ – see front matter © 2000 Elsevier Science B.V. All rights reserved. PII: S0166-8641(98)00123-0

When does the topology of  $F_M(Y|X)$  coincide with the topology of the free group  $F_M(Y)$ ? Apparently, the problem was first tackled in 1948 by Samuel [6]; it has been extensively studied since then (see, e.g., [1,4,8]). Samuel proved that if X is a Tychonoff space and  $\mu X$  its Dieudonné completion, then  $F_M(X|\mu X) = F_M(X)$ . An essential advancement was made by Pestov [5]. First, he proved that if  $Y \subset X$  and  $F_M(Y|X)$  is the free topological group of Y, then the restriction of the universal uniformity of X to Y is the universal uniformity of Y, or equivalently, every bounded continuous pseudometric on Y can be extended to a continuous pseudometric on X. Secondly, he showed that for Y dense in X the converse is true. The latter result has naturally brought up the question if the condition of density of Y in X is necessary. This work answers the question in the negative. Thus, a complete description of all subspaces Y of a space X such that  $F_M(Y|X)$  coincides with  $F_M(Y)$  ensues. The description is:

Let X be a completely regular  $T_1$  space and  $Y \subset X$ . The free topological group  $F_M(Y)$  coincides with  $F_M(Y|X)$  if and only if every bounded continuous pseudometric on Y can be extended to a continuous pseudometric on X.

The scheme of the proof is as follows. First, we define a family  $\mathfrak{N}$  of continuous seminorms on  $F_M(X)$  using a series of auxiliary constructions. Next, we prove that this family generates the topology of  $F_M(X)$ , i.e., for every open neighborhood U of the identity in  $F_M(X)$  there exist a seminorm  $\|\cdot\|$  in  $\mathfrak{N}$  and a > 0 such that

$$\left\{g \in F_M(X): \|g\| < a\right\} \subset U.$$

Finally, for an arbitrary bounded continuous seminorm  $\|\cdot\|_Y$  on  $F_M(Y)$ , we construct a continuous seminorm  $\|\cdot\| \in \mathfrak{N}$  (on  $F_M(X)$ ) such that  $\|h\|_Y \leq \|h\|$  for each h in  $F_M(Y)$ . This gives the desired statement, because the family of all continuous seminorms generates the topology of  $F_M(Y)$ .

#### 0. Terminology and notation

Let *X* be a Tychonoff space, one and the same throughout the paper.

The letters *x*, *y*, and *z* refer to elements of *X*; *k*, *l*, *m*, *n*, *r*, *s*, and *t* denote nonnegative integers;  $\varepsilon$  and  $\delta$  take values 1 and -1;  $\mathbb{N}^+$  stands for the set of all positive integers, and  $\mathbb{N}$  for the set of all nonnegative integers.

For a pseudometric p on X, a > 0, and  $x \in X$ ,

 $B_p(x, a) = \{ y \in X: p(x, y) < a \}$ 

is the ball of radius *a* with the center at *x* relative to *p*.

The support of a function f on X is the set supp  $f = \{x \in X : f(x) \neq 0\}$ .

The semigroup of all (reduced and nonreduced) words in the alphabet  $X \oplus X^{-1}$  ( $X^{-1}$  is a homeomorphic copy of X) is denoted as S(X), and

$$S^*(X) = \left\{ x_1^{\varepsilon_1} \dots x_{2n}^{\varepsilon_{2n}} \in S(X) \colon n \in \mathbb{N}, \ \sum_{i=1}^{2n} \varepsilon_i = 0 \right\}.$$

The free algebraic group of X, i.e., the set of all irreducible words from S(X), is denoted by F(X), and

$$F^*(X) = \left\{ x_1^{\varepsilon_1} \dots x_{2n}^{\varepsilon_{2n}} \in F(X) \colon n \in \mathbb{N}, \ \sum_{i=1}^{2n} \varepsilon_i = 0 \right\};$$

 $F_M(X)$  is the free topological group of X in the sense of Markov.

The symbol *e* stands for the empty word, which is the identity element of S(X) (and F(X)).

For  $g, h \in S(X)$ ,  $g \equiv h$  means that the words g and h are equal as elements of the semigroup S(X), i.e., they consist of the same number of letters and their corresponding letters coincide. By g = h we denote the equality of the reduced forms of these words. When g and h are treated as elements of the semigroup S(X) or its subsemigroup  $S^*(X)$ , gh denotes the semigroup product of g and h, i.e., the word obtained by successively writing g and h. When we speak about (irreducible) words g and h as elements of F(X) or its subgroup  $F^*(X)$ , the same combination denotes the usual group product of g and h. Thus, when we write  $x_1^{\varepsilon_1} \dots x_n^{\varepsilon_n} \in F(X)$ , we mean the reduced form of the word  $x_1^{\varepsilon_1} \dots x_n^{\varepsilon_n}$ , and when we write  $x_1^{\varepsilon_1} \dots x_n^{\varepsilon_n} \in S(X)$ , we mean the sequence of letters  $x_i^{\varepsilon_i}$ . For  $g \equiv x_1^{\varepsilon_1} \dots x_n^{\varepsilon_n} \in S(X)$ ,  $g^{-1}$  stands for the word  $x_n^{-\varepsilon_n} \dots x_1^{-\varepsilon_1}$ .

Let  $g \equiv x_1^{\varepsilon_1} \dots x_n^{\varepsilon_n} \in S(X)$ . The number *n* is the *length* l(g) of the word *g*. We use the standard notation  $F_n(X)$  for the set of all words in F(X) whose length does not exceed *n*.

### 1. Schemes of words

Let 
$$g \equiv x_1^{\varepsilon_1} \dots x_{2n}^{\varepsilon_{2n}} \in S^*(X)$$
, and let  
 $\langle i_1, j_1 \rangle, \dots, \langle i_n, j_n \rangle$ 

be a partition of the set  $\{1, ..., 2n\}$  into pairs such that  $i_s < j_s$ ,  $\varepsilon_{i_s} = -\varepsilon_{j_s}$ , and for all  $s, t \leq n$ , either the segments  $[i_s, j_s], [i_t, j_t]$  are disjoint, or one of them contains the other. We say that the set

$$\boldsymbol{\sigma} = \left\{ \langle i_s, \, j_s \rangle \colon 1 \leqslant s \leqslant n \right\}$$

is a *scheme* for g. The word g together with a fixed scheme  $\sigma$  is denoted as  $[g, \sigma]$  or simply [g]. The empty word e admits only one scheme, the empty set.

Put

$$S^*(X) = \{[g, \sigma]: g \in S^*(X), \sigma \text{ is a scheme for } g\}$$

We retain the term "words" for elements of  $[S^*(X)]$  as well as  $S^*(X)$ .

The symbol  $\sigma_g$  always denotes a scheme for g, and it is always implied that  $[g] = [g, \sigma_g]$ . Let  $[a], [b] \in [S^*(X)]$  and l(a) = n. Put

$$\boldsymbol{\sigma}_{ab} = \boldsymbol{\sigma}_a \cup \left\{ \langle i+n, j+n \rangle \colon \langle i, j \rangle \in \boldsymbol{\sigma}_b \right\}.$$

Then  $\sigma_{ab}$  is a scheme for the word ab. We write [g] = [a][b] when  $g \equiv ab$  and the scheme  $\sigma_g$  coincides with  $\sigma_{ab}$ .

Let  $[g] \in [S^*(X)]$  and l(g) = n. Put

$$\boldsymbol{\sigma}_{g^{-1}} = \left\{ \langle n - j + 1, n - i + 1 \rangle \colon \langle i, j \rangle \in \boldsymbol{\sigma}_g \right\}$$

Then  $\sigma_{g^{-1}}$  is a scheme for  $g^{-1}$ . We write  $[g^{-1}]$  to denote the word  $g^{-1}$  with the scheme  $\sigma_{g^{-1}}$ .

Let  $g \in [S^*(X)]$ , l(g) = n, and  $\sigma_g$  be a scheme for g. We call the word  $[g, \sigma_g]$ nonfactorable if g is nonempty (i.e.,  $n \ge 2$ ) and  $\langle 1, n \rangle \in \sigma_g$ . For  $[g], [\tilde{g}] \in [S^*(X)]$ , the relation  $[g] = [x^{\varepsilon}[\tilde{g}]y^{-\varepsilon}]$  means that  $g \equiv x^{\varepsilon}\tilde{g}y^{-\varepsilon}$  and

$$\boldsymbol{\sigma}_{g} = \big\{ \langle 1, l(g) \rangle \big\} \cup \big\{ \langle i+1, j+1 \rangle \colon (i, j) \in \boldsymbol{\sigma}_{\tilde{g}} \big\}.$$

Clearly, a word is nonfactorable if and only if it has the form  $[x^{\varepsilon}[\tilde{g}]y^{-\varepsilon}]$ .

**Remark 1.** Every nonempty  $[g] \in [S^*(X)]$  can be represented as a product  $[g_1][g_2]$ , where  $g_1$  is an arbitrary (possibly, empty) and  $[g_2]$  a nonfactorable word from  $[S^*(X)]$ , and this representation is unique. Indeed, for  $g \equiv x_1^{\varepsilon_1} \dots x_n^{\varepsilon_n}$ , find the pair  $\langle k, n \rangle \in \sigma_g$  that contains n and put

$$g_1 \equiv x_1^{\varepsilon_1} \dots x_{k-1}^{\varepsilon_{k-1}}, \qquad g_2 \equiv x_k^{\varepsilon_k} \dots x_n^{\varepsilon_n}, \\ \sigma_{g_1} = \{ \langle i, j \rangle \in \sigma_g \colon j < k \}, \quad \sigma_{g_2} = \{ \langle i - k + 1, j - k + 1 \rangle \colon \langle i, j \rangle \in \sigma_g, \ i \ge k \}.$$

Let  $h \equiv x_1^{\varepsilon_1} \dots x_n^{\varepsilon_n} \in S(X)$  and  $[g], [\tilde{g}] \in [S^*(X)]$ . We write  $[g] = [h[\tilde{g}]h^{-1}]$  if  $[g] = [x_1^{\varepsilon_1} [x_2^{\varepsilon_2} [\dots [x_n^{\varepsilon_n} [\tilde{g}] x_n^{-\varepsilon_n}] \dots ]x_2^{-\varepsilon_2} ]x_1^{-\varepsilon_1}].$ 

We call a word [g] *factorable* if it is nonempty and not nonfactorable. Clearly, [g] is factorable if and only if there exist  $n \ge 2$  and nonfactorable words  $[g_i]$ , i = 1, ..., n such that  $[g] = [g_1] \dots [g_n]$ , and this representation of [g] is unique.

Let  $[g] \in [S^*(X)]$ ,  $g \equiv ax^{\varepsilon}x^{-\varepsilon}b$  for some  $a, b \in S(X)$ ,  $\hat{g} \equiv ab$ , and l(a) = k - 1. Clearly,  $\hat{g} \in S^*(X)$ . Put

$$\begin{aligned} \boldsymbol{\sigma}_{\hat{g}} &= \left\{ \langle i, j \rangle \in \boldsymbol{\sigma}_{g} \colon j < k \right\} \\ &\cup \left\{ \langle i, j - 2 \rangle \colon \langle i, j \rangle \in \boldsymbol{\sigma}_{g}, \ i < k, \ j > k + 1 \right\} \\ &\cup \left\{ \langle i - 2, j - 2 \rangle \colon \langle i, j \rangle \in \boldsymbol{\sigma}_{g}, \ i > k + 1 \right\} \\ &\cup \left\{ \langle i, j - 2 \rangle \colon \langle i, k \rangle \in \boldsymbol{\sigma}_{g}, \ \langle k + 1, j \rangle \in \boldsymbol{\sigma}_{g} \right\}. \end{aligned}$$

Note that if  $\langle k, k+1 \rangle \in \sigma_g$ , then the last term in the union is empty.

It is readily verified that  $\sigma_{\hat{g}}$  is a scheme for the word  $\hat{g}$ . We write  $[\hat{g}]$  to denote  $\hat{g}$  with the scheme  $\sigma_{\hat{g}}$ .

### 2. Definition of family S

Let  $\langle \boldsymbol{P}, \leqslant \rangle$  be a partially ordered set.

Define a relation  $\triangleleft$  on the family of all nonempty subsets in *P* by the rule:

 $A \triangleleft B$  if for every  $\alpha \in A$  there exists a  $\beta \in B$  such that  $\alpha \leq \beta$ .

Obviously,  $\triangleleft$  is transitive.

For  $\alpha \in \mathbf{P}$  and  $B \subset \mathbf{P}$ , we put

$$B(\alpha) = \{\beta \in B \colon \alpha \leq \beta\}.$$

**Remark 2.** If *A* is a nonempty antichain in *P* and  $B \subset P$ , then the family  $\{B(\alpha) : \alpha \in A\}$  is disjoint.

Fix a partially ordered set  $\langle \boldsymbol{P}, \leqslant \rangle$ .

Let A be a collection of nonempty subsets of P labeled by nonnegative integers:

 $\mathcal{A} = \{A_k \colon k \in \mathbb{N}\}.$ 

Consider a set  $\mathfrak{S} = \mathfrak{S}(\mathbf{P})$  of triples  $\mathfrak{s} = \langle \mathcal{A}, \mathcal{F}, \mathcal{D} \rangle$  satisfying the following conditions: 0°. (a)

 $\mathcal{A} = \{A_k \colon k \in \mathbb{N}\},\$ 

where  $A_k$  are disjoint nonempty antichains in P;

(b)

 $\mathcal{F} = \{F_k \colon k \in \mathbb{N}\}$ 

is a collection of families

 $F_k = \{ f_\alpha \colon \alpha \in A_k \}$ 

of continuous nonnegative-valued functions on *X* such that for every  $x \in X$  and  $k \in \mathbb{N}$ , the set  $\{\alpha \in A_k: f_{\alpha}(x) \neq 0\}$  is finite;

(c)

 $\mathcal{D} = \{d_k: k \in \mathbb{N}\}$ 

is a family of continuous pseudometrics on X.

When we refer to an element  $\mathfrak{s}$  of the family  $\mathfrak{S}$ , we always imply that  $\mathfrak{s} = \langle \mathcal{A}, \mathcal{F}, \mathcal{D} \rangle$ and the sets  $\mathcal{A}, \mathcal{F}$ , and  $\mathcal{D}$  have the form specified in condition 0°. Primed, indexed, or otherwise marked  $\mathcal{A}, \mathcal{F}, \mathcal{D}, \mathcal{A}, \mathcal{F}, f$ , and *d* correspond to the similarly marked  $\mathfrak{s}$ . For example,  $\mathfrak{s}' = \langle \mathcal{A}', \mathcal{F}', \mathcal{D}' \rangle$ ,  $\mathcal{A}' = \{ A'_k : k \in \mathbb{N} \}$ , etc.

- 1°. If k < m, then
  - (a)  $A_k \triangleleft A_m$ ;
  - (b) for any  $x \in X$  and  $\alpha \in A_k$ ,

$$f_{\alpha}(x) \leqslant \sum_{\beta \in A_m(\alpha)} f_{\beta}(x);$$

(c) for any  $x, y \in X$ ,

$$2 \cdot d_k(x, y) \leqslant d_m(x, y).$$

 $2^{\circ}$ . For all *x*, *y*, and *k*,

(a)

$$\sum_{\alpha \in A_k} f_\alpha(x) \ge 1;$$

(b)

$$2 \cdot \sum_{\alpha \in A_k} \left| f_{\alpha}(x) - f_{\alpha}(y) \right| \leq d_k(x, y).$$

To formulate the last condition on the family  $\mathfrak{S}$ , we need to order its elements. Let  $\mathfrak{s}, \mathfrak{s}' \in \mathfrak{S}$ . We write  $\mathfrak{s} < \mathfrak{s}'$  if for any  $k \in \mathbb{N}$ , the following relations hold: (1)

$$A_k \triangleleft A'_k;$$

(2) for any  $x \in X$  and  $\alpha \in A_k$ ,

$$f_{\alpha}(x) \leqslant \sum_{\beta \in A'_k(\alpha)} f'_{\beta}(x);$$

(3) for any  $x, y \in X$ ,

$$2 \cdot d_k(x, y) \leqslant d'_k(x, y).$$

3°. To every  $\mathfrak{s} = \langle \mathcal{A}, \mathcal{F}, \mathcal{D} \rangle$ , there is assigned a family

$$\left\{\mathfrak{s}_{\alpha}=\langle \mathcal{A}_{\alpha},\mathcal{F}_{\alpha},\mathcal{D}_{\alpha}\rangle\in\mathfrak{S}:\,\alpha\in\bigcup\mathcal{A}=\bigcup_{k\in\mathbb{N}}A_{k}\right\}$$

such that  $\mathfrak{s}_{\alpha} > \mathfrak{s}$  for all  $\alpha \in \bigcup \mathcal{A}$  and if  $\mathfrak{s}, \mathfrak{s}' \in \mathfrak{S}, \ \alpha \in \bigcup \mathcal{A}, \ \alpha' \in \bigcup \mathcal{A}', \ \mathfrak{s} \leq \mathfrak{s}'$ , and  $\alpha \leq \alpha'$ , then  $\mathfrak{s}_{\alpha} < \mathfrak{s}'_{\alpha'}$ .

Note that condition  $3^{\circ}$  implies the presence of a complex structure on  $\mathfrak{S}$ : since the triples  $\mathfrak{s}_{\alpha}$  assigned to  $\mathfrak{s}$  belong to  $\mathfrak{S}$ , they are also assigned certain triples from  $\mathfrak{S}$ , and so on. This structure is discussed in more detail in the proof of Principal Statement 2; now we only need the formal definition given above. Note also that not all partially ordered sets P admit a nonempty family  $\mathfrak{S}$  with the properties  $0^{\circ}-3^{\circ}$ : for example,  $0^{\circ}(a)$  implies that P should be infinite and  $3^{\circ}$  that  $P(\alpha)$  should be infinite for infinitely many  $\alpha \in P$ ; moreover,  $3^{\circ}$  implies that P should contain an infinite number of infinite chains. In Sections 3–6, we assume that  $\mathfrak{S}$  is a fixed nonempty family defined for a suitable ordered set P and satisfying conditions  $0^{\circ}-3^{\circ}$ .

## **3. Definition of functions** N and $\overline{N}$

Take  $\mathfrak{s} \in \mathfrak{S}$ . Let us construct functions  $N_{\mathfrak{s}}$  and  $\overline{N}_{\mathfrak{s}}$  on the set  $[S^*(X)]$ , i.e., define numbers  $N_{\mathfrak{s}}([g])$  and  $\overline{N}_{\mathfrak{s}}([g])$  for each [g] from  $[S^*(X)]$ . The functions will be constructed by induction on the length of g.

Put  $N_{\mathfrak{s}}([e]) = \overline{N}_{\mathfrak{s}}([e]) = 0$  for all  $\mathfrak{s} \in \mathfrak{S}$ .

Let  $\mathfrak{s} \in \mathfrak{S}$  and  $[g] \in [S^*(X)]$ , l(g) > 0. Let us assume that for all  $\mathfrak{s}' \in \mathfrak{S}$  and  $[h] \in [S^*(X)]$  with l(h) < l(g), the numbers  $N_{\mathfrak{s}'}([h])$  and  $\overline{N}_{\mathfrak{s}'}([h])$  are already defined. There are two possibilities:

(A) The word [g] is factorable, i.e.,  $[g] = [g_1] \dots [g_n]$ , where  $n \ge 2$  and all  $[g_i]$  are nonfactorable; clearly,  $l(g_i) < l(g)$  for all  $i \le n$ . Define

O.V. Sipacheva / Topology and its Applications 101 (2000) 181-212

$$N_{\mathfrak{s}}([g]) = \sum_{i \leq n} \overline{N}_{\mathfrak{s}}([g_i]) \quad \text{and}$$
$$\overline{N}_{\mathfrak{s}}([g]) = \min\{N_{\mathfrak{s}}([g]), 1\}.$$

(B) The word [g] is nonfactorable, i.e.,  $[g] = [x^{\varepsilon}[\tilde{g}]y^{-\varepsilon}]$  for some x, y,  $\varepsilon$  and  $\tilde{g}$ . Put

$${}^{k}N_{\mathfrak{s}}([g]) = 2^{k} \cdot \sum_{\alpha \in A_{k}} \min\{f_{\alpha}(x), f_{\alpha}(y)\} \cdot \overline{N}_{\mathfrak{s}_{\alpha}}([\tilde{g}]) + \frac{1}{2^{k}} + 2^{k} \cdot d_{k}(x, y) \text{ and}$$
$$N_{\mathfrak{s}}([g]) = \inf_{k \in \mathbb{N}} \{{}^{k}N_{\mathfrak{s}}([g])\}.$$

Finally, define

$${}^{k}\overline{N}_{\mathfrak{s}}([g]) = \min\{{}^{k}N_{\mathfrak{s}}([g]), 1\} \text{ and}$$
$$\overline{N}_{\mathfrak{s}}([g]) = \inf_{k \in \mathbb{N}}\{{}^{k}\overline{N}_{\mathfrak{s}}([g])\} = \min\{N_{\mathfrak{s}}([g]), 1\}.$$

The functions  $N_{\mathfrak{s}}$  and  $\overline{N}_{\mathfrak{s}}$  are defined.

Let us introduce one more notation: put

$${}^{k}B_{\mathfrak{s}}(x, y, [h]) = \sum_{\alpha \in A_{k}} \min\{f_{\alpha}(x), f_{\alpha}(y)\} \cdot \overline{N}_{\mathfrak{s}_{\alpha}}([h])$$

for  $\mathfrak{s} \in \mathfrak{S}$ ,  $[h] \in [S^*(X)]$ ,  $x, y \in X$ , and  $k \in \mathbb{N}$ . Then

$${}^{k}N_{\mathfrak{s}}([g]) = 2^{k} \cdot {}^{k}B_{\mathfrak{s}}(x, y, [\tilde{g}]) + \frac{1}{2k} + 2^{k} \cdot d_{k}(x, y).$$

The functions  ${}^{k}N_{\mathfrak{s}}, {}^{k}\overline{N}_{\mathfrak{s}}$ , and  ${}^{k}B_{\mathfrak{s}}$  will be used below.

The subscript  $\mathfrak{s}$  will often be omitted. The functions N,  $\overline{N}$ ,  ${}^{k}N$ ,  ${}^{k}\overline{N}$ , and  ${}^{k}B$  are then assumed to correspond to the triple  $\mathfrak{s}$ . Marked N and B correspond to the similarly marked  $\mathfrak{s}$ . For example, the functions  $N_{\alpha}$ ,  $\overline{N}_{\alpha}$ ,  ${}^{k}N_{\alpha}$ ,  ${}^{k}\overline{N}_{\alpha}$  and  ${}^{k}B_{\alpha}$  correspond to  $\mathfrak{s}_{\alpha}$ , and the functions N',  $\overline{N}'$ ,  ${}^{k}N'$ ,  ${}^{k}\overline{N}'$  and  ${}^{k}B'$  to  $\mathfrak{s}'$ .

**Remark 3.** If  $\mathfrak{s} \in \mathfrak{S}$  and  $[g] = [a][b] \in [S^*(X)]$ , then

$$\overline{N}([g]) \leqslant \overline{N}([a]) + \overline{N}([b]) \leqslant N([g]),$$

and if  $\overline{N}([a]) + \overline{N}([b]) \leq 1$  then

$$\overline{N}([g]) = \overline{N}([a]) + \overline{N}([b]) = N([g]).$$

### 4. Lemmas

Everywhere below, letters denote inequalities and digits the last links in chains of inequalities.

**Lemma 1.** Suppose that f is a function on X,  $[g] \in [S^*(X)]$ , and  $\mathfrak{s} \in \mathfrak{S}$ . Then for any x and y,

$$f(x) \cdot \overline{N}([g]) \leq f(y) \cdot \overline{N}([g]) + |f(x) - f(y)|$$

and, therefore,

$$f(x) \cdot \overline{N}([g]) \leq \min\{f(x), f(y)\} \cdot \overline{N}([g]) + |f(x) - f(y)|.$$

**Proof.** It is sufficient to apply the inequalities  $0 \leq \overline{N}([g]) \leq 1$ .  $\Box$ 

**Lemma 2.** Suppose that  $\mathfrak{s}, \mathfrak{s}' \in \mathfrak{S}, \mathfrak{s} < \mathfrak{s}', and [g] \in [S^*(X)]$ . Then  $\overline{N}([g]) \leq \overline{N}'([g])$ .

**Proof.** Let us apply induction on l(g). For  $g \equiv e$ , the assertion of Lemma 2 is trivial. Assume that l(g) > 0 and the statement is already proved for words of smaller lengths. There are two possibilities:

(A) The word [g] is factorable. Then  $[g] = [g_1] \dots [g_n]$ , where  $n \ge 2$  and all  $[g_i]$  are nonfactorable. Since  $l(g_i) < l(g)$ , we can apply the induction hypothesis and obtain

$$N([g]) = \sum_{i \leqslant n} \overline{N}([g_i]) \leqslant \sum_{i \leqslant n} \overline{N}'([g_i]) = N'([g]).$$

(B) The word [g] is nonfactorable, i.e.,  $[g] = [x^{\varepsilon}[\tilde{g}]y^{-\varepsilon}]$ . Let us prove that  ${}^{k}N([g]) \leq {}^{k}N'([g])$  for all k. To do this, it suffices to show that

$${}^{k}B(x, y, [\tilde{g}]) + d_{k}(x, y) \leqslant {}^{k}B'(x, y, [\tilde{g}]) + d'_{k}(x, y).$$
(a)

We have

$${}^{k}B(x, y, [\tilde{g}]) = \sum_{\alpha \in A_{k}} \min\{f_{\alpha}(x), f_{\alpha}(y)\} \cdot \overline{N}_{\alpha}([\tilde{g}]) \leq \sum_{\alpha \in A_{k}} f_{\alpha}(x) \cdot \overline{N}_{\alpha}([\tilde{g}]).$$

Take  $\alpha \in A_k$ . According to condition (2) from the definition of the relation < on  $\mathfrak{S}$ ,

$$f_{\alpha}(x) \leqslant \sum_{\beta \in A'_k(\alpha)} f'_{\beta}(x).$$

For every  $\beta \in A'_k(\alpha)$ , we have  $\mathfrak{s}_{\alpha} < \mathfrak{s}'_{\beta}$  (by condition 3° from the definition of  $\mathfrak{S}$ ) and hence  $\overline{N}'_{\beta}([g]) \ge \overline{N}_{\alpha}([\tilde{g}])$  (by the induction hypothesis). Therefore,

$$\sum_{\alpha \in A_{k}} f_{\alpha}(x) \cdot \overline{N}_{\alpha}([\tilde{g}]) \leqslant \sum_{\alpha \in A_{k}} \left( \sum_{\beta \in A_{k}'(\alpha)} f_{\beta}'(x) \right) \cdot \overline{N}_{\alpha}([\tilde{g}])$$

$$\leqslant \sum_{\alpha \in A_{k}} \left( \sum_{\beta \in A_{k}'(\alpha)} f_{\beta}'(x) \cdot \overline{N}_{\beta}'([\tilde{g}]) \right)$$

$$= \sum_{\beta \in \bigcup \{A_{k}'(\alpha): \alpha \in A_{k}\}} f_{\beta}'(x) \cdot \overline{N}_{\beta}([\tilde{g}])$$

$$\leqslant \sum_{\beta \in A_{k}'} f_{\beta}'(x) \cdot \overline{N}_{\beta}'([\tilde{g}]).$$
(1)

By Lemma 1,

$$(1) \leqslant \sum_{\beta \in A'_k} \min\{f'_{\beta}(x), f'_{\beta}(y)\} \cdot \overline{N}'_{\beta}([\tilde{g}]) + \sum_{\beta \in A'_k} \left|f'_{\beta}(x) - f'_{\beta}(y)\right|$$

Condition  $2^{\circ}(b)$  from the definition of  $\mathfrak{S}$  implies that

$$\sum_{\beta \in A'_k} \left| f'_{\beta}(x) - f'_{\beta}(y) \right| \leqslant \frac{d'_k(x, y)}{2};$$

therefore,

$${}^{k}B(x, y, [\tilde{g}]) \leqslant {}^{k}B'(x, y, [\tilde{g}]) + \frac{d'_{k}(x, y)}{2}.$$

Finally, condition (3) in the definition of < yields (a).

Thus,  ${}^{k}N([g]) \leq {}^{k}N'([g])$  for all k. Therefore,  $N([g]) \leq N'([g])$ .

We showed that  $N([g]) \leq N'([g])$  in both cases (A) and (B). This immediately implies the desired inequality  $\overline{N}([g]) \leq \overline{N}'([g])$ .  $\Box$ 

**Lemma 3.** Suppose that  $[h] \in [S^*(X)]$ ,  $\mathfrak{s} \in \mathfrak{S}$ ,  $x, y, z \in X$ , and  $k, m \in \mathbb{N}$ ,  $k \leq m$ . Then (i)  ${}^{k}B(x, y, [h]) \leq {}^{m}B(x, z, [h]) + d_{m}(x, z)/2;$ (ii)  ${}^{k}B(x, y, [h]) + d_{k}(x, y) \leq {}^{m}B(x, y, [h]) + d_{m}(x, y);$ (iii)  ${}^{k}B(y, z, [h]) \leq {}^{k}B(x, y, [h]) + d_{k}(x, z)/2.$ 

**Proof.** (i) By definition,

$${}^{k}B(x, y, [h]) = \sum_{\alpha \in A_{k}} \min\{f_{\alpha}(x), f_{\alpha}(y)\} \cdot \overline{N}_{\alpha}([h])$$
$$\leqslant \sum_{\alpha \in A_{k}} f_{\alpha}(x) \cdot \overline{N}_{\alpha}([h]).$$
(2)

Suppose k < m. Take  $\alpha \in A_k$ . By condition 1°(b), we have

$$f_{\alpha}(x) \leqslant \sum_{\beta \in A_m(\alpha)} f_{\beta}(x).$$

For any  $\beta \in A_m(\alpha)$ , we have  $\mathfrak{s}_{\alpha} < \mathfrak{s}_{\beta}$  (by condition 3°) and hence  $\overline{N}_{\beta}([h]) \ge \overline{N}_{\alpha}([h])$  (by Lemma 2). Therefore,

$$(2) \leqslant \sum_{\alpha \in A_{k}} \left( \sum_{\beta \in A_{m}(\alpha)} f_{\beta}(x) \right) \cdot \overline{N}_{\alpha} ([h])$$
  
$$\leqslant \sum_{\alpha \in A_{k}} \left( \sum_{\beta \in A_{m}(\alpha)} f_{\beta}(x) \cdot \overline{N}_{\beta} ([h]) \right) \leqslant \sum_{\beta \in A_{m}} f_{\beta}(x) \cdot \overline{N}_{\beta} ([h]).$$
(3)

We showed that (2)  $\leq$  (3) for k < m; obviously, this inequality also holds for k = m. By Lemma 1 and condition 2°(b),

$$(3) \leq \sum_{\beta \in A_m} \min\{f_{\beta}(x), f_{\beta}(z)\} \cdot \overline{N}_{\beta}([h]) + \sum_{\beta \in A_m} |f_{\beta}(x) - f_{\beta}(z)|$$
  
$$\leq {}^{m}B(x, z, [h]) + d_m(x, z)/2.$$

Therefore,  ${}^{k}B(x, y, [h]) \leq {}^{m}B(x, z, [h]) + d_{m}(x, z)/2$ , as required.

(ii) The case k = m does not need proving. For k < m, it is sufficient to apply (i) and the relation  $d_k(x, y) \leq d_m(x, y)/2$ , which is implied by condition 1°(c) from the definition of  $\mathfrak{S}$ .

(iii) By definition,

$${}^{k}B(y,z,[h]) = \sum_{\alpha \in A_{k}} \min\{f_{\alpha}(y), f_{\alpha}(z)\} \cdot \overline{N}_{\alpha}([h]).$$

Take  $\alpha \in A_k$ . If min{ $f_{\alpha}(x), f_{\alpha}(y), f_{\alpha}(z)$ }  $\neq f_{\alpha}(x)$ , then

$$\min\{f_{\alpha}(y), f_{\alpha}(z)\} \cdot N_{\alpha}([h]) \leq \min\{f_{\alpha}(x), f_{\alpha}(y)\} \cdot N_{\alpha}([h]).$$

If  $\min\{f_{\alpha}(x), f_{\alpha}(y), f_{\alpha}(z)\} = f_{\alpha}(x)$ , then

$$\min\{f_{\alpha}(y), f_{\alpha}(z)\} \cdot \overline{N}_{\alpha}([h]) \leq f_{\alpha}(z) \cdot \overline{N}_{\alpha}([h]) \\ \leq f_{\alpha}(x) \cdot \overline{N}_{\alpha}([h]) + |f_{\alpha}(x) - f_{\alpha}(z)|$$

(by Lemma 1), and the last sum is equal to

$$\min\left\{f_{\alpha}(x), f_{\alpha}(y)\right\} \cdot \overline{N}_{\alpha}([h]) + \left|f_{\alpha}(x) - f_{\alpha}(z)\right|.$$

Therefore,

$$\min\{f_{\alpha}(y), f_{\alpha}(z)\} \cdot \overline{N}_{\alpha}([h]) \leq \min\{f_{\alpha}(x), f_{\alpha}(y)\} \cdot \overline{N}_{\alpha}([h]) + |f_{\alpha}(x) - f_{\alpha}(z)|$$

for any  $\alpha \in A_k$ , whence

$${}^{k}B(y,z,[h]) \leq {}^{k}B(x,y,[h]) + \sum_{\alpha \in A_{k}} |f_{\alpha}(x) - f_{\alpha}(z)|$$

The required inequality follows from this and the relation

$$\sum_{\alpha \in A_k} \left| f_{\alpha}(x) - f_{\alpha}(z) \right| \leqslant \frac{d_k(x,z)}{2},$$

which is implied by condition  $2^{\circ}(b)$ .  $\Box$ 

**Lemma 4.** Suppose that  $\mathfrak{s} \in \mathfrak{S}$ ,  $k \in \mathbb{N}$ ,  $[a], [b] \in [S^*(X)]$ , and  $x, y, z \in X$ . Then

$${}^{k}B(y, z, [a][b]) \leq {}^{k}B(x, y, [a]) + {}^{k}B(x, z, [b]) + \frac{d_{k}(x, z)}{2}$$

**Proof.** First, we show that for any  $\alpha \in A_k$ ,

$$\min\{f_{\alpha}(y), f_{\alpha}(z)\} \cdot \overline{N}_{\alpha}([a][b]) \\ \leqslant \min\{f_{\alpha}(x), f_{\alpha}(y)\} \cdot \overline{N}_{\alpha}([a]) + \min\{f_{\alpha}(x), f_{\alpha}(z)\} \cdot \overline{N}_{\alpha}([b]) \\ + |f_{\alpha}(x) - f_{\alpha}(z)|.$$
(b)

Let  $\alpha$  belong to  $A_k$ . By definition,  $\overline{N}_{\alpha}([a][b]) \leq \overline{N}_{\alpha}([a]) + \overline{N}_{\alpha}([b])$ . If  $\min\{f_{\alpha}(x), f_{\alpha}(y), f_{\alpha}(z)\} \neq f_{\alpha}(x)$ , then

$$\min\{f_{\alpha}(y), f_{\alpha}(z)\} \cdot \overline{N}_{\alpha}([a][b]) \\ \leqslant \min\{f_{\alpha}(y), f_{\alpha}(z)\} \cdot \overline{N}_{\alpha}([a]) + \min\{f_{\alpha}(y), f_{\alpha}(z)\} \cdot \overline{N}_{\alpha}([b]) \\ \leqslant \min\{f_{\alpha}(x), f_{\alpha}(y)\} \cdot \overline{N}_{\alpha}([a]) + \min\{f_{\alpha}(x), f_{\alpha}(z)\} \cdot \overline{N}_{\alpha}([b])$$

which immediately implies (b).

Suppose that  $\min\{f_{\alpha}(x), f_{\alpha}(y), f_{\alpha}(z)\} \neq f_{\alpha}(x)$ . Then

$$\min\{f_{\alpha}(y), f_{\alpha}(z)\} \cdot \overline{N}_{\alpha}([a][b]) \leqslant f_{\alpha}(z) \cdot \overline{N}_{\alpha}([a][b]).$$
(4)

By Lemma 1,

$$(4) \leq f_{\alpha}(x) \cdot \overline{N}_{\alpha}([a][b]) + |f_{\alpha}(x) - f_{\alpha}(z)|$$
  
$$\leq f_{\alpha}(x) \cdot (\overline{N}_{\alpha}([a]) + \overline{N}_{\alpha}([b])) + |f_{\alpha}(x) - f_{\alpha}(z)|$$
  
$$= \min\{f_{\alpha}(x), f_{\alpha}(y)\} \cdot \overline{N}_{\alpha}([a])$$
  
$$+ \min\{f_{\alpha}(x), f_{\alpha}(z)\} \cdot \overline{N}_{\alpha}([b]) + |f_{\alpha}(x) - f_{\alpha}(z)|.$$

Thus, (b) holds for all  $\alpha$  from  $A_k$ ; therefore

$${}^{k}B(y,z,[a][b]) \leqslant {}^{k}B(x,y,[a]) + {}^{k}B(x,z,[b]) + \sum_{\alpha \in A_{k}} \left| f_{\alpha}(x) - f_{\alpha}(z) \right|$$

This and  $2^{\circ}(b)$  imply the required inequality.  $\Box$ 

**Lemma 5.** If  $\mathfrak{s} \in \mathfrak{S}$ ,  $[\tilde{g}_1], [\tilde{g}_2] \in [S^*(X)]$ ,  $k \in \mathbb{N}$ ,  $x, y \in X$ ,  $\varepsilon \in \{-1, 1\}$ , and

$$^{k}N\big([x^{\varepsilon}[\tilde{g}_{1}][\tilde{g}_{2}]y^{-\varepsilon}]\big)<1,$$

then

.

$$2^k \cdot {}^k B(x, y, [\tilde{g}_1][\tilde{g}_2]) \ge 2^k \cdot {}^k B(x, y, [\tilde{g}_1]) + \overline{N}([\tilde{g}_2]).$$

Proof. By definition,

$${}^{k}B(x, y, [\tilde{g}_{1}][\tilde{g}_{2}]) = \sum_{\alpha \in A_{k}} \min\{f_{\alpha}(x), f_{\alpha}(y)\} \cdot \overline{N}_{\alpha}([\tilde{g}_{1}][\tilde{g}_{2}]).$$

Take  $\alpha \in A_k$ . If  $\overline{N}_{\alpha}([\tilde{g}_1]) + \overline{N}_{\alpha}([\tilde{g}_2]) < 1$ , then by Remark 3, the relation  $\mathfrak{s} < \mathfrak{s}_{\alpha}$  (implied by 3°) and Lemma 2 yield

$$\overline{N}_{\alpha}([\tilde{g}_1][\tilde{g}_2]) = \overline{N}_{\alpha}([\tilde{g}_1]) + \overline{N}_{\alpha}([\tilde{g}_2]) \ge \overline{N}_{\alpha}([\tilde{g}_1]) + \overline{N}([\tilde{g}_2]).$$

Note that in this case,  $\overline{N}_{\alpha}([\tilde{g}_1][\tilde{g}_2]) < 1$ . If  $\overline{N}_{\alpha}([\tilde{g}_1]) + \overline{N}_{\alpha}([\tilde{g}_2]) \ge 1$ , then

$$\overline{N}_{\alpha}([\tilde{g}_1][\tilde{g}_2]) = 1 \ge \overline{N}_{\alpha}([\tilde{g}_1]) = \overline{N}_{\alpha}([\tilde{g}_1]) + \overline{N}([\tilde{g}_2]) - \overline{N}([\tilde{g}_2]).$$

Thus,

$$\sum_{\alpha \in A_{k}} \min\{f_{\alpha}(x), f_{\alpha}(y)\} \cdot \overline{N}_{\alpha}([\tilde{g}_{1}][\tilde{g}_{2}])$$

$$\geqslant \sum_{\alpha \in A_{k}} \min\{f_{\alpha}(x), f_{\alpha}(y)\} \cdot (\overline{N}_{\alpha}([\tilde{g}_{1}]]) + \overline{N}([\tilde{g}_{2}]))$$

$$- \sum_{\overline{N}_{\alpha}([\tilde{g}_{1}][\tilde{g}_{2}])=1} \min\{f_{\alpha}(x), f_{\alpha}(y)\} \cdot \overline{N}([\tilde{g}_{2}]).$$
(c)

Let us show that

$$\sum_{\alpha \in A_k} \min\{f_{\alpha}(x), f_{\alpha}(y)\} \ge 1 - \frac{1}{2^{k+1}} + \frac{1}{2^{2k+1}}.$$
 (d)

Obviously,

$$\sum_{\alpha \in A_k} \min\{f_{\alpha}(x), f_{\alpha}(y)\} \ge \sum_{\alpha \in A_k} f_{\alpha}(x) - \sum_{\alpha \in A_k} \left|f_{\alpha}(x) - f_{\alpha}(y)\right|.$$
(5)

It follows from 2°(a) and (b) that (5)  $\ge 1 - d_k(x, y)/2$ . By assumption,  $1 > {}^kN([x^{\varepsilon}[\tilde{g}_1][\tilde{g}_2] \cdot y^{-\varepsilon}])$ , and by the definition of  ${}^kN$ ,

$${}^{k}N\left(\left[x^{\varepsilon}[\tilde{g}_{1}][\tilde{g}_{2}]y^{-\varepsilon}\right]\right) \ge 1/2^{k} + 2^{k} \cdot d_{k}(x, y);$$

therefore,  $d_k(x, y) < 1/2^k - 1/2^{2k}$  and  $(5) \ge 1 - 1/2^{k+1} + 1/2^{2k+1}$ , which implies (d). Let us show that

$$2^{k} \cdot \sum_{\substack{\alpha \in A_{k}:\\\overline{N_{\alpha}}([\tilde{g}_{1}][\tilde{g}_{2}])=1}} \min\left\{f_{\alpha}(x), f_{\alpha}(y)\right\} \leqslant 1 - \frac{1}{2^{k}}.$$
 (e)

We have

$$2^{k} \cdot \sum_{\substack{\alpha \in A_{k}:\\\overline{N_{\alpha}}([\tilde{g}_{1}][\tilde{g}_{2}])=1\\}} \min\{f_{\alpha}(x), f_{\alpha}(y)\}$$

$$= 2^{k} \cdot \sum_{\substack{\alpha \in A_{k}:\\\overline{N_{\alpha}}([\tilde{g}_{1}][\tilde{g}_{2}])=1\\}} \min\{f_{\alpha}(x), f_{\alpha}(y)\} \cdot \overline{N}_{\alpha}([\tilde{g}_{1}][\tilde{g}_{2}])$$

$$\leqslant 2^{k} \cdot {}^{k}B(x, y, [\tilde{g}_{1}][\tilde{g}_{2}]).$$

By condition and the definition of  ${}^{k}N$ ,

$$1 > {}^{k}N\left(\left[x^{\varepsilon}[\tilde{g}_{1}][\tilde{g}_{2}]y^{-\varepsilon}\right]\right) \ge 2^{k} \cdot {}^{k}B\left(x, y, [\tilde{g}_{1}][\tilde{g}_{2}]\right) + 1/2^{k},$$

whence

$$2^k \cdot {}^k B(x, y, [\tilde{g}_1][\tilde{g}_2]) < 1 - 1/2^k,$$

which gives (e).

Inequalities (c), (d), and (e) give

$$2^{k} \cdot \sum_{\alpha \in A_{k}} \min\{f_{\alpha}(x), f_{\alpha}(y)\} \cdot \overline{N}_{\alpha}([\tilde{g}_{1}][\tilde{g}_{2}])$$
  
$$\geq 2^{k} \cdot \sum_{\alpha \in A_{k}} \min\{f_{\alpha}(x), f_{\alpha}(y)\} \cdot \overline{N}_{\alpha}([\tilde{g}_{1}])$$
  
$$+ 2^{k} \cdot (1 - 1/2^{k+1} + 1/2^{2k+1}) \cdot \overline{N}([\tilde{g}_{2}]) - (1 - 1/2^{k}) \cdot \overline{N}([\tilde{g}_{2}]),$$

whence

$$2^{k} \cdot {}^{k}B(x, y, [\tilde{g}_{1}][\tilde{g}_{2}]) \geq 2^{k} \cdot {}^{k}B(x, y, [\tilde{g}_{1}]) + (2^{k} - 1 - 1/2 + 1/2^{k} + 1/2^{k+1}) \cdot \overline{N}([\tilde{g}_{2}]).$$

Direct evaluation shows that  $2^k - 1 - 1/2 + 1/2^k + 1/2^{k+1} \ge 1$  for each *k*, which completes the proof of Lemma 5.  $\Box$ 

**Lemma 6.** If  ${}^{k}N([x^{\varepsilon}[\tilde{g}]y^{-\varepsilon}]) < 1$ , then  $\overline{N}([\tilde{g}]) < 1/2^{k}$ .

**Proof.** By the condition and the definition of  ${}^{k}N$ , we have

$$1 > 2^k \cdot {}^k B(x, y, [\tilde{g}]) + 1/2^k + 2^k \cdot d_k(x, y).$$

By Lemma 3(i),

$${}^{k}B(x, y, [\tilde{g}]) + d_{k}(x, y) \geq {}^{k}B(x, x, [\tilde{g}]);$$

therefore

$$1 > 2^k \cdot {}^k B(x, x, [\tilde{g}]) = 2^k \cdot \sum_{\alpha \in A_k} f_\alpha(x) \cdot \overline{N}_\alpha([\tilde{g}]).$$

Since  $\mathfrak{s} < \mathfrak{s}_{\alpha}$  (see 3°), Lemma 2 implies that  $\overline{N}_{\alpha}([\tilde{g}]) \ge \overline{N}([\tilde{g}])$  for all  $\alpha \in A_k$ ; by condition 2°(a), we have  $1 \le \sum_{\alpha \in A_k} f_{\alpha}(x)$ . Hence,  $1 > 2^k \cdot \overline{N}([\tilde{g}])$ , as required.  $\Box$ 

**Lemma 7.** If  $d_m(x, z) \leq 1$  and m > 0, then

$$2^m \cdot {}^m B(x, z, [h]) \ge \overline{N}([h]).$$

**Proof.** By definition and because m > 0, we have

$$2^{m} \cdot {}^{m}B(x, z, [h]) \ge 2 \cdot {}^{m}B(x, z, [h]) = 2 \cdot \sum_{\alpha \in A_{k}} \min\{f_{\alpha}(x), f_{\alpha}(z)\} \cdot \overline{N}_{\alpha}([h]).$$

Since  $\mathfrak{s} < \mathfrak{s}_{\alpha}$  for all  $\alpha \in \bigcup \mathcal{A} = \bigcup_{k \in \mathbb{N}} A_k$  (see 3°), Lemma 2 implies that

$$\overline{N}_{\alpha}([h]) \geqslant \overline{N}([h]) \quad \text{for all } \alpha \in A_m.$$

This and  $2^{\circ}(a)$  and (b) imply that

$$2^{m} \cdot {}^{m}B(x, z, [h]) \\ \ge 2 \cdot \left(\sum_{\alpha \in A_{m}} \min\{f_{\alpha}(x), f_{\alpha}(z)\}\right) \cdot \overline{N}([h]) \\ \ge 2 \cdot \overline{N}([h]) \cdot \left(\sum_{\alpha \in A_{m}} f_{\alpha}(x) - \sum_{\alpha \in A_{m}} \left|f_{\alpha}(x) - f_{\alpha}(z)\right|\right) \\ \ge 2 \cdot \overline{N}([h]) \cdot (1 - d_{m}(x, z)/2).$$

By condition,  $d_m(x, z) \leq 1$ , whence

$$2 \cdot \left(1 - d_m(x, z)/2\right) \ge 2 \cdot (1 - 1/2) = 1 \quad \text{and} \\ 2^m \cdot {}^m B(x, z, [h]) \ge \overline{N}([h]). \quad \Box$$

**Lemma 8.** Suppose that  $\mathfrak{s} \in \mathfrak{S}$  and  $[g] = [x^{\varepsilon}[\tilde{g}]y^{-\varepsilon}] \in [S^*(X)]$ . Then either

- (a)  $N([g]) = {}^{k}N([g])$  (and  $N([g]) \ge 1/2^{k}$ ) for some k, or
- (b)  ${}^{k}B(x, y, [\tilde{g}]) = d_{k}(x, y) = 0$  (and N([g]) = 0) for all k.

**Proof.** For  $k \in \mathbb{N}$ , put

$$a_k = {}^k B(x, y, [\tilde{g}]) + d_k(x, y).$$

We have

$${}^{k}N([g]) = 2^{k} \cdot a_{k} + 1/2^{k}$$
 and  $N([g]) = \inf_{k} \{2^{k} \cdot a_{k} + 1/2^{k}\}.$ 

Lemma 3(ii) implies that  $a_k \leq a_m$  for  $k \leq m$ . Clearly, if  $a_{k_0} \neq 0$  for some  $k_0$ , then the sequence  $\{2^k \cdot a_k + 1/2^k\}_{k=0}^{\infty}$  has a minimal element, i.e., (a) holds. Otherwise (when  $a_k = 0$  for all  $k \in \mathbb{N}$ ) (b) holds.  $\Box$ 

### 5. Statements

As previously, we omit the subscript  $\mathfrak{s}$  at N,  $\overline{N}$ , and B.

**Statement 1.** Suppose that  $\mathfrak{s} \in \mathfrak{S}$ ,  $a, b \in S(X)$ ,  $ab \in S^*(X)$ ,  $g \equiv ax^{\varepsilon}x^{-\varepsilon}b$ ,  $[g] \in [S^*(X)]$ , and  $[\hat{g}] = [ab]$  has the scheme  $\sigma_{\hat{g}}$  defined at the end of Section 1. Then

 $\overline{N}([\hat{g}]) \leqslant \overline{N}([g]).$ 

**Proof.** Apply induction on l(g). If  $g \equiv x^{\varepsilon}x^{-\varepsilon}$ , then the assertion is obvious. Suppose that l(g) > 2 and the required inequality holds for shorter words of the specified form. Consider all possible cases.

(1) 
$$a, b \neq e$$
.  
(1.1) [g] is nonfactorable, i.e.,  $a \equiv y^{\delta} \tilde{a}, b \equiv \tilde{b} z^{-\delta}$ , [g] =  $[y^{\delta} [\tilde{a} x^{\varepsilon} x^{-\varepsilon} \tilde{b}] z^{-\delta}]$ , and  
 $N([g]) = \inf_{k} \left\{ 2^{k} \cdot \sum_{\alpha \in A_{k}} \min\{f_{\alpha}(y), f_{\alpha}(z)\} \cdot \overline{N}_{\alpha}([\tilde{a} x^{\varepsilon} x^{-\varepsilon} \tilde{b}]) + \frac{1}{2^{k}} + 2^{k} \cdot d_{k}(y, z) \right\}.$ 

Clearly,  $[\hat{g}] = [y^{\delta}[\tilde{a}\tilde{b}]z^{-\delta}]$ , where  $[\tilde{a}\tilde{b}] = [\tilde{ax^{\varepsilon}}x^{-\varepsilon}\tilde{b}]$ . By the induction hypothesis,

$$\overline{N}'([\tilde{a}\tilde{b}]) \leqslant \overline{N}'([\tilde{a}x^{\varepsilon}x^{-\varepsilon}\tilde{b}])$$

for any  $\mathfrak{s}' \in \mathfrak{S}$ ; therefore,

$$N([g]) \ge \inf_{k} \left\{ 2^{k} \cdot \sum_{\alpha \in A_{k}} \min\{f_{\alpha}(z), f_{\alpha}(y)\} \cdot \overline{N}_{\alpha}([\tilde{a}\tilde{b}]) + \frac{1}{2^{k}} + 2^{k} \cdot d_{k}(y, z) \right\}$$
$$= N([\hat{g}]),$$

whence  $\overline{N}([g]) \ge \overline{N}([\hat{g}])$ .

(1.2) [g] is factorable, i.e.,  $[g] = [g_1] \dots [g_n]$ , where  $n \ge 2$  and all  $[g_i]$  are nonfactorable. (1.2.1a)  $l(g_1) \le l(a)$ , i.e.,  $a \equiv g_1 \tilde{a}$  for some  $\tilde{a} \in S^*(X)$  and  $g_2 \dots g_n \equiv \tilde{a} x^{\varepsilon} x^{-\varepsilon} b$ . Endow  $\tilde{a} x^{\varepsilon} x^{-\varepsilon} b$  with the scheme such that  $[\tilde{a} x^{\varepsilon} x^{-\varepsilon} b] = [g_2] \dots [g_n]$ . We have

$$N([g]) = \sum_{i=1}^{n} \overline{N}([g_i]) = \overline{N}([g_1]) + \sum_{i=2}^{n} \overline{N}([g_i])$$
  
$$\geq \overline{N}([g_1]) + \overline{N}([g_2] \dots [g_n]) = \overline{N}([g_1]) + \overline{N}([\tilde{a}x^{\varepsilon}x^{-\varepsilon}b]).$$

Let  $[\tilde{a}b] = [\tilde{a}x^{\varepsilon}x^{-\varepsilon}b]$  (this, of course, refers to the choice of a scheme for  $\tilde{a}b$ ). Clearly,  $[\hat{g}] = [g_1][\tilde{a}b]$ . By the induction hypothesis,  $\overline{N}([\tilde{a}x^{\varepsilon}x^{-\varepsilon}b]) \ge \overline{N}([\tilde{a}b])$ , hence,

$$N([g]) \ge \overline{N}([g_1]) + \overline{N}([\tilde{a}b]) \ge \overline{N}([g_1][\tilde{a}b]) = \overline{N}([\hat{g}]).$$

Thus,  $N([g]) \ge \overline{N}([\hat{g}])$ , and  $\overline{N}([g]) \ge \overline{N}([\hat{g}])$ .

(1.2.1b)  $l(g_n) \leq l(b)$ . This is considered similarly to (1.2.1a).

(1.2.2) n = 2,  $g_1 \equiv ax^{\varepsilon}$ ,  $g_2 \equiv x^{-\varepsilon}b$ . Because the words  $[g_1]$  and  $[g_2]$  are nonfactorable, they can be represented as

$$[g_1] = \begin{bmatrix} y^{-\varepsilon}[\tilde{a}]x^{\varepsilon} \end{bmatrix}, \quad [g_2] = \begin{bmatrix} x^{-\varepsilon}[\tilde{b}]z^{\varepsilon} \end{bmatrix}.$$

Clearly,  $[\hat{g}] = [y^{-\varepsilon}[\tilde{a}][\tilde{b}]z^{\varepsilon}]$ . We have

$$N([g_1]) = \inf_k \{{}^k N([y^{-\varepsilon}[\tilde{a}]x^{\varepsilon}])\},\$$
  

$$N([g_2]) = \inf_m \{{}^m N([x^{-\varepsilon}[\tilde{b}]z^{\varepsilon}])\},\$$
  

$$N([\hat{g}]) = \inf_l \{{}^l N([y^{-\varepsilon}[\tilde{a}\tilde{b}]z^{\varepsilon}])\}.\$$

Let us show that for any k and m not both equal to zero, there exists l such that

$${}^{l}N\left(\left[y^{-\varepsilon}[\tilde{a}][\tilde{b}]z^{\varepsilon}\right]\right) \leqslant {}^{k}N\left(\left[y^{-\varepsilon}[\tilde{a}]x^{\varepsilon}\right]\right) + {}^{m}N\left(\left[x^{-\varepsilon}[\tilde{b}]z^{\varepsilon}\right]\right).$$
 (a)

For this purpose, we have to consider further subcases.

(1.2.2.1a) k < m. Put l = k. By Lemma 4,

$${}^{k}B(y,z,[\tilde{a}][\tilde{b}]) \leq {}^{k}B(x,y,[\tilde{a}]) + {}^{k}B(x,z,[\tilde{b}]) + d_{k}(x,z)/2.$$

By Lemma 3(i),

$${}^{k}B(x,z,[\tilde{b}]) \leq {}^{m}B(x,z,[\tilde{b}]) + d_{m}(x,z)/2.$$

By condition 1°(c) from the definition of  $\mathfrak{S}$ ,  $d_k(x, z) \leq d_m(x, z)$ . Thus, we have

$${}^{k}B(y,z,[\tilde{a}][\tilde{b}]) \leq {}^{k}B(x,y,[\tilde{a}]) + {}^{m}B(x,z,[\tilde{b}]) + d_{m}(x,z)$$

and

$${}^{k}N([y^{-\varepsilon}[\tilde{a}][\tilde{b}]z^{\varepsilon}]) = 2^{k} \cdot {}^{k}B(y, z, [\tilde{a}][\tilde{b}]) + 1/2^{k} + 2^{k} \cdot d_{k}(y, z) \leq 2^{k} \cdot {}^{k}B(x, y, [\tilde{a}]) + 2^{k} \cdot {}^{m}B(x, z, [\tilde{b}]) + 2^{k} \cdot d_{m}(x, z) + 1/2^{k} + 2^{k} \cdot d_{k}(x, y) + 2^{k} \cdot d_{k}(x, z).$$
(1)

Condition 1°(c) implies that  $d_k(x, z) \leq d_m(x, z)$ ; therefore,

$$2^k \cdot d_m(x,z) + 2^k \cdot d_k(x,z) \leq 2^{k+1} \cdot d_m(x,z) \leq 2^m \cdot d_m(x,z).$$

This proves inequality (a) for l = k.

(1.2.2.1b) m < k. This case is considered similarly to (1.2.2.1a). (1.2.2.2) m = k > 0. Put l = k - 1. We have O.V. Sipacheva / Topology and its Applications 101 (2000) 181-212

$$^{k-1}B(y, z, [\tilde{a}][\tilde{b}]) \leq ^{k-1}B(y, z, [\tilde{a}]) + ^{k-1}B(y, z, [\tilde{b}])$$
$$\leq ^{k-1}B(y, y, [\tilde{a}]) + ^{k-1}B(z, z, [\tilde{b}])$$
(2)

(this follows from the definition of  $^{k-1}B$ ). By Lemma 3(i),

$$(2) \leqslant {}^{k}B(x, y, [\tilde{a}]) + d_{k}(x, y) + {}^{k}B(x, z, [\tilde{b}]) + d_{k}(x, z);$$

therefore,

$$\begin{split} &k^{k-1}N\left(\left[y^{-\varepsilon}[\tilde{a}][\tilde{b}]z^{\varepsilon}\right]\right) \\ &= 2^{k-1} \cdot {}^{k-1}B\left(y,z,[\tilde{a}][\tilde{b}]\right) + 1/2^{k-1} + 2^{k-1} \cdot d_{k-1}(y,z) \\ &\leqslant 2^{k-1} \cdot {}^{k}B\left(x,y,[\tilde{a}]\right) + 2^{k-1} \cdot d_{k}(x,y) + 2^{k-1} \cdot {}^{k}B\left(x,z,[\tilde{b}]\right) + 2^{k-1} \cdot d_{k}(x,z) \\ &+ 1/2^{k} + 1/2^{k} + 2^{k-1} \cdot d_{k-1}(x,y) + 2^{k-1} \cdot d_{k-1}(x,z) \\ &\leqslant {}^{k}N\left(\left[y^{-\varepsilon}[\tilde{a}]x^{\varepsilon}\right]\right) + {}^{k}N\left(\left[x^{-\varepsilon}[\tilde{b}]z^{\varepsilon}\right]\right) \end{split}$$

(we applied  $1^{\circ}(c)$ ). This proves (a) for k = m = l + 1.

Thus, for any k and m not both equal to zero,

(i) there exists l satisfying (a), hence,

(ii)  $N([\hat{g}]) \leq {}^{k}N([g_1]) + {}^{m}N([g_2])$ , and, therefore,

(iii)  $\overline{N}([\hat{g}]) \leq {}^k N([g_1]) + {}^m N([g_2]).$ 

Obviously, the last inequality also holds for k = m = 0. We have

 $\overline{N}([\hat{g}]) \leq N([g_1]) + N([g_2])$ 

and, finally,  $\overline{N}([\hat{g}]) \leq \overline{N}([g])$ .

(2)  $a \neq e$  and  $b \equiv e$ , i.e.,  $g \equiv ax^{\varepsilon}x^{-\varepsilon}$ .

(2.1) [g] is nonfactorable, i.e.,  $[g] = [y^{\varepsilon}[\tilde{g}]x^{-\varepsilon}]$ . According to Remark 1, there exists a (unique) representation  $[\tilde{g}] = [\tilde{g}_1][\tilde{g}_2]$  with nonfactorable  $[\tilde{g}_2]$ . Let  $[\tilde{g}_2] = [z^{-\varepsilon}[\tilde{\tilde{g}}_2]x^{\varepsilon}]$ . It is directly verified that

 $[\hat{g}] = \left[ y^{\varepsilon} [\tilde{g}_1] z^{-\varepsilon} \right] [\tilde{\tilde{g}}_2].$ 

We have to prove that  $\overline{N}([\hat{g}]) \leq \overline{N}([g])$ . To this end, it suffices to show that

$${}^{k}N([y^{\varepsilon}[\tilde{g}_{1}]z^{-\varepsilon}]) + \overline{N}([\tilde{\tilde{g}}_{2}]) \leqslant {}^{k}N([g])$$

for all k such that  ${}^{k}N([g]) < 1$ . Note that all these k are positive and meet the condition  $\overline{N}([\tilde{g}]) < 1/2^{k}$  (Lemma 6), which implies that  $\overline{N}([\tilde{g}_{2}]) < 1/2^{k}$ .

Thus, take k such that  ${}^{k}N([g]) < 1$ . Let m > k and  ${}^{m}N([\tilde{g}_{2}]) \leq 1$ . By 1°(c),  $d_{k}(x, z) \leq d_{m}(x, z)$ ; therefore,

$$2^{k+1} \cdot d_k(x,z) \leqslant 2^m \cdot d_m(x,z)$$

and

$$2^{k+1} \cdot d_k(x,z) + \overline{N}(\left[\tilde{\tilde{g}}_2\right]) \leq 2^m \cdot d_m(x,z) + \overline{N}(\left[\tilde{\tilde{g}}_2\right]).$$

It follows from  ${}^{m}N([\tilde{g}_{2}]) \leq 1$  that  $d_{m}(x, z) \leq 1$ . By Lemma 7,

$$2^{k+1} \cdot d_k(x,z) + \overline{N}\left(\left[\tilde{g}_2\right]\right) \leqslant 2^m \cdot {}^m B\left(x,z,\left[\tilde{g}_2\right]\right) + 1/2^m + 2^m \cdot d_m(x,z) \tag{b}$$

for all m > k.

As mentioned,  $\overline{N}([\tilde{g}_2]) < 1/2^k$ . Because  ${}^m N([\tilde{g}_2]) \ge 1/2^m$  by the definition of  ${}^m N$ , this implies that

$$N([\tilde{g}_2]) = \overline{N}([\tilde{g}_2]) = \inf\{{}^m N([\tilde{g}_2]): m > k, \; {}^m N([\tilde{g}_2]) \leqslant 1\}$$

Inequality (b) implies that

$$2^{k+1} \cdot d_k(x,z) + \overline{N}(\left[\tilde{\tilde{g}}_2\right]) \leqslant \overline{N}(\left[\tilde{g}_2\right]).$$

Applying Lemma 5 yields

$$2^{k} \cdot {}^{k}B(x, y, [\tilde{g}_{1}]) + 2^{k+1} \cdot d_{k}(x, z) + \overline{N}([\tilde{\tilde{g}}_{2}]) \leq 2^{k} \cdot {}^{k}B(x, y, [\tilde{g}_{1}][\tilde{g}_{2}]).$$

By Lemma 3(iii),

$$2^k \cdot {}^k B(y, z, [\tilde{g}_1]) \leq 2^k \cdot {}^k B(x, y, [\tilde{g}_1]) + 2^k \cdot d_k(x, z),$$

hence,

$$2^k \cdot {}^k B(y, z, [\tilde{g}_1]) + 2^k \cdot d_k(x, z) + \overline{N}([\tilde{\tilde{g}}_2]) \leq 2^k \cdot {}^k B(x, y, [\tilde{g}_1][\tilde{g}_2]).$$

Finally, it follows from  $d_k(y, z) \leq d_k(x, z) + d_k(y, z)$  that

$$2^k \cdot {}^k B\big(y, z, [\tilde{g}_1]\big) + 2^k \cdot d_k(y, z) + \overline{N}\big(\big[\tilde{\tilde{g}}_2\big]\big) \leqslant 2^k \cdot {}^k B\big(x, y, [\tilde{g}_1][\tilde{g}_2]\big) + 2^k \cdot d_k(x, y)$$

and

$${}^{k}N(\left[y^{\varepsilon}[\tilde{g}_{1}]z^{-\varepsilon}\right])+\overline{N}(\left[\tilde{\tilde{g}}_{2}\right])\leqslant {}^{k}N(\left[y^{\varepsilon}[\tilde{g}_{1}][\tilde{g}_{2}]x^{-\varepsilon}\right])={}^{k}N([g]),$$

as required.

(2.2) [g] is factorable, i.e.,  $[g] = [g_1] \dots [g_n]$ , where  $n \ge 2$  and all  $[g_i]$  are nonfactorable. We have

$$N([g]) = \sum_{i \leq n} \overline{N}([g_i]) = \sum_{i < n} \overline{N}([g_i]) + \overline{N}([g_n]).$$

The word  $g_n$  has the form  $\tilde{g}_n x^{\varepsilon} x^{-\varepsilon}$ . Let us endow  $\tilde{g}_n$  with the scheme such that  $[\tilde{g}_n] = [\hat{g}_n]$  (i.e.,  $[\tilde{g}_n]$  is obtained from  $[g_n]$  by deleting the pair  $x^{\varepsilon} x^{-\varepsilon}$  in the manner described in Section 2). Obviously,  $[\hat{g}] = [g_1] \dots [g_{n-1}][\tilde{g}_n]$ . By the induction hypothesis,

$$\overline{N}([\hat{g}_n]) = \overline{N}([\tilde{g}_n]) \leqslant \overline{N}([g_n]);$$

therefore,

$$N([\hat{g}]) = \sum_{i < n} \overline{N}([g_i]) + \overline{N}([\tilde{g}_n]) \leqslant \sum_{i \leqslant n} \overline{N}([g_i]) = N([g]),$$

which proves that  $\overline{N}([\hat{g}]) \leq \overline{N}([g])$ .

(3)  $a \equiv e, b \neq e$ . Argument is similar to that in case (2).  $\Box$ 

**Statement 2.** Suppose that  $\mathfrak{s} \in \mathfrak{S}$  and  $[g] \in [S^*(X)]$ . Then  $\overline{N}([g]) = \overline{N}([g^{-1}])$ .

**Proof.** Let us apply induction on l(g). If  $g \equiv e$ , then the assertion is obvious. Suppose that l(g) > 0 and the statement is valid for shorter words. There are two possibilities:

(A) The word [g] is factorable, i.e.,  $[g] = [g_1] \dots [g_n]$ , where  $n \ge 2$  and all  $[g_i]$  are nonfactorable. Obviously,  $[g^{-1}] = [g_n^{-1}] \dots [g_1^{-1}]$  and  $l(g_i) < l(g)$  for  $i \le n$ . By the induction hypothesis,  $\overline{N}([g_i^{-1}]) = \overline{N}([g_i])$  for  $i \le n$ ; therefore,

$$N([g]) = \sum_{i \leq n} \overline{N}([g_i]) = \sum_{i \leq n} \overline{N}([g_i^{-1}]) = N([g^{-1}])$$

whence  $\overline{N}([g]) = \overline{N}([g^{-1}])$ .

(B) The word [g] is nonfactorable, i.e.,  $[g] = [x^{\varepsilon}[\tilde{g}]y^{-\varepsilon}]$ . Clearly,  $[g^{-1}] = [y^{\varepsilon}[\tilde{g}^{-1}]x^{-\varepsilon}]$ . We have

$${}^{k}N([g]) = 2^{k} \cdot {}^{k}B(x, y, [\tilde{g}]) + 1/2^{k} + 2^{k} \cdot d_{k}(x, y)$$

for all k. By the induction hypothesis,  $\overline{N}_{\alpha}([\tilde{g}]) = \overline{N}_{\alpha}([\tilde{g}^{-1}])$  for all  $\alpha \in A_k$ , hence,  ${}^{k}B(x, y, [\tilde{g}]) = {}^{k}B(x, y, [\tilde{g}^{-1}])$ . Thus,

$${}^{k}N([g]) = 2^{k} \cdot {}^{k}B(x, y, [\tilde{g}^{-1}]) + 1/2^{k} + 2^{k} \cdot d_{k}(x, y)$$
  
=  ${}^{k}N([y^{\varepsilon}[\tilde{g}^{-1}]x^{-\varepsilon}]) = {}^{k}N([g^{-1}])$ 

for all k. By definition,  $N([g]) = N([g^{-1}])$  and  $\overline{N}([g]) = \overline{N}([g^{-1}])$ .  $\Box$ 

**Statement 3.** Suppose that  $h \in S(X)$ ,  $\mathfrak{s} \in \mathfrak{S}$ , and a > 0. Then there exist  $r \in \mathbb{N}^+$ ,  $\mathfrak{s}_1, \ldots$ ,  $\mathfrak{s}_r \in \mathfrak{S}$ , and b > 0 such that if  $[g] \in [S^*(X)]$  and  $\overline{N}_i([g]) < b$  for all  $i \leq r$ , then  $\overline{N}([h[g]h^{-1}]) < a$ .

**Proof.** Let us apply induction on l(h). For  $h \equiv e$ , the assertion is trivially true. Suppose that l(h) > 0 and the statement is valid for shorter words.

Let  $h \equiv x^{\varepsilon} \tilde{h}$ . For each  $[g] \in [S^*(X)]$ , put  $[\tilde{g}] = [\tilde{h}[g]\tilde{h}^{-1}]$ . Then for any [g], we have

$$\left[h[g]h^{-1}\right] = \left[x^{\varepsilon}[\tilde{g}]x^{-\varepsilon}\right]$$

and

$$\overline{N}[h[g]h^{-1}] = \inf_{k} \left\{ {}^{k}\overline{N}([h[g]h^{-1}]) \right\}.$$

Note that

$${}^{k}\overline{N}[h[g]h^{-1}] = 2^{k} \cdot {}^{k}B(x, x, [\tilde{g}]) + 1/2^{k},$$

because  $d_k(x, x) = 0$ . Take a positive integer  $k_0$  such that  $1/2^{k_0-1} < a$ . We have

$$\overline{N}[h[g]h^{-1}] \leq 2^{k_0} \cdot {}^{k_0}B(x, x, [\tilde{g}]) + 1/2^{k_0}$$

for any [g] from  $[S^*(X)]$ ; therefore, to prove the statement, it suffices to find  $r \in \mathbb{N}^+$ ,  $\mathfrak{s}_1, \ldots, \mathfrak{s}_r \in \mathfrak{S}$ , and b > 0 such that if  $[g] \in [S^*(X)]$  and  $\overline{N}_i([g]) < b$  for all  $i \leq r$ , then  ${}^{k_0}B(x, x, [\tilde{g}]) < 1/2^{2k_0}$ .

For any  $[g] \in [S^*(X)]$ , we have

$${}^{k_0}B(x,x,[\tilde{g}]) = \sum_{\alpha \in A_{k_0}} f_\alpha(x) \cdot \overline{N}_\alpha([\tilde{g}]).$$

Consider

$$\left\{\alpha \in A_{k_0}: f_{\alpha}(x) \neq 0\right\} = \{\alpha_1, \dots, \alpha_s\}$$

(this set is finite by condition 0°(b) from the definition of  $\mathfrak{S}$ ). Since  $l(\tilde{h}) < l(h)$ , the induction hypothesis implies that for each  $j \leq s$ , there exist  $r_j \in \mathbb{N}^+$ ,  $\mathfrak{s}_{j1}, \ldots, \mathfrak{s}_{jr_j} \in \mathfrak{S}$ , and  $b_j > 0$  such that if  $[g] \in \mathfrak{S}$  and  $\overline{N}_{ji}([g]) < b_j$  for all  $i \leq r_j$ , then  $\overline{N}_{\alpha_j}([\tilde{g}]) < 1/(s \cdot 2^{2k_0} \cdot f_{\alpha_j}(x))$ .

Put

$$\{\mathfrak{s}_1,\ldots,\mathfrak{s}_r\} = \bigcup_{j\leqslant s} \{\mathfrak{s}_{ji}: i\leqslant r_j\} \text{ and } b = \min_{j\leqslant s} b_j.$$

For each  $[g] \in [S^*(X)]$  such that  $\overline{N}_i([g]) < b$  for  $i \leq r$ , we have

as required.  $\Box$ 

Before formulating the next statement, let us mention that each word of length 2 from  $S^*(X)$  admits the unique scheme {(1, 2)}.

### Statement 4. The set

$$U = \left\{ y \in X \colon \overline{N}\left( [x_0^{-1}y] \right) < a \right\}$$

is open in X for any  $x_0 \in X$ ,  $\mathfrak{s} \in \mathfrak{S}$ , and  $a \leq 1$ .

**Proof.** Note that if  $\overline{N}([x_0^{-1}y]) < a$ , then  $\overline{N}([x_0^{-1}y]) < 1$  and

$$\overline{N}([x_0^{-1}y]) = N([x_0^{-1}y]) = \inf_k \{{}^k N([x_0^{-1}y])\}$$
$$= \inf_k \{1/2^k + 2^k \cdot d_k(x, y)\}.$$

Take  $y_0 \in U$ . We must show that U contains an open neighborhood V of  $y_0$  in X. Since  $\overline{N}([x_0^{-1}y_0]) < a < 1$  and  $\overline{N}([x_0^{-1}y_0]) \ge 0$ , there exists  $k_0$  such that  $1/2^{k_0} + 2^{k_0} \times d_{k_0}(x_0, y_0) < a$ , i.e.,

 $d_{k_0}(x_0, y_0) < (a - 2^{-k_0})/2^{k_0}.$ 

Find b > 0 for which

$$d_{k_0}(x_0, y_0) < (a - 2^{-k_0})/2^{k_0} - b$$

and put

$$V = \{ y \in X \colon d_{k_0}(y_0, y) < b \}.$$

By condition  $0^{\circ}(c)$  from the definition of  $\mathfrak{S}$ , the pseudometric  $d_{k_0}$  is continuous on X; therefore, V is open. Clearly,  $y_0 \in V$ . For all  $y \in V$ , we have  $d_{k_0}(x_0, y) < (a - 2^{-k_0})/2^{k_0}$ , whence

$$\frac{1/2^{k_0} + 2^{k_0} \cdot d_{k_0}(x_0, y) = {}^{k_0} N\left([x_0^{-1}y]\right) < a \quad \text{and} \quad \frac{1}{N}\left([x_0^{-1}y]\right) \leq {}^{k_0} N\left([x_0^{-1}y]\right) < a,$$

as required.  $\Box$ 

### **6.** Definition and properties of seminorms $\|\cdot\|_K$

Let *K* be a nonempty finite subset of the family  $\mathfrak{S}$  and  $K = \{\mathfrak{s}_1, \dots, \mathfrak{s}_n\}$ . For each  $g \in F(X)$ , put

$$\|g\|_{K} = \begin{cases} \min\{\sum_{i \leq n} \overline{N}_{i}([g, \sigma_{g}]): \sigma_{g} \text{ is a scheme for } g\} & \text{if } g \in S^{*}(X), \\ n & \text{otherwise.} \end{cases}$$

Let us note some properties of the function  $\|\cdot\|_K$ .

- (1) Obviously,  $||e||_{K} = 0$ .
- (2) If a, b ∈ F(X) and g = ab ∈ F(X) (i.e., g is irreducible and obtained from ab by successively deleting all pairs of letters of the form x<sup>ε</sup>x<sup>-ε</sup>), then ||g||<sub>K</sub> ≤ ||a||<sub>K</sub> + ||b||<sub>K</sub>.

Indeed, if *a* or *b* does not belong to  $S^*(X)$ , then  $||a||_K + ||b||_K \ge n$ . On the other hand,  $||g||_K \le n$ , because  $\overline{N}([h])$  is never greater than 1; therefore,  $||g||_K \le ||a||_K + ||b||_K$ . Suppose that  $a, b \in S^*(X)$ . Then, clearly,  $g \in S^*(X)$ . Let  $\sigma_a$  and  $\sigma_b$  be the schemes for *a* and *b*, respectively, such that

$$\|a\|_{K} = \sum_{i \leq n} \overline{N}_{i} ([a, \sigma_{a}]), \qquad \|b\|_{K} = \sum_{i \leq n} \overline{N}_{i} ([b, \sigma_{b}]).$$

For each  $i \leq n$ , we have

$$\overline{N}_i([ab, \boldsymbol{\sigma}_{ab}]) \leqslant \overline{N}_i([a, \boldsymbol{\sigma}_{a}]) + \overline{N}_i([b, \boldsymbol{\sigma}_{b}]),$$

hence,

$$\sum_{i \leqslant n} \overline{N}_i ([ab, \sigma_{ab}]) \leqslant \sum_{i \leqslant n} \overline{N}_i ([a, \sigma_a]) + \sum_{i \leqslant n} \overline{N}_i ([b, \sigma_b]) = ||a||_K + ||b||_K.$$

Since g is obtained from ab by successively deleting pairs of the form  $x^{\varepsilon}x^{-\varepsilon}$ , it follows from Statement 1 that there exists a scheme  $\sigma_g$  for g such that  $\overline{N}_i([g, \sigma_g]) \leq \overline{N}_i([ab, \sigma_{ab}])$ ; this scheme is uniquely determined by the scheme  $\sigma_{ab}$  and the order of deleting the pairs  $x^{\varepsilon}x^{-\varepsilon}$ . Therefore,

$$\|g\|_{K} \leq \sum_{i \leq n} \overline{N}_{i}([g, \sigma_{g}]) \leq \sum_{i \leq n} \overline{N}_{i}([ab, \sigma_{ab}]) \leq \|a\|_{K} + \|b\|_{K}.$$

(3) If  $g \in F(X)$ , then  $||g||_K = ||g^{-1}||_K$ .

This follows from Statement 2 for  $g \in S^*(X)$  and is obvious for  $g \notin S^*(X)$ .

(4) For any  $h \in F(X)$  and a > 0, there exist finite  $L \subset \mathfrak{S}$  and b > 0 such that if  $g \in F(X)$ ,  $\|g\|_L < b$ , and  $u = hgh^{-1} \in F(X)$ , then  $\|u\|_K < a$ .

Indeed, by Statement 3, there exist  $L = \{\mathfrak{s}'_1, \ldots \mathfrak{s}'_r\} \subset \mathfrak{S}$  and b > 0 such that if  $[g] \in [S^*(X)]$  and  $\overline{N}'_i([g]) \leq b$  for  $i \leq r$ , then  $\overline{N}_i([h[g]h^{-1}]) < a/n$  for  $i \leq n$ . Consider these L and b. Without loss of generality, we will assume that  $b < 1 \leq n$ . Take  $g \in F(X)$  with  $\|g\|_L < b$ . We have  $g \in S^*(X)$ , because otherwise  $\|g\|_L \geq 1 > b$ . Fix a scheme  $\sigma_g$  for g such that

$$\|g\|_L = \sum_{i \leqslant r} \overline{N}'_i([g, \sigma_g]);$$

clearly,  $\overline{N}'_i([g, \sigma_g]) < b$  for  $i \leq r$ . Statement 1 implies that there exists a scheme  $\sigma_u$  for  $u = hgh^{-1}$  for which

$$\overline{N}_i([u, \boldsymbol{\sigma}_u]) \leqslant \overline{N}_i([h[g, \boldsymbol{\sigma}_g]h^{-1}]).$$

Since  $\overline{N}'_i([g, \sigma_g]) < b$  for  $i \leq r$ , we have  $\overline{N}_i([h[g, \sigma_g]h^{-1}]) < a/n$  and  $\overline{N}_i([u, \sigma_u]) < a/n$  for  $i \leq n$ . Therefore,

$$\|u\|_K \leq \sum_{i \leq n} \overline{N}_i ([u, \sigma_u]) < n \cdot \frac{a}{n} = a$$

Recall that a real-valued function  $\|\cdot\|$  on an arbitrary group *G* is called a *seminorm* if it satisfies conditions (1)–(3) with  $\|\cdot\|$  instead of  $\|\cdot\|_K$  and *G* instead of F(X). Seminorms were introduced by Markov [3] (he called them norms). Thus,

 $\mathcal{N} = \{ \| \cdot \|_K \colon K \text{ is a finite subset of } \mathfrak{S} \}$ 

is a family of seminorms on F(X).

Using (1)–(4), we can easily verify that the family  $\mathcal{N}$  generates a group topology on F(X); i.e., the family

$$\mathcal{B} = \{ U_K(a) \colon K \text{ is a finite subset of } \mathfrak{S}, \ a > 0 \},\$$

where

$$U_K(a) = \{ g \in F(X) \colon \|g\|_K < a \},\$$

satisfies the axioms of an open neighborhood base at the identity element. Let us show, for example, that for any  $K_1, K_2 \in [\mathfrak{S}]^{<\aleph_0}$  and  $a_1, a_2 > 0$ , there exist  $L \in [\mathfrak{S}]^{<\aleph_0}$  and b > 0 such that

$$U_L(b) \subset U_{K_1}(a_1) \cap U_{K_2}(a_2).$$

Clearly,

$$\sum_{\mathfrak{s}\in K_1\cup K_2} \overline{N}_{\mathfrak{s}}([g]) \ge \sum_{\mathfrak{s}\in K_1} \overline{N}_{\mathfrak{s}}([g]) \quad \text{and}$$
$$\sum_{\mathfrak{s}\in K_1\cup K_2} \overline{N}_{\mathfrak{s}}([g]) \ge \sum_{\mathfrak{s}\in K_2} \overline{N}_{\mathfrak{s}}([g])$$

for any  $[g] \in [S^*(X)]$ ; therefore,  $||g||_{K_1 \cup K_2} \ge ||g||_{K_1}$  and  $||g||_{K_1 \cup K_2} \ge ||g||_{K_2}$  for every  $g \in S(X)$ . Because the cardinality of  $K_1 \cup K_2$  is not less than each of the cardinalities of  $K_1$  and  $K_2$ , this inequality is also valid for  $g \in F(X) \setminus S(X)$ . Therefore,  $L = K_1 \cup K_2$  and  $b = \min\{a_1, a_2\}$  meet the requirement.

Thus, the family  $\mathcal{N}$  generates a group topology on F(X). Each word from  $[S^*(X)]$  of length 2 admits only one scheme  $\{\langle 1, 2 \rangle\}$ ; therefore, for all finite  $K \subset \mathfrak{S}$  and  $g \in F_2(X)$ , we have

$$\|g\|_{K} = \sum_{\mathfrak{s}\in K} \overline{N}_{\mathfrak{s}}([g, \{\langle 1, 2\rangle\}]),$$

and Statement 4 implies that the topologies generated by the seminorms  $\|\cdot\|_K$  on *X* are coarser than the original topology of *X*.

### 7. Principal statements

The last paragraph of the preceding section implies our first principal statement.

#### Principal Statement 1. The family of seminorms

$$\mathfrak{N} = \bigcup \left\{ \{ \| \cdot \|_{K} : K \text{ is a finite subset of } \mathfrak{S}(\mathbf{P}) \} : \mathbf{P} \text{ is a partially ordered set and} \\ \mathfrak{S}(\mathbf{P}) \text{ is a family satisfying conditions } 0^{\circ} - 3^{\circ} \right\}$$

generates a group topology  $\mathcal{T}$  on F(X) that is coarser than the topology of  $F_M(X)$ .

Principal Statement 2 implies that  $\mathcal{T}$  coincides with the topology of  $F_M(X)$ .

**Principal Statement 2.** Let Y be a nonempty subspace of X such that any continuous bounded pseudometric on Y can be extended to a continuous pseudometric on X, and  $\|\cdot\|_Y$  be a continuous seminorm on  $F_M(Y)$  with an upper bound of 1/8. Then there exist a partially ordered set **P**, a family  $\mathfrak{S}$  satisfying the conditions  $0^\circ - 3^\circ$ , and an  $\mathfrak{s} \in \mathfrak{S}$  such that  $\|g\|_Y \leq \|g\|_{\{\mathfrak{s}\}}$  for all  $g \in F(Y) \subset F(X)$ .

**Proof.** As mentioned, by condition  $3^\circ$ , the sought family  $\mathfrak{S}$  (and the underlying ordered set P) should have a fairly complex structure: to every  $\mathfrak{s} = \langle \mathcal{A}, \mathcal{F}, \mathcal{D} \rangle \in \mathfrak{S}$  we must assign triples

$$\mathfrak{s}_{\alpha} = \langle \mathcal{A}_{\alpha}, \mathcal{F}_{\alpha}, \mathcal{D}_{\alpha} \rangle \in \mathfrak{S} \quad \text{for all } \alpha \in \bigcup \mathcal{A} = \bigcup_{k \in \mathbb{N}} \mathcal{A}_k,$$

to every  $\mathfrak{s}_{\alpha}$  (as it belongs to  $\mathfrak{S}$  and hence satisfies 3°), triples

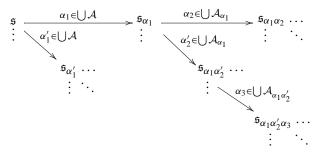
$$s_{\alpha\beta} = \langle \mathcal{A}_{\alpha\beta}, \mathcal{F}_{\alpha\beta}, \mathcal{D}_{\alpha\beta} \rangle \in \mathfrak{S} \quad \text{for all } \beta \in \bigcup \mathcal{A}_{\alpha} = \bigcup_{k \in \mathbb{N}} A_{\alpha k},$$

etc. Thus, the sought triple  $\mathfrak{s}$  from  $\mathfrak{S}$  draws chains of other triples according to the scheme

O.V. Sipacheva / Topology and its Applications 101 (2000) 181-212

$$\mathfrak{s} = \langle \mathcal{A}, \mathcal{F}, \mathcal{D} \rangle \xrightarrow{\alpha_{1} \in \bigcup \mathcal{A}} \mathfrak{s}_{\alpha_{1}} = \langle \mathcal{A}_{\alpha_{1}}, \mathcal{F}_{\alpha_{1}}, \mathcal{D}_{\alpha_{1}} \rangle \xrightarrow{\alpha_{2} \in \bigcup \mathcal{A}_{\alpha_{1}}} \mathfrak{s}_{\alpha_{1}\alpha_{2}}$$
$$= \langle \mathcal{A}_{\alpha_{1}\alpha_{2}}, \mathcal{F}_{\alpha_{1}\alpha_{2}}, \mathcal{D}_{\alpha_{1}\alpha_{2}} \rangle \xrightarrow{\alpha_{3} \in \bigcup \mathcal{A}_{\alpha_{1}\alpha_{2}}} \cdots \xrightarrow{\alpha_{n} \in \bigcup \mathcal{A}_{\alpha_{1}\alpha_{2}\dots\alpha_{n-1}}} \mathfrak{s}_{\alpha_{1}\alpha_{2}\dots\alpha_{n}}$$
$$= \langle \mathcal{A}_{\alpha_{1}\alpha_{2}\dots\alpha_{n}}, \mathcal{F}_{\alpha_{1}\alpha_{2}\dots\alpha_{n}}, \mathcal{D}_{\alpha_{1}\alpha_{2}\dots\alpha_{n}} \rangle \xrightarrow{\alpha_{n+1} \in \bigcup \mathcal{A}_{\alpha_{1}\alpha_{2}\dots\alpha_{n}}} \cdots \cdots$$

This scheme shows only one chain drawn by  $\mathfrak{s}$ ; in reality, each triple draws a tree of other triples:



It is natural to label the triples (and their elements) by multiindices that indicate their positions in the trees. For example, the multiindex of  $\mathfrak{s}$  is empty and has zero length; the triples  $\mathfrak{s}_{\alpha}$  with  $\alpha \in \bigcup \mathcal{A}$  that are assigned to  $\mathfrak{s} (= \langle \mathcal{A}, \mathcal{F}, \mathcal{D} \rangle)$  have multiindices  $\alpha$  of length one; for every  $\alpha_1 \in \bigcup \mathcal{A}$ , the triples  $\mathfrak{s}_{\alpha_1\alpha}$  with  $\alpha \in \bigcup \mathcal{A}_{\alpha_1}$  that are assigned to  $\mathfrak{s}_{\alpha_1} (= \langle \mathcal{A}_{\alpha_1}, \mathcal{F}_{\alpha_1}, \mathcal{D}_{\alpha_1} \rangle)$  have multiindices  $\alpha_1 \alpha$  of length two; the triples  $\mathfrak{s}_{\alpha_1\alpha_2\alpha}$  with  $\alpha \in \bigcup \mathcal{A}_{\alpha_1\alpha_2}$  assigned to  $\mathfrak{s}_{\alpha_1\alpha_2}$ , where  $\alpha_1 \in \bigcup \mathcal{A}$  and  $\alpha_2 \in \bigcup \mathcal{A}_{\alpha_1}$ , have multiindices  $\alpha_1\alpha_2\alpha$  of length three; etc. Thus, the multiindices of the triples drawn by  $\mathfrak{s}$  have the form  $\alpha_1\alpha_2...\alpha_n$ , where  $n \in \mathbb{N}$  and

$$\alpha_{1} \in \bigcup \mathcal{A} = \bigcup_{k \in \mathbb{N}} A_{k},$$
  

$$\alpha_{2} \in \bigcup \mathcal{A}_{\alpha_{1}} = \bigcup_{k \in \mathbb{N}} A_{\alpha_{1}k},$$
  

$$\vdots$$
  

$$\alpha_{n} \in \bigcup \mathcal{A}_{\alpha_{1}\alpha_{2}...\alpha_{n-1}} = \bigcup_{k \in \mathbb{N}} A_{\alpha_{1}\alpha_{2}...\alpha_{n-1}k},$$

and can be treated as points in  $\bigcup_{k \in \mathbb{N}} \mathbf{P}^k$  (i.e., *k*-tuples of elements of  $\mathbf{P}$  with variable length *k*).

We will construct a family  $\mathfrak{S}$  whose all elements (triples) are determined by the sought triple  $\mathfrak{s}$  according to condition 3° as described above. The underlying partially ordered set P and the set C of multiindices (identified with tuples from  $\bigcup_{k \in \mathbb{N}} P^k$ ) will be constructed by induction as the unions of certain sets  $P_{k,l}$  and  $C_{k,l}$ , respectively, over all  $k, l \in \mathbb{N}$  in such a way that  $P_{k',l'} \subset P_{k,l}$  and  $C_{k',l'} \subset C_{k,l}$  for  $k' \leq k$  and  $l' \leq l$ . Simultaneously with constructing  $P_{k,l}$  and  $C_{k,l}$ , we will introduce partial orders on these sets such that the order on  $P_{k,l}$  ( $C_{k,l}$ ) is an extension of that on  $P_{k',l'}$  ( $C_{k',l'}$ ) whenever  $P_{k',l'} \subset P_{k,l}$  ( $C_{k',l'} \subset C_{k,l}$ ).

Bearing this in mind, we will denote the orders on all  $P_{k,l}$  by the same symbol  $\leq$  and the orders on  $C_{k,l}$  by  $\leq$ . The order  $\leq$  will have the following special features, which are important for our inductive construction:

if 
$$\beta \in \mathbf{P}_{k,l}$$
 and  $\alpha \leq \beta$ , then  $\alpha \in \mathbf{P}_{k,l}$  (\*)

(this allows us to extend  $\leq$  from smaller sets to larger ones) and

for every 
$$\alpha \in P$$
, the set of  $\beta \in P$  such that  $\beta \leq \alpha$  is finite.  $(\star\star)$ 

The order on  $C \subset \bigcup_{n \in \mathbb{N}} P^n$  will be induced by the following natural order  $\preccurlyeq$  on  $\bigcup_{n \in \mathbb{N}} P^n$ . For  $\alpha_1, \ldots, \alpha_m, \beta_1, \ldots, \beta_n \in P$ , we define

$$\langle \alpha_1,\ldots,\alpha_m\rangle \preccurlyeq \langle \beta_1,\ldots,\beta_n\rangle$$

if there exists a strictly increasing function  $\iota : \{1, ..., m\} \rightarrow \{1, ..., n\}$  such that  $\alpha_k \leq \beta_{\iota(k)}$  for all  $k \in \{1, ..., m\}$  (this, in particular, implies that  $m \leq n$ ).

We also define

 $\langle \alpha_1,\ldots,\alpha_m,k\rangle \preccurlyeq \langle \beta_1,\ldots,\beta_n,l\rangle$ 

if  $k \leq l$  and  $\langle \alpha_1, \ldots, \alpha_m \rangle \preccurlyeq \langle \beta_1, \ldots, \beta_n \rangle$ .

We write

$$\langle \alpha_1, \ldots, \alpha_m, k \rangle \prec \langle \beta_1, \ldots, \beta_n, l \rangle$$

if 
$$\langle \alpha_1, \ldots, \alpha_m, k \rangle \preccurlyeq \langle \beta_1, \ldots, \beta_n, l \rangle$$
 and  $\langle \alpha_1, \ldots, \alpha_m, k \rangle \neq \langle \beta_1, \ldots, \beta_n, l \rangle$ ;

the relation  $\langle \alpha_1, \ldots, \alpha_m \rangle \prec \langle \beta_1, \ldots, \beta_n \rangle$  is defined similarly.

Note that if **P** satisfies condition  $(\star\star)$ , then the set of  $\preccurlyeq$ -predecessors of any  $\langle \alpha_1, \ldots, \alpha_m, k \rangle \in \bigcup_{n \in \mathbb{N}} \mathbf{P}^n \times \mathbb{N}$  is finite.

Simultaneously with constructing  $P_{k,l}$  and  $C_{k,l}$ , we will construct families  $\mathcal{A}$ ,  $\mathcal{F}$ , and  $\mathcal{D}$  labeled by multiindices from  $C_{k,l}$  and some auxiliary families. Elements of  $\mathcal{A}$  will be related to  $P_{k,l}$  and  $C_{k,l}$  by

$$\mathcal{C}_{k,l} = \bigcup \{\{ \langle \alpha_1, \dots, \alpha_n \rangle \colon \alpha_1 \in A_{k_1}, \alpha_2 \in A_{\alpha_1 k_2}, \dots, \alpha_n \in A_{\alpha_1 \dots \alpha_{n-1} k_n} \} \colon n \leq l, \ k_1, \dots, k_n \leq k \},$$

or equivalently,

$$\mathcal{C}_{k,l} = \bigcup \{ \{ \langle \alpha_1, \dots, \alpha_n \rangle \colon \langle \alpha_1, \dots, \alpha_{n-1} \rangle \in \mathcal{C}_{k,l-1}, \ \alpha_n \in A_{\alpha_1 \dots \alpha_{n-1} m} \} \colon n \leqslant l, \ m \leqslant k \},$$

and

$$\boldsymbol{P}_{k,l} = \bigcup \left\{ A_{\alpha_1...\alpha_n m} \colon \langle \alpha_1, \ldots, \alpha_n \rangle \in \mathcal{C}_{k,l}, \ m \leqslant k \right\}.$$

Since  $C_{k,l} \subset \bigcup_{n=0}^{l} (P_{k,l-1})^n$ , the order  $\leq$  on  $P_{k,l-1}$  determines the order  $\leq$  on  $C_{k,l}$ .

The construction involves induction on k and l: first, we define  $P_{0,0}$ ,  $C_{0,1}$ ,  $C_{n,0}$ , and  $P_{n,-1}$  for  $n \in \mathbb{N}$  and then construct  $P_{k,l}$  and  $C_{k,l+1}$  for  $\langle k, l \rangle \neq \langle 0, 0 \rangle$  assuming that  $C_{k,l}$  and  $P_{k',l'}$  for  $k' \leq k$ , l' < l are defined. Obviously, such induction is valid.

Let us proceed to the construction.

Put  $P_{0,0} = \{0\}$ ,  $C_{0,1} = \{\langle 0 \rangle\}$ ,  $C_{n,0} = \{\emptyset\}$ , and  $P_{n,-1} = \emptyset$  for all  $n \in \mathbb{N}$ . Define a (continuous) pseudometric  $\rho^Y$  on *Y* by

$$o^{Y}(y_{1}, y_{2}) = \max\{4 \cdot \|y_{1}^{\varepsilon}y_{2}^{-\varepsilon}\|_{Y}: \varepsilon = \pm 1\} \text{ for } y_{1}, y_{2} \in Y$$

Since  $\|\cdot\|_Y$  is bounded by 1/8, the pseudometric  $\rho^Y$  is bounded by 1/2. Take a continuous pseudometric  $\rho$  on X that extends  $\rho^Y$  and is bounded by 1/2.

Choose an arbitrary point  $x_0 \in Y$ . Put  $U_0 = X$ ,  $A_0 = \{0\}$ ,  $d_0 \equiv 0$  on  $X^2$ ,  $\gamma_0 = \{U_0\}$ ,  $M_0 = \{x_0\}$ ,  $f_0 \equiv 1$  on X, and  $F_0 = \{f_0\}$ . Note that since  $\rho$  is bounded by 1/2, the cover  $\gamma_0$  is a refinement of the cover  $\{B_\rho(x, 1): x \in X\}$ .

Suppose that  $k, l \in \mathbb{N}$ ,  $\langle k, l \rangle \neq \langle 0, 0 \rangle$ ,  $C_{k,l}$  with the order  $\preccurlyeq$  is defined, and  $P_{k',l'}$  with the order  $\preccurlyeq$  are defined for all pairs  $\langle k', l' \rangle \in \mathbb{N} \times (\mathbb{N} \cup \{-1\})$  such that  $k' \leqslant k$  and l' < l(in particular,  $P_{k,l-1}$  is defined). Suppose also that every  $\alpha \in P_{k,l-1}$  has a finite number of  $\preccurlyeq$ -predecessors; then every element in  $C_{k,l} \times \mathbb{N}$  has a finite number of  $\preccurlyeq$ -predecessors. Take  $\langle \alpha_1, \ldots, \alpha_n \rangle \in C_{k,l}$  and  $m \leqslant k$ . If  $\langle \alpha_1, \ldots, \alpha_n, m \rangle$  has no predecessor with respect to  $\preccurlyeq$ , then *n* and *m* are necessarily zero, i.e.,  $\langle \alpha_1, \ldots, \alpha_n, m \rangle = \langle 0 \rangle = \langle \emptyset, 0 \rangle$ ; we have already defined the objects  $\rho$ ,  $A_0$ ,  $d_0$ ,  $\gamma_0$ ,  $M_0$  and  $F_0$  that correspond to this (n + 1)tuple. Let  $\langle \alpha_1, \ldots, \alpha_n, m \rangle$  have precisely *r* predecessors, where r > 0. Suppose that for all  $\langle \beta_1, \ldots, \beta_s, t \rangle \in C_{k,l} \times \{0, \ldots, k\}$  with less than *r* predecessors, we have already defined the objects  $\rho_{\beta_1\dots\beta_s t}$ ,  $A_{\beta_1\dots\beta_s t}$  (along with the extension of  $\leqslant$  to this set),  $d_{\beta_1\dots\beta_s t}, \gamma_{\beta_1\dots\beta_s t},$  $M_{\beta_1\dots\beta_s t}$ , and  $F_{\beta_1\dots\beta_s t}$  satisfying the following conditions:

- $0^{\circ\circ}$  (1)  $\rho_{\beta_1...\beta_s}$  is a continuous pseudometric on X bounded by 1/2;
  - (2)  $A_{\beta_1...\beta_s t}$  is a nonempty set, and every its element has a finite number of  $\leq$ -predecessors;
  - (3)  $d_{\beta_1...\beta_s t}$  is a continuous pseudometric on *X*;
  - (4) γ<sub>β1...βst</sub> = {U<sub>β</sub>: β ∈ A<sub>β1...βst</sub>} is a cover of X that is open and locally finite with respect to the topology generated by d<sub>β1...βst</sub> and indexed by the elements of A<sub>β1...βst</sub> (this means, in particular, that if α ≠ β, then U<sub>α</sub> and U<sub>β</sub> are different elements of γ even if they coincide as sets);
  - (5)  $M_{\beta_1...\beta_s t} = \{x_\beta : \beta \in A_{\beta_1...\beta_s t}\}$  is a subset of *X* such that  $x_\beta \in U_\beta$  for any  $\beta$  and  $x_\beta \in Y$  whenever  $U_\beta \cap Y \neq \emptyset$ ;
  - (6)  $F_{\beta_1...\beta_s t} = \{f_{\beta}: \beta \in A_{\beta_1...\beta_s t}\}$  is a family of continuous nonnegative-valued functions on X such that supp  $f_{\beta} = U_{\beta}$  for each  $\beta$ .
- 1°° If  $\langle \theta_1, \ldots, \theta_p, q \rangle$  is an immediate predecessor of  $\langle \beta_1, \ldots, \beta_s, t \rangle$  in  $C_{k,l} \times \mathbb{N}$  with respect to the order  $\preccurlyeq$ , then
  - (1)

$$A_{\theta_1\dots\theta_p q} \triangleleft A_{\beta_1\dots\beta_s t};$$

(2) for any x from X and  $\theta$  from  $A_{\theta_1...\theta_n q}$ ,

$$f_{\theta}(x) = \sum_{\beta \in A_{\beta_1 \dots \beta_s t}(\theta)} f_{\beta}(x)$$

(we remind the reader that  $A(\theta)$  stands for  $\{\alpha \in A : \theta \leq \alpha\}$ );

(3) for any x and y from X,

$$2 \cdot d_{\theta_1 \dots \theta_p q}(x, y) \leq d_{\beta_1 \dots \beta_s t}(x, y);$$

(4) for any  $\theta \in A_{\theta_1...\theta_pq}$ ,

$$\bigcup \left\{ U_{\beta} \colon \beta \in A_{\beta_1 \dots \beta_s t}(\theta) \right\} = U_{\theta}.$$

 $2^{\circ\circ}$  (1) If  $\{x_{\beta_1}, \ldots, x_{\beta_s}\} \subset Y$ , then the restriction of  $\rho_{\beta_1\dots\beta_s}$  to  $Y^2$  is

$$\rho_{\beta_1\dots\beta_s}^Y(y_1, y_2) = \max\left\{4 \cdot \|x_{\beta_1}^{\varepsilon_1}\dots x_{\beta_s}^{\varepsilon_s}y_1^{\varepsilon}y_2^{-\varepsilon}x_{\beta_s}^{-\varepsilon_s}\dots x_{\beta_1}^{-\varepsilon_1}\|_Y \colon \varepsilon, \varepsilon_i = \pm 1\right\};$$

otherwise,  $\rho_{\beta_1...\beta_s} \equiv 0$  on  $X^2$ ;

(2) for any  $x \in X$ ,

$$\sum_{\beta \in A_{\beta_1 \dots \beta_s t}} f_\beta(x) \ge 1;$$

(3) for any  $x, y \in X$ ,

$$2 \cdot \sum_{\beta \in A_{\beta_1 \dots \beta_s t}} \left| f_{\beta}(x) - f_{\beta}(y) \right| \leq d_{\beta_1 \dots \beta_s t}(x, y);$$

(4)  $\gamma_{\beta_1...\beta_s t}$  refines the cover

$$\{B_{\rho_{\beta_1...\beta_s}}(x, 1/2^t): x \in X\}.$$

3°° If  $\langle \theta_1, \ldots, \theta_p, q \rangle \in C_{k,l}$ ,  $q \leq k$ ,  $\langle \theta_1, \ldots, \theta_p, q \rangle$  has less than *r* predecessors in  $C_{k,l} \times \mathbb{N}$  with respect to  $\preccurlyeq$ , and  $\langle \theta_1, \ldots, \theta_p, q \rangle \neq \langle \beta_1, \ldots, \beta_s, t \rangle$ , then  $A_{\theta_1 \ldots \theta_p q} \cap A_{\beta_1 \ldots \beta_s t} = \emptyset$ ; if in addition, there exist  $\theta \in A_{\theta_1 \ldots \theta_p q}$  and  $\beta \in A_{\beta_1 \ldots \beta_s t}$  such that  $\theta \leq \beta$ , then  $\langle \theta_1, \ldots, \theta_p, q \rangle \prec \langle \beta_1, \ldots, \beta_s, t \rangle$ .

Let us define similar objects for  $\langle \beta_1, \ldots, \beta_s, t \rangle = \langle \alpha_1, \ldots, \alpha_n, m \rangle$  in such a way that conditions  $0^{\circ\circ} - 2^{\circ\circ}$  be fulfilled.

We start with introducing one more notation: put

$$Pred\langle \alpha_1, \dots, \alpha_n, m \rangle$$
  
= {\langle \beta\_1, \ldots, \beta\_s, t \rangle \in \mathcal{C}\_{k,l} \times \mathbb{N}:  
\langle \beta\_1, \ldots, \beta\_s, t \rangle\$ is an immediate predecessor of \langle \alpha\_1, \ldots, \alpha\_n, m \rangle\$  
in \mathcal{C}\_{k,l} \times \mathbb{N}\$ with respect to \rightarrow }.

Choose a continuous pseudometric  $\rho_{\alpha_1...\alpha_n}$  on X satisfying condition  $2^{\circ\circ}(1)$  and bounded by 1/2. Refine the cover

$$\mu = \{ B_{\rho_{\alpha_1...\alpha_n}}(x, 1/2^m) \colon x \in X \}$$

of *X* to a cover  $\nu$  open and locally finite with respect to the topology generated by  $\rho_{\alpha_1...\alpha_n}$ . Let us index  $\nu$  using an arbitrary set *A*:  $\nu = \{V_a: a \in A\}$ .

Each  $\langle \beta_1, \ldots, \beta_s, t \rangle \in \operatorname{Pred}\langle \alpha_1, \ldots, \alpha_n, m \rangle$  has no more than r-1 predecessors and belongs to  $C_{k,l} \times \{0, \ldots, k\}$ ; for all these sets the required objects are already defined. Take  $\langle \beta_1, \ldots, \beta_s, t \rangle \in \operatorname{Pred}\langle \alpha_1, \ldots, \alpha_n, m \rangle$  and  $\beta \in A_{\beta_1 \ldots \beta_s t}$  and put

$$A_{\beta} = \left\{ a \in A \colon V_{a} \cap U_{\beta} \neq \emptyset \right\} \text{ and}$$
$$A_{\alpha_{1}...\alpha_{n}m}[\beta] = \left\{ (a,\beta), \langle \alpha_{1}, \dots, \alpha_{n}, m \rangle \colon a \in A_{\beta} \right\} \subset A \times \{\beta\} \times \left\{ \langle \alpha_{1}, \dots, \alpha_{n}, m \rangle \right\}.$$

For any  $\alpha = (a, \beta), \langle \alpha_1, \dots, \alpha_n, m \rangle \in A_{\alpha_1 \dots \alpha_n m}[\beta]$ , put  $U_{\alpha} = V_a \cap U_{\beta}$ . The family

$$\gamma_{\alpha_1\dots\alpha_n m}[\beta] = \left\{ U_{\alpha} \colon \alpha \in A_{\alpha_1\dots\alpha_n m}[\beta] \right\}$$

forms a cover of the subspace  $U_{\beta}$  of X, consists of sets open with respect to the topology  $\mathcal{T}'$  generated on X by the pseudometric  $\max(d_{\beta_1...\beta_s t}, \rho_{\alpha_1...\alpha_n})$ , and is locally finite with respect to the same topology (this follows from the definition of  $\nu$  and condition  $0^{\circ\circ}(4)$ ).

Take a partition of unity on  $U_{\beta}$  subordinated to  $\gamma_{\alpha_1...\alpha_n m}[\beta]$ , i.e., a family

$$\{g_{\alpha}: \alpha \in A_{\alpha_1...\alpha_n m}[\beta]\}$$

of nonnegative-valued functions on  $U_{\beta}$  continuous with respect to  $\mathcal{T}' \upharpoonright U_{\beta}$  and such that  $\operatorname{supp} g_{\alpha} = U_{\alpha}$  for  $\alpha \in A_{\alpha_1...\alpha_n m}[\beta]$  and

$$\sum_{\alpha \in A_{\alpha_1...\alpha_n m}[\beta]} g_\alpha(x) = 1$$

for each  $x \in U_{\beta}$  (the sum is defined, because  $\gamma_{\alpha_1...\alpha_n m}[\beta]$  is locally finite). Such a family can be constructed, for example, by setting  $g_{\alpha}(x) = \overline{g}_{\alpha}(x) / \sum \overline{g}_{\alpha}(x)$ , where  $\overline{g}_{\alpha}(x)$  is the distance between x and  $X \setminus U_{\alpha}$  with respect to the pseudometric  $\max(d_{\beta_1...\beta_s t}, \rho_{\alpha_1...\alpha_n})$ . For each  $\alpha \in A_{\alpha_1...\alpha_n m}[\beta]$  and  $x \in X$ , put

$$f_{\alpha}(x) = \begin{cases} 0 & \text{if } x \notin U_{\beta}, \\ g_{\alpha}(x) \cdot f_{\beta}(x) & \text{if } x \in U_{\beta}. \end{cases}$$

We have

$$\sum_{\alpha \in A_{\alpha_1 \dots \alpha_n m}[\beta]} f_{\alpha}(x) = \sum_{\alpha \in A_{\alpha_1 \dots \alpha_n m}[\beta]} g_{\alpha}(x) \cdot f_{\beta}(x) = f_{\beta}(x)$$

for all x from X.

Put

$$A_{\alpha_{1}...\alpha_{n}m} = \bigcup \left\{ \{A_{\alpha_{1}...\alpha_{n}m}[\beta]: \ \beta \in A_{\beta_{1}...\beta_{s}t} \}: \\ \langle \beta_{1}, \dots, \beta_{s}, t \rangle \in \operatorname{Pred}\langle \alpha_{1}, \dots, \alpha_{n}, m \rangle \right\}, \\ \gamma_{\alpha_{1}...\alpha_{n}m} = \bigcup \left\{ \{\gamma_{\alpha_{1}...\alpha_{n}m}[\beta]: \ \beta \in A_{\beta_{1}...\beta_{s}t} \}: \\ \langle \beta_{1}, \dots, \beta_{s}, t \rangle \in \operatorname{Pred}\langle \alpha_{1}, \dots, \alpha_{n}, m \rangle \right\} \\ = \{U_{\alpha}: \ \alpha \in A_{\alpha_{1}...\alpha_{n}m} \}, \\ F_{\alpha_{1}...\alpha_{n}m} = \{f_{\alpha}: \ \alpha \in A_{\alpha_{1}...\alpha_{n}m} \}.$$

For each  $\alpha \in A_{\alpha_1...\alpha_n m}$ , fix  $x_{\alpha} \in U_{\alpha}$  such that  $x_{\alpha} \in Y$  whenever  $U_{\alpha}$  intersects Y and put

$$M_{\alpha_1...\alpha_nm} = \{ x_{\alpha} \colon \alpha \in A_{\alpha_1...\alpha_nm} \}.$$

Finally, put

$$d_{\alpha_1...\alpha_n m}(x, y) = \max\left\{\rho_{\alpha_1...\alpha_n}(x, y), \ 2 \cdot \sum_{\alpha \in A_{\alpha_1...\alpha_n m}} \left| f_{\alpha}(x) - f_{\alpha}(y) \right|, \\ \max\left\{2 \cdot d_{\beta_1...\beta_s t} \colon \langle \beta_1, \dots, \beta_s, t \rangle \in \operatorname{Pred}\langle \alpha_1, \dots, \alpha_n, m \rangle\right\}\right\}$$

for all  $x, y \in X$ .

The desired objects are constructed. It remains to extend the relation  $\leq$  over  $A_{\alpha_1...\alpha_nm}$ . Let  $\langle \beta_1, ..., \beta_s, t \rangle \in C_{k,l}$ ,  $t \leq k$ ,  $\langle \beta_1, ..., \beta_s, t \rangle$  have no more than *r* predecessors, the set  $A_{\beta_1...\beta_st}$  be already defined,  $\alpha \in A_{\alpha_1...\alpha_nm}$ , and  $\beta \in A_{\beta_1...\beta_st}$ . We set

(i)  $\beta \leq \alpha$  if and only if either  $\beta = \alpha$  or there exist  $\langle \theta_1, \dots, \theta_p, q \rangle \in \operatorname{Pred}\langle \alpha_1, \dots, \alpha_n, m \rangle$ and  $\theta \in A_{\theta_1 \dots \theta_p q}$  such that  $\beta \leq \theta$  and  $\alpha \in A_{\alpha_1 \dots \alpha_n m}[\theta]$ ;

(ii)  $\alpha \leq \beta$  if and only if  $\alpha = \beta$ .

Note that by construction, the sets  $A_{\alpha_1...\alpha_n m}[\theta']$  and  $A_{\alpha_1...\alpha_n m}[\theta'']$  are disjoint if  $\theta' \neq \theta''$ . Therefore, for every  $\alpha \in A_{\alpha_1...\alpha_n m}$ , there exists exactly one  $\theta$  such that  $\alpha \in A_{\alpha_1...\alpha_n m}[\theta]$ ; this  $\theta$  belongs to some  $A_{\theta_1...\theta_p q}$ , where  $\langle \theta_1, \ldots, \theta_p, q \rangle \in \operatorname{Pred}\langle \alpha_1, \ldots, \alpha_n, m \rangle$ . Because  $\langle \theta_1, \ldots, \theta_p, q \rangle$  has less than  $r \preccurlyeq$ -predecessors, by the induction hypothesis (condition  $0^{\circ\circ}(2)$ ), the number of  $\leqslant$ -predecessors of  $\theta$  is finite; therefore, the number of  $\leqslant$ -predecessors of  $\alpha$  is also finite.

The construction immediately implies the fulfillment of conditions  $0^{\circ\circ}-2^{\circ\circ}$  with  $\langle \beta_1, \ldots, \beta_s, t \rangle = \langle \alpha_1, \ldots, \alpha_n, m \rangle$ . It directly follows from the definition of  $\leq$  on the sets  $A_{\alpha_1...\alpha_nm}$  that after we construct  $A_{\alpha_1...\alpha_nm}$  for all  $\langle \alpha_1, \ldots, \alpha_n, m \rangle \in C_{k,l} \times \mathbb{N}$  with no more than *r* predecessors, condition  $3^{\circ\circ}$  with  $\langle \alpha_1, \ldots, \alpha_n, m \rangle$  instead of  $\langle \beta_1, \ldots, \beta_s, t \rangle$  and r + 1 instead of *r* will also be fulfilled.

After  $A_{\alpha_1...\alpha_n m}$  are constructed for all  $\langle \alpha_1, \ldots, \alpha_n \rangle \in C_{k,l}$  and  $m \leq k$ , put

$$\boldsymbol{P}_{k,l} = \bigcup \left\{ A_{\alpha_1...\alpha_n m} \colon \langle \alpha_1, \ldots, \alpha_n \rangle \in \mathcal{C}_{k,l}, \ m \leqslant k \right\}$$

and

$$\mathcal{C}_{k,l+1} = \bigcup \left\{ \{ \langle \alpha_1, \dots, \alpha_{l+1} \rangle \colon \langle \alpha_1, \dots, \alpha_l \rangle \in \mathcal{C}_{k,l}, \ \alpha_{l+1} \in A_{\alpha_1 \dots \alpha_l m} \} \colon m \leqslant k \right\} \cup \mathcal{C}_{k,l}.$$

The construction is completed.

Put  $P = \bigcup_{k,l} P_{k,l}$  and  $C = \bigcup_{k,l} C_{k,l}$ . The partially ordered sets  $P_{k,l}$  satisfy condition ( $\star$ ) by construction; their orders  $\leq$  extend each other, and P is also a partially ordered set. Put  $\mathfrak{S} = \{\mathfrak{s}_{\alpha_1...\alpha_n}: \langle \alpha_1, \ldots, \alpha_n \rangle \in C\}$ . Conditions  $0^{\circ\circ} - 3^{\circ\circ}$  and the transitivity of the relations  $\preccurlyeq$  and  $\lhd$  ensure the fulfillment of conditions  $0^{\circ} - 2^{\circ}$  from Section 2. Note that  $\mathfrak{s}_{\beta_1...\beta_s} < \mathfrak{s}_{\alpha_1...\alpha_n}$  if and only if  $\langle \beta_1, \ldots, \beta_s \rangle \prec \langle \alpha_1, \ldots, \alpha_n \rangle$ . Thus,  $3^{\circ}$  also holds. Applying the following lemma completes the proof of Principal Statement 2.

**Lemma.** If  $n \in \mathbb{N}$ ,  $\langle \alpha_1, \ldots, \alpha_n \rangle \in C$  is such that  $x_{\alpha_1}, \ldots, x_{\alpha_n}$  belong to Y,  $\varepsilon_1, \ldots, \varepsilon_n = \pm 1$ , and  $g \in F^*(Y)$ , then

$$\|x_{\alpha_1}^{\varepsilon_1}\ldots x_{\alpha_n}^{\varepsilon_n}gx_{\alpha_n}^{-\varepsilon_n}\ldots x_{\alpha_1}^{-\varepsilon_1}\|_Y \leqslant \|g\|_{\{\mathfrak{s}_{\alpha_1,\ldots,\alpha_n}\}}.$$

**Proof.** Let us apply induction on l(g). For g = e, the assertion of the lemma is obvious. Suppose that l(g) > 0 and the lemma is valid for shorter words. Let [g] be g endowed with a scheme such that  $||g||_{\{\mathfrak{s}_{\alpha_1...\alpha_n}\}} = \overline{N}_{\alpha_1...\alpha_n}([g])$ . There are two possibilities:

(A) The word [g] is factorable, i.e.,  $[g] = [g_1] \dots [g_k]$ , where  $k \ge 2$  and all  $[g_i]$  are nonfactorable. Since g is irreducible and  $g \equiv g_1 \dots g_k$ , all  $g_i$  are also irreducible and, therefore,  $g_i \in F^*(Y)$ . In addition,  $l(g_i) < l(g)$ . The induction hypothesis can be applied. We have

$$\begin{aligned} & \left\| x_{\alpha_{1}}^{\varepsilon_{1}} \dots x_{\alpha_{n}}^{\varepsilon_{n}} g x_{\alpha_{n}}^{-\varepsilon_{n}} \dots x_{\alpha_{1}}^{-\varepsilon_{1}} \right\|_{Y} \\ &= \left\| x_{\alpha_{1}}^{\varepsilon_{1}} \dots x_{\alpha_{n}}^{\varepsilon_{n}} g_{1} x_{\alpha_{n}}^{-\varepsilon_{n}} \dots x_{\alpha_{1}}^{-\varepsilon_{1}} \dots x_{\alpha_{1}}^{\varepsilon_{1}} \dots x_{\alpha_{n}}^{\varepsilon_{n}} g_{k} x_{\alpha_{n}}^{-\varepsilon_{n}} \dots x_{\alpha_{1}}^{-\varepsilon_{1}} \right\|_{Y} \\ &\leqslant \sum_{i \leqslant k} \left\| x_{\alpha_{1}}^{\varepsilon_{1}} \dots x_{\alpha_{n}}^{\varepsilon_{n}} g_{i} x_{\alpha_{n}}^{-\varepsilon_{n}} \dots x_{\alpha_{1}}^{-\varepsilon_{1}} \right\|_{Y} \leqslant \sum_{i \leqslant k} \left\| g_{i} \right\|_{\{\mathfrak{s}_{\alpha_{1},\dots,\alpha_{n}}\}} \leqslant \sum_{i \leqslant k} \overline{N}_{\alpha_{1}\dots\alpha_{n}} ([g_{i}]) \\ &= \overline{N}_{\alpha_{1}\dots\alpha_{n}} ([g]) = \left\| g \right\|_{\{\mathfrak{s}_{\alpha_{1},\dots,\alpha_{n}}\}}. \end{aligned}$$

(B) The word [g] is nonfactorable, i.e.,  $[g] = [x^{\varepsilon}[\tilde{g}]y^{-\varepsilon}]$  (and  $l(\tilde{g}) < l(g)$ ). We have

$$N_{\alpha_1\dots\alpha_n}([g]) = \inf_k \{ {}^k N_{\alpha_1\dots\alpha_n}([g]) \}.$$

Let us show that for each  $k \in \mathbb{N}$ ,

$${}^{k}N_{\alpha_{1}\ldots\alpha_{n}}([g]) \geq \|x_{\alpha_{1}}^{\varepsilon_{1}}\ldots x_{\alpha_{n}}^{\varepsilon_{n}}gx_{\alpha_{n}}^{-\varepsilon_{n}}\ldots x_{\alpha_{1}}^{-\varepsilon_{1}}\|_{Y}.$$

Clearly, this inequality holds when  ${}^{k}N_{\alpha_{1}...\alpha_{n}}([g]) \ge 1$ . Now suppose that

$$^{k}N_{\alpha_{1}\ldots\alpha_{n}}([g]) < 1$$

(this, in particular, implies that k > 0). We have

$${}^{k}N_{\alpha_{1}...\alpha_{n}}([g]) = 2^{k} \cdot \sum_{\alpha \in A_{\alpha_{1}...\alpha_{n}k}} \min\{f_{\alpha}(x), f_{\alpha}(y)\} \cdot \overline{N}_{\alpha_{1}...\alpha_{n}\alpha}([\tilde{g}]) + \frac{1}{2^{k}} + 2^{k} \cdot d_{\alpha_{1}...\alpha_{n}k}(x, y)$$
  
< 1;

therefore,

$$d_{\alpha_1...\alpha_n k}(x, y) \leq 1/2^k \leq 1 \quad \text{and}$$

$$\sum_{\alpha \in A_{\alpha_1...\alpha_n k}} \min\{f_\alpha(x), f_\alpha(y)\} \geq \sum_\alpha f_\alpha(x) - \sum_\alpha \left|f_\alpha(x) - f_\alpha(y)\right|$$

$$\geq \sum_\alpha f_\alpha(x) - \frac{1}{2} \geq \frac{1}{2}$$

(by conditions  $2^{\circ}(a)$  and (b) from the definition of  $\mathfrak{S}$ ). Let us denote the element of the finite set

$$\left\{ \alpha \in A_{\alpha_1 \dots \alpha_n k} \colon \min \left\{ f_\alpha(x), f_\alpha(y) \right\} \neq 0 \right\}$$

that minimizes  $\overline{N}_{\alpha_1...\alpha_n\alpha}([\tilde{g}])$  as  $\alpha_{\min}$ . For k > 0, we have

$${}^{k}N_{\alpha_{1}...\alpha_{n}}([g]) \ge 2 \cdot \sum_{\alpha \in A_{\alpha_{1}...\alpha_{n}k}} \min\{f_{\alpha}(x), f_{\alpha}(y)\} \cdot \overline{N}_{\alpha_{1}...\alpha_{n}\alpha_{\min}}([\tilde{g}]) + \frac{1}{2^{k}} \ge \overline{N}_{\alpha_{1}...\alpha_{n}\alpha_{\min}}([\tilde{g}]) + \frac{1}{2^{k}}.$$

Since  $g \in S(Y)$  and  $g \equiv x^{\varepsilon} \tilde{g} y^{-\varepsilon}$ , we have  $x, y \in Y$  and  $\tilde{g} \in F^*(Y)$ . The relation  $\min\{f_{\alpha_{\min}}(x), f_{\alpha_{\min}}(y)\} \neq 0$  and  $0^{\circ\circ}(6)$  imply that  $\operatorname{supp} f_{\alpha_{\min}} = U_{\alpha_{\min}}$  and  $x, y \in U_{\alpha_{\min}} \in \gamma_{\alpha_{1}...\alpha_{n}k}$ . Therefore,  $U_{\alpha_{\min}}$  intersects Y. It follows from condition  $0^{\circ\circ}(5)$  that  $x_{\alpha_{\min}} \in U_{\alpha_{\min}} \cap Y$ . By the induction hypothesis,

$$\overline{N}_{\alpha_1\ldots\alpha_n\alpha_{\min}}([\tilde{g}]) \geqslant \left\| x_{\alpha_1}^{\varepsilon_1}\ldots x_{\alpha_n}^{\varepsilon_n} x_{\alpha_{\min}}^{\varepsilon} \tilde{g} x_{\alpha_{\min}}^{-\varepsilon_n} x_{\alpha_n}^{-\varepsilon_n}\ldots x_{\alpha_1}^{-\varepsilon_1} \right\|_Y,$$

and by conditions  $2^{\circ\circ}(1)$  and (4), since  $x, y, x_{\min} \in U_{\alpha_{\min}} \in \gamma_{\alpha_1...\alpha_n k}$ ,

$$\begin{aligned} & 2 \cdot \left\| x_{\alpha_1}^{\varepsilon_1} \dots x_{\alpha_n}^{\varepsilon_n} x^{\varepsilon} x_{\alpha_{\min}}^{-\varepsilon} x_{\alpha_n}^{-\varepsilon_n} \dots x_{\alpha_1}^{-\varepsilon_1} \right\|_Y \leqslant 1/2^k, \\ & 2 \cdot \left\| x_{\alpha_1}^{\varepsilon_1} \dots x_{\alpha_n}^{\varepsilon_n} x_{\alpha_{\min}}^{\varepsilon} y^{-\varepsilon} x_{\alpha_n}^{-\varepsilon_n} \dots x_{\alpha_1}^{-\varepsilon_1} \right\|_Y \leqslant 1/2^k \end{aligned}$$

Thus,

$$\begin{split} {}^{k}N_{\alpha_{1}\ldots\alpha_{n}}([g]) \\ \geqslant \|x_{\alpha_{1}}^{\varepsilon_{1}}\ldots x_{\alpha_{n}}^{\varepsilon_{n}}x_{\alpha_{\min}}^{\varepsilon}\tilde{g}x_{\alpha_{\min}}^{-\varepsilon}x_{\alpha_{n}}^{-\varepsilon_{n}}\ldots x_{\alpha_{1}}^{-\varepsilon_{1}}\|_{Y} \\ &+ \|x_{\alpha_{1}}^{\varepsilon_{1}}\ldots x_{\alpha_{n}}^{\varepsilon_{n}}x^{\varepsilon}x_{\alpha_{\min}}^{-\varepsilon}x_{\alpha_{n}}^{-\varepsilon_{n}}\ldots x_{\alpha_{1}}^{-\varepsilon_{1}}\|_{Y} \\ &+ \|x_{\alpha_{1}}^{\varepsilon_{1}}\ldots x_{\alpha_{n}}^{\varepsilon_{n}}x_{\alpha_{\min}}^{\varepsilon}y^{-\varepsilon}x_{\alpha_{n}}^{-\varepsilon_{n}}\ldots x_{\alpha_{1}}^{-\varepsilon_{1}}\|_{Y} \\ \geqslant \|x_{\alpha_{1}}^{\varepsilon_{1}}\ldots x_{\alpha_{n}}^{\varepsilon_{n}}x^{\varepsilon}\tilde{g}y^{-\varepsilon}x_{\alpha_{n}}^{-\varepsilon_{n}}\ldots x_{\alpha_{1}}^{-\varepsilon}\|_{Y}, \end{split}$$

as required.  $\Box$ 

Principal Statement 2 immediately follows from the lemma with n = 0 (the words  $x_{\alpha_1}^{\varepsilon_1} \dots x_{\alpha_n}^{\varepsilon_n}$  and  $x_{\alpha_n}^{-\varepsilon_n} \dots x_{\alpha_1}^{-\varepsilon_1}$  are then empty, and  $\mathfrak{s}_{\alpha_1\dots\alpha_n}$  coincides with  $\mathfrak{s} = \mathfrak{s}_{\emptyset}$ ) and the definition of  $\|\cdot\|_{\mathfrak{s}}$ : for  $g \in F(Y) \setminus F^*(Y)$ ,  $\|g\|_{\mathfrak{s}}$  is equal to the cardinality of  $\mathfrak{s}$ , i.e., 1, while  $\|g\|_Y$  has an upper bound of 1/8.  $\Box$ 

**Remark.** If Y = X and dim X = 0, then all pseudometrics from  $\mathcal{D}$  and functions from  $\mathcal{F}$  in the proof of Principal Statement 2 can be chosen rational-valued. Using Lemma 10, it is easy to verify by induction on word lengths that the function  $\overline{N}$  is then also rational-valued. Therefore, the seminorm  $\|\cdot\|_{\{s\}}$  is rational-valued, too. Thus, if dim X = 0, then the topology of  $F_M(X)$  is generated by a family of rational-valued seminorms.

### 8. Main theorems

**Theorem 1.** Let X be a completely regular  $T_1$  space and Y be its subspace. Then the topological subgroup of  $F_M(X)$  generated by Y is the free topological group  $F_M(Y)$  if and only if each bounded continuous pseudometric on Y can be extended to a continuous pseudometric on X.

211

**Proof.** Sufficiency was proved by Pestov [5]. To prove necessity, we need the following Markov theorem [3]:

**Theorem.** Let G be a topological group and U be an open neighborhood of the identity element in G. Then there exists a continuous seminorm  $\|\cdot\|$  on G such that the set  $\{x \in X : \|x\| < 1\}$  is contained in U.

Clearly, we can replace 1 by 1/8 and assume that  $\|\cdot\|$  has an upper bound of 1/8 in Markov's theorem. Applying Principal Statements 1 and 2 completes the proof.  $\Box$ 

**Corollary 1** (see also papers [7] by this author). If a completely regular  $T_1$  space X is Dieudonné complete, then the group  $F_M(X)$  is Weil complete.

**Proof.** Since X is Dieudonné complete, it can be embedded into a product P of metric spaces as a closed subspace in such a way that every bounded continuous pseudometric on X can be extended over P; therefore, Theorem 1 can be applied. It says that  $F_M(X)$  is a topological subgroup of  $F_M(P)$ ; obviously,  $F_M(X)$  is closed in  $F_M(P)$ . Uspenskiĭ [9] proved that the free topological group of a product of metric spaces is Weil complete. Therefore,  $F_M(P)$  and its closed subgroup  $F_M(X)$  are Weil complete.  $\Box$ 

Pestov proved that the Dieudonné completeness of X is also necessary for the completeness of  $F_M(X)$  (see the proof of Theorem 1 in [5]). This result and Corollary 1 imply the equivalence of the Dieudonné completeness of a completely regular  $T_1$  space X and the Weil completeness of its free topological group.

**Corollary 2.** Any  $T_0$  topological group G is a quotient group of a Weil complete  $T_0$  topological group.

**Proof.** Any completely regular  $T_1$  space is an image of a paracompact space under a quotient map. Let X be a paracompact space and f be a quotient map of X onto G. Consider an extension of f to a continuous homomorphism  $\hat{f}: F_M(X) \to G$ . This homomorphism is open, because f is quotient. Therefore, G is a quotient group of  $F_M(X)$ . The space X is Dieudonné complete as a paracompact space. According to Corollary 1, the group  $F_M(X)$  is Weil complete.  $\Box$ 

**Theorem 2** (see also [7]). If dim X = 0, then ind  $F_M(X) = 0$ .

This immediately follows from the remark to Principal Statement 2.

### Acknowledgements

I express my indebtedness to Dr. E.A. Reznichenko and Professor O.G. Okunev for useful discussions and comments, which helped me to substantially improve the paper.

### References

- J.P.L. Hardy, S.A. Morris, H.B. Thompson, Applications of the Stone–Čech compactification to free topological groups, Proc. Amer. Math. Soc. 55 (1) (1976) 160–164.
- [2] A.A. Markov, On free topological groups, Doklady Akad. Nauk SSSR 31 (1941) 299–301 (in Russian).
- [3] A.A. Markov, On free topological groups, Izv. Akad. Nauk SSSR. Ser. Mat. 9 (1) (1945) 3–64 (in Russian); English transl.: Amer. Math. Soc. Transl. (1) 8 (1962).
- [4] E.C. Nummela, Uniform free topological groups and Samuel compactifications, Topology Appl. 13 (1) (1982) 77–83.
- [5] V.G. Pestov, Some properties of free topological groups, Vestnik Moskov. Univ. Mat. Mekh. (1) (1982) 35–37 (in Russian); English transl.: Moscow Univ. Math. Bull. 37 (1) (1982) 46–49.
- [6] P. Samuel, Ultrafilters and compactifications of uniform spaces, Trans. Amer. Math. Soc. 64 (1948) 100–132.
- [7] O.V. Sipacheva, Zero-dimensionality and completeness in free topological groups, I and II, Serdika 15 (1989) 119–140; 141–154 (in Russian).
- [8] V.V. Uspenskiĭ, Subgroups of free topological groups, Dokl. Akad. Nauk SSSR 285 (5) (1985) 1070–1072 (in Russian); English transl.: Soviet Math. Dokl. (3) 32 847–849.
- [9] V.V. Uspenskii, Free topological groups of metrizable spaces, Izv. Akad. Nauk SSSR. Ser. Mat. 54 (6) (1990) 1295–1319 (in Russian).