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Abstract

We prove that ifX is a Tychonoff topological space,Y a subspace ofX, and every bounded
continuous pseudometric onY can be extended to a continuous pseudometric onX, then the free
topological groupFM(Y ) coincides with the topological subgroup ofFM(X) generated byY . For
this purpose, a new description for the topology of a free topological group in terms of continuous
pseudometrics and group seminorms is given. It follows from what has been shown by Uspenskiı̆
that this result implies the Weil completeness ofFM(X) for any Dieudonné completeX. It is also
proved that if dimX = 0, then indFM(X)= 0.  2000 Elsevier Science B.V. All rights reserved.
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The object we study in this paper is the free topological group in the sense of Markov,
introduced by Markov in [2]. Thefree topological groupFM(X) of a Tychonoff spaceX
is the free algebraic group of the setX with the strongest group topology that induces
the original topology onX, or, equivalently, such that any continuous mapping ofX

to an arbitrary topological groupG can be extended to a continuous homomorphism of
FM(X) toG. The reason why these groups are important is that any topological groupG

algebraically generated by its subspace homeomorphic toX is a continuous homomorphic
image of the free topological group ofX; moreover, ifX is a continuous image ofY , then
G is a continuous homomorphic image ofFM(Y ).

LetX be a Tychonoff space,Y a subspace ofX, FM(X) the free topological group ofX,
andFM(Y |X) the topological subgroup ofFM(X) generated byY . This paper is concerned
with one of the most fundamental problems in the theory of free topological groups:
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When does the topology ofFM(Y |X) coincide with the topology of the free groupFM(Y )?
Apparently, the problem was first tackled in 1948 by Samuel [6]; it has been extensively
studied since then (see, e.g., [1,4,8]). Samuel proved that ifX is a Tychonoff space and
µX its Dieudonné completion, thenFM(X|µX)= FM(X). An essential advancement was
made by Pestov [5]. First, he proved that ifY ⊂ X andFM(Y |X) is the free topological
group ofY , then the restriction of the universal uniformity ofX to Y is the universal
uniformity of Y , or equivalently, every bounded continuous pseudometric onY can be
extended to a continuous pseudometric onX. Secondly, he showed that forY dense inX
the converse is true. The latter result has naturally brought up the question if the condition
of density ofY in X is necessary. This work answers the question in the negative. Thus, a
complete description of all subspacesY of a spaceX such thatFM(Y |X) coincides with
FM(Y ) ensues. The description is:

Let X be a completely regularT1 space andY ⊂ X. The free topological
groupFM(Y ) coincides withFM(Y |X) if and only if every bounded continuous
pseudometric onY can be extended to a continuous pseudometric onX.

The scheme of the proof is as follows. First, we define a familyN of continuous
seminorms onFM(X) using a series of auxiliary constructions. Next, we prove that this
family generates the topology ofFM(X), i.e., for every open neighborhoodU of the
identity inFM(X) there exist a seminorm‖·‖ in N anda > 0 such that{

g ∈ FM(X): ‖g‖< a
}⊂U.

Finally, for an arbitrary bounded continuous seminorm‖·‖Y on FM(Y ), we construct a
continuous seminorm‖·‖ ∈ N (on FM(X)) such that‖h‖Y 6 ‖h‖ for eachh in FM(Y ).
This gives the desired statement, because the family of all continuous seminorms generates
the topology ofFM(Y ).

0. Terminology and notation

LetX be a Tychonoff space, one and the same throughout the paper.
The lettersx, y, andz refer to elements ofX; k, l, m, n, r, s, andt denote nonnegative

integers;ε andδ take values 1 and−1;N+ stands for the set of all positive integers, andN
for the set of all nonnegative integers.

For a pseudometricp onX, a > 0, andx ∈X,

Bp(x, a)=
{
y ∈X: p(x, y) < a

}
is the ball of radiusa with the center atx relative top.

Thesupportof a functionf onX is the set suppf = {x ∈X: f (x) 6= 0}.
The semigroup of all (reduced and nonreduced) words in the alphabetX⊕X−1 (X−1 is

a homeomorphic copy ofX) is denoted asS(X), and

S∗(X)=
{
x
ε1
1 . . . x

ε2n
2n ∈ S(X): n ∈N,

2n∑
i=1

εi = 0

}
.
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The free algebraic group ofX, i.e., the set of all irreducible words fromS(X), is denoted
by F(X), and

F ∗(X)=
{
x
ε1
1 . . . x

ε2n
2n ∈ F(X): n ∈N,

2n∑
i=1

εi = 0

}
;

FM(X) is the free topological group ofX in the sense of Markov.
The symbole stands for the empty word, which is the identity element ofS(X) (and

F(X)).
For g,h ∈ S(X), g ≡ h means that the wordsg andh are equal as elements of the

semigroupS(X), i.e., they consist of the same number of letters and their corresponding
letters coincide. Byg = h we denote the equality of the reduced forms of these words.
Wheng andh are treated as elements of the semigroupS(X) or its subsemigroupS∗(X),
gh denotes the semigroup product ofg andh, i.e., the word obtained by successively
writing g andh. When we speak about (irreducible) wordsg andh as elements ofF(X)
or its subgroupF ∗(X), the same combination denotes the usual group product ofg and
h. Thus, when we writexε1

1 . . . x
εn
n ∈ F(X), we mean the reduced form of the word

x
ε1
1 . . . x

εn
n , and when we writexε1

1 . . . x
εn
n ∈ S(X), we mean the sequence of lettersxεii .

Forg ≡ xε1
1 . . . x

εn
n ∈ S(X), g−1 stands for the wordx−εnn . . . x

−ε1
1 .

Let g ≡ xε1
1 . . . x

εn
n ∈ S(X). The numbern is the lengthl(g) of the wordg. We use the

standard notationFn(X) for the set of all words inF(X) whose length does not exceedn.

1. Schemes of words

Let g ≡ xε1
1 . . . x

ε2n
2n ∈ S∗(X), and let

〈i1, j1〉, . . . , 〈in, jn〉
be a partition of the set{1, . . . ,2n} into pairs such thatis < js, εis = −εjs , and for all
s, t 6 n, either the segments[is, js], [it , jt ] are disjoint, or one of them contains the other.
We say that the set

σ = {〈is, js〉: 16 s 6 n
}

is aschemefor g. The wordg together with a fixed schemeσ is denoted as[g,σ ] or simply
[g]. The empty worde admits only one scheme, the empty set.

Put[
S∗(X)

]= {[g,σ ]: g ∈ S∗(X), σ is a scheme forg
}
.

We retain the term “words” for elements of[S∗(X)] as well asS∗(X).
The symbolσg always denotes a scheme forg, and it is always implied that[g] = [g,σg].
Let [a], [b] ∈ [S∗(X)] andl(a)= n. Put

σab = σa ∪
{〈i + n, j + n〉: 〈i, j 〉 ∈ σb}.

Thenσab is a scheme for the wordab. We write[g] = [a][b] wheng ≡ ab and the scheme
σg coincides withσab.



184 O.V. Sipacheva / Topology and its Applications 101 (2000) 181–212

Let [g] ∈ [S∗(X)] andl(g)= n. Put

σg−1 = {〈n− j + 1, n− i + 1〉: 〈i, j 〉 ∈ σg
}
.

Thenσg−1 is a scheme forg−1. We write [g−1] to denote the wordg−1 with the scheme
σg−1.

Let g ∈ [S∗(X)], l(g) = n, and σg be a scheme forg. We call the word[g,σg]
nonfactorableif g is nonempty (i.e.,n > 2) and〈1, n〉 ∈ σg . For [g], [g̃] ∈ [S∗(X)], the
relation[g] = [xε[g̃]y−ε] means thatg ≡ xεg̃y−ε and

σg =
{〈1, l(g)〉} ∪ {〈i + 1, j + 1〉: (i, j) ∈ σg̃

}
.

Clearly, a word is nonfactorable if and only if it has the form[xε[g̃]y−ε].

Remark 1. Every nonempty[g] ∈ [S∗(X)] can be represented as a product[g1][g2], where
g1 is an arbitrary (possibly, empty) and[g2] a nonfactorable word from[S∗(X)], and this
representation is unique. Indeed, forg ≡ xε1

1 . . . x
εn
n , find the pair〈k,n〉 ∈ σg that contains

n and put

g1≡ xε1
1 . . . x

εk−1
k−1 , g2≡ xεkk . . . xεnn ,

σg1 =
{〈i, j 〉 ∈ σg : j < k

}
, σg2 =

{〈i − k + 1, j − k + 1〉: 〈i, j 〉 ∈ σg, i > k
}
.

Let h≡ xε1
1 . . . x

εn
n ∈ S(X) and[g], [g̃] ∈ [S∗(X)]. We write[g] = [h[g̃]h−1] if

[g] = [xε1
1

[
x
ε2
2

[
. . . [xεnn [g̃]x−εnn ] . . .

]
x
−ε2
2

]
x
−ε1
1

]
.

We call a word[g] factorableif it is nonempty and not nonfactorable. Clearly,[g] is
factorable if and only if there existn> 2 and nonfactorable words[gi], i = 1, . . . , n such
that[g] = [g1] . . . [gn], and this representation of[g] is unique.

Let [g] ∈ [S∗(X)], g ≡ axεx−εb for somea, b ∈ S(X), ĝ ≡ ab, and l(a) = k − 1.
Clearly,ĝ ∈ S∗(X). Put

σĝ =
{〈i, j 〉 ∈ σg : j < k

}
∪ {〈i, j − 2〉: 〈i, j 〉 ∈ σg, i < k, j > k + 1

}
∪ {〈i − 2, j − 2〉: 〈i, j 〉 ∈ σg, i > k + 1

}
∪ {〈i, j − 2〉: 〈i, k〉 ∈ σg, 〈k + 1, j 〉 ∈ σg

}
.

Note that if〈k, k + 1〉 ∈ σg , then the last term in the union is empty.
It is readily verified thatσĝ is a scheme for the word̂g. We write [ĝ] to denoteĝ with

the schemeσĝ .

2. Definition of family S

Let 〈P ,6〉 be a partially ordered set.
Define a relationG on the family of all nonempty subsets inP by the rule:

A GB if for everyα ∈A there exists aβ ∈B such thatα 6 β.
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Obviously,G is transitive.
Forα ∈ P andB ⊂ P , we put

B(α)= {β ∈ B: α 6 β}.

Remark 2. If A is a nonempty antichain inP andB ⊂ P , then the family{B(α): α ∈A}
is disjoint.

Fix a partially ordered set〈P ,6〉.
LetA be a collection of nonempty subsets ofP labeled by nonnegative integers:

A= {Ak: k ∈N}.
Consider a setS=S(P ) of tripless= 〈A,F ,D〉 satisfying the following conditions:

0◦. (a)

A= {Ak: k ∈N},
whereAk are disjoint nonempty antichains inP ;

(b)

F = {Fk: k ∈N}
is a collection of families

Fk = {fα : α ∈Ak}
of continuous nonnegative-valued functions onX such that for everyx ∈X and
k ∈N, the set{α ∈Ak: fα(x) 6= 0} is finite;

(c)

D= {dk: k ∈N}
is a family of continuous pseudometrics onX.

When we refer to an elements of the familyS, we always imply thats= 〈A,F ,D〉
and the setsA, F , andD have the form specified in condition 0◦. Primed, indexed,
or otherwise markedA, F , D, A, F , f , andd correspond to the similarly marked
s. For example,s′ = 〈A′,F ′,D′〉, A′ = {A′k: k ∈N}, etc.

1◦. If k <m, then
(a) Ak GAm;
(b) for anyx ∈X andα ∈Ak ,

fα(x)6
∑

β∈Am(α)
fβ(x);

(c) for anyx, y ∈X,

2 · dk(x, y)6 dm(x, y).
2◦. For allx, y, andk,

(a) ∑
α∈Ak

fα(x)> 1;
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(b)

2 ·
∑
α∈Ak

∣∣fα(x)− fα(y)∣∣6 dk(x, y).
To formulate the last condition on the familyS, we need to order its elements. Let
s, s′ ∈S. We writes< s′ if for any k ∈N, the following relations hold:
(1)

Ak GA′k;
(2) for anyx ∈X andα ∈Ak ,

fα(x)6
∑

β∈A′k(α)
f ′β(x);

(3) for anyx, y ∈X,

2 · dk(x, y)6 d ′k(x, y).
3◦. To everys= 〈A,F ,D〉, there is assigned a family{

sα = 〈Aα,Fα,Dα〉 ∈S: α ∈
⋃
A=

⋃
k∈N

Ak

}
such thatsα > s for all α ∈⋃A and if s, s′ ∈S, α ∈⋃A, α′ ∈⋃A′, s6 s′, and
α 6 α′, thensα < s′

α′ .
Note that condition 3◦ implies the presence of a complex structure onS: since the

triplessα assigned tos belong toS, they are also assigned certain triples fromS, and so
on. This structure is discussed in more detail in the proof of Principal Statement 2; now we
only need the formal definition given above. Note also that not all partially ordered setsP

admit a nonempty familyS with the properties 0◦–3◦: for example, 0◦(a) implies thatP
should be infinite and 3◦ thatP (α) should be infinite for infinitely manyα ∈ P ; moreover,
3◦ implies thatP should contain an infinite number of infinite chains. In Sections 3–6,
we assume thatS is a fixed nonempty family defined for a suitable ordered setP and
satisfying conditions 0◦–3◦.

3. Definition of functionsN andN

Take s ∈ S. Let us construct functionsNs andNs on the set[S∗(X)], i.e., define
numbersNs([g]) andNs([g]) for each[g] from [S∗(X)]. The functions will be constructed
by induction on the length ofg.

PutNs([e])=Ns([e])= 0 for all s ∈S.
Let s ∈ S and [g] ∈ [S∗(X)], l(g) > 0. Let us assume that for alls′ ∈ S and [h] ∈
[S∗(X)] with l(h) < l(g), the numbersNs′([h]) andNs′([h]) are already defined. There
are two possibilities:

(A) The word [g] is factorable, i.e.,[g] = [g1] . . . [gn], wheren > 2 and all [gi] are
nonfactorable; clearly,l(gi) < l(g) for all i 6 n. Define
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Ns

([g])=∑
i6n

Ns

([gi]) and

Ns

([g])=min
{
Ns([g]),1

}
.

(B) The word[g] is nonfactorable, i.e.,[g] = [xε[g̃]y−ε] for somex, y, ε andg̃. Put

kNs

([g])= 2k ·
∑
α∈Ak

min
{
fα(x), fα(y)

} ·Nsα

([g̃])+ 1

2k
+ 2k · dk(x, y) and

Ns

([g])= inf
k∈N

{
kNs([g])

}
.

Finally, define

kNs

([g])=min
{
kNs([g]),1

}
and

Ns

([g])= inf
k∈N

{
kNs([g])

}=min
{
Ns([g]),1

}
.

The functionsNs andNs are defined.
Let us introduce one more notation: put

kBs

(
x, y, [h])=∑

α∈Ak
min

{
fα(x), fα(y)

} ·Nsα

([h])
for s ∈S, [h] ∈ [S∗(X)], x, y ∈X, andk ∈N. Then

kNs

([g])= 2k · kBs

(
x, y, [g̃])+ 1

2k
+ 2k · dk(x, y).

The functionskNs, kNs, andkBs will be used below.
The subscripts will often be omitted. The functionsN , N , kN , kN , andkB are then

assumed to correspond to the triples. MarkedN andB correspond to the similarly marked
s. For example, the functionsNα , Nα , kNα , kNα and kBα correspond tosα , and the
functionsN ′, N ′, kN ′, kN ′ andkB ′ to s′.

Remark 3. If s ∈S and[g] = [a][b] ∈ [S∗(X)], then

N
([g])6N([a])+N([b])6N([g]),

and ifN([a])+N([b])6 1 then

N
([g])=N([a])+N([b])=N([g]).

4. Lemmas

Everywhere below, letters denote inequalities and digits the last links in chains of
inequalities.

Lemma 1. Suppose thatf is a function onX, [g] ∈ [S∗(X)], ands ∈S. Then for anyx
andy,

f (x) ·N([g])6 f (y) ·N([g])+ ∣∣f (x)− f (y)∣∣
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and, therefore,

f (x) ·N([g])6min
{
f (x), f (y)

} ·N([g])+ ∣∣f (x)− f (y)∣∣.
Proof. It is sufficient to apply the inequalities 06N([g])6 1. 2
Lemma 2. Suppose thats, s′ ∈S, s< s′, and[g] ∈ [S∗(X)]. ThenN([g])6N ′([g]).

Proof. Let us apply induction onl(g). For g ≡ e, the assertion of Lemma 2 is trivial.
Assume thatl(g) > 0 and the statement is already proved for words of smaller lengths.
There are two possibilities:

(A) The word [g] is factorable. Then[g] = [g1] . . . [gn], wheren > 2 and all[gi ] are
nonfactorable. Sincel(gi) < l(g), we can apply the induction hypothesis and obtain

N
([g])=∑

i6n
N
([gi])6∑

i6n
N ′
([gi ])=N ′([g]).

(B) The word[g] is nonfactorable, i.e.,[g] = [xε[g̃]y−ε]. Let us prove thatkN([g]) 6
kN ′([g]) for all k. To do this, it suffices to show that

kB
(
x, y, [g̃])+ dk(x, y)6 kB ′

(
x, y, [g̃])+ d ′k(x, y). (a)

We have

kB
(
x, y, [g̃])=∑

α∈Ak
min

{
fα(x), fα(y)

} ·Nα

([g̃])6∑
α∈Ak

fα(x) ·Nα
([g̃]).

Takeα ∈Ak . According to condition (2) from the definition of the relation< onS,

fα(x)6
∑

β∈A′k(α)
f ′β(x).

For everyβ ∈ A′k(α), we havesα < s′β (by condition 3◦ from the definition ofS) and

henceN ′β([g])>Nα([g̃]) (by the induction hypothesis). Therefore,∑
α∈Ak

fα(x) ·Nα

([g̃])6∑
α∈Ak

( ∑
β∈A′k(α)

f ′β(x)
)
·Nα

([g̃])
6
∑
α∈Ak

( ∑
β∈A′k(α)

f ′β(x) ·N ′β
([g̃]))

=
∑

β∈⋃{A′k(α): α∈Ak}
f ′β(x) ·Nβ

([g̃])
6
∑
β∈A′k

f ′β(x) ·N ′β
([g̃]). (1)

By Lemma 1,

(1)6
∑
β∈A′k

min
{
f ′β(x), f ′β(y)

} ·N ′β([g̃])+∑
β∈A′k

∣∣f ′β(x)− f ′β(y)∣∣.



O.V. Sipacheva / Topology and its Applications 101 (2000) 181–212 189

Condition 2◦(b) from the definition ofS implies that∑
β∈A′k

∣∣f ′β(x)− f ′β(y)∣∣6 d ′k(x, y)2
;

therefore,

kB
(
x, y, [g̃])6 kB ′

(
x, y, [g̃])+ d ′k(x, y)

2
.

Finally, condition (3) in the definition of< yields (a).
Thus,kN([g])6 kN ′([g]) for all k. Therefore,N([g])6N ′([g]).
We showed thatN([g])6N ′([g]) in both cases (A) and (B). This immediately implies

the desired inequalityN([g])6N ′([g]). 2
Lemma 3. Suppose that[h] ∈ [S∗(X)], s ∈S, x, y, z ∈X, andk,m ∈N, k 6m. Then

(i) kB(x, y, [h])6 mB(x, z, [h])+ dm(x, z)/2;
(ii) kB(x, y, [h])+ dk(x, y)6 mB(x, y, [h])+ dm(x, y);
(iii) kB(y, z, [h])6 kB(x, y, [h])+ dk(x, z)/2.

Proof. (i) By definition,

kB
(
x, y, [h])=∑

α∈Ak
min

{
fα(x), fα(y)

} ·Nα([h])
6
∑
α∈Ak

fα(x) ·Nα

([h]). (2)

Supposek <m. Takeα ∈Ak. By condition 1◦(b), we have

fα(x)6
∑

β∈Am(α)
fβ(x).

For anyβ ∈Am(α), we havesα < sβ (by condition 3◦) and henceNβ([h])>Nα([h]) (by
Lemma 2). Therefore,

(2)6
∑
α∈Ak

( ∑
β∈Am(α)

fβ(x)

)
·Nα

([h])
6
∑
α∈Ak

( ∑
β∈Am(α)

fβ(x) ·Nβ

([h]))6 ∑
β∈Am

fβ(x) ·Nβ

([h]). (3)

We showed that(2)6 (3) for k < m; obviously, this inequality also holds fork =m. By
Lemma 1 and condition 2◦(b),

(3)6
∑
β∈Am

min
{
fβ(x), fβ(z)

} ·Nβ

([h])+ ∑
β∈Am

∣∣fβ(x)− fβ(z)∣∣
6 mB

(
x, z, [h])+ dm(x, z)/2.

Therefore,kB(x, y, [h])6 mB(x, z, [h])+ dm(x, z)/2, as required.
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(ii) The casek = m does not need proving. Fork < m, it is sufficient to apply (i) and
the relationdk(x, y)6 dm(x, y)/2, which is implied by condition 1◦(c) from the definition
of S.

(iii) By definition,
kB
(
y, z, [h])=∑

α∈Ak
min

{
fα(y), fα(z)

} ·Nα([h]).
Takeα ∈Ak . If min{fα(x), fα(y), fα(z)} 6= fα(x), then

min
{
fα(y), fα(z)

} ·Nα([h])6min
{
fα(x), fα(y)

} ·Nα

([h]).
If min{fα(x), fα(y), fα(z)} = fα(x), then

min
{
fα(y), fα(z)

} ·Nα([h])6 fα(z) ·Nα([h])
6 fα(x) ·Nα

([h])+ ∣∣fα(x)− fα(z)∣∣
(by Lemma 1), and the last sum is equal to

min
{
fα(x), fα(y)

} ·Nα

([h])+ ∣∣fα(x)− fα(z)∣∣.
Therefore,

min
{
fα(y), fα(z)

} ·Nα([h])6min
{
fα(x), fα(y)

} ·Nα

([h])+ ∣∣fα(x)− fα(z)∣∣
for anyα ∈Ak, whence

kB
(
y, z, [h])6 kB

(
x, y, [h])+∑

α∈Ak

∣∣fα(x)− fα(z)∣∣.
The required inequality follows from this and the relation∑

α∈Ak

∣∣fα(x)− fα(z)∣∣6 dk(x, z)
2

,

which is implied by condition 2◦(b). 2
Lemma 4. Suppose thats ∈S, k ∈N, [a], [b] ∈ [S∗(X)], andx, y, z ∈X. Then

kB
(
y, z, [a][b])6 kB

(
x, y, [a])+ kB

(
x, z, [b])+ dk(x, z)

2
.

Proof. First, we show that for anyα ∈Ak ,
min

{
fα(y), fα(z)

} ·Nα([a][b])
6min

{
fα(x), fα(y)

} ·Nα

([a])+min
{
fα(x), fα(z)

} ·Nα

([b])
+ ∣∣fα(x)− fα(z)∣∣. (b)

Let α belong toAk. By definition,Nα([a][b])6Nα([a])+Nα([b]).
If min{fα(x), fα(y), fα(z)} 6= fα(x), then

min
{
fα(y), fα(z)

} ·Nα([a][b])
6min

{
fα(y), fα(z)

} ·Nα([a])+min
{
fα(y), fα(z)

} ·Nα

([b])
6min

{
fα(x), fα(y)

} ·Nα

([a])+min
{
fα(x), fα(z)

} ·Nα

([b]),
which immediately implies (b).
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Suppose that min{fα(x), fα(y), fα(z)} 6= fα(x). Then

min
{
fα(y), fα(z)

} ·Nα([a][b])6 fα(z) ·Nα

([a][b]). (4)

By Lemma 1,

(4)6 fα(x) ·Nα

([a][b])+ ∣∣fα(x)− fα(z)∣∣
6 fα(x) ·

(
Nα([a])+Nα([b])

)+ ∣∣fα(x)− fα(z)∣∣
=min

{
fα(x), fα(y)

} ·Nα([a])
+min

{
fα(x), fα(z)

} ·Nα

([b])+ ∣∣fα(x)− fα(z)∣∣.
Thus, (b) holds for allα fromAk; therefore

kB
(
y, z, [a][b])6 kB

(
x, y, [a])+ kB

(
x, z, [b])+∑

α∈Ak

∣∣fα(x)− fα(z)∣∣.
This and 2◦(b) imply the required inequality.2
Lemma 5. If s ∈S, [g̃1], [g̃2] ∈ [S∗(X)], k ∈N, x, y ∈X, ε ∈ {−1,1}, and

kN
([xε[g̃1][g̃2]y−ε]

)
< 1,

then

2k · kB(x, y, [g̃1][g̃2]
)
> 2k · kB(x, y, [g̃1]

)+N([g̃2]
)
.

Proof. By definition,

kB
(
x, y, [g̃1][g̃2]

)=∑
α∈Ak

min
{
fα(x), fα(y)

} ·Nα([g̃1][g̃2]
)
.

Takeα ∈Ak. If Nα([g̃1])+Nα([g̃2]) < 1, then by Remark 3, the relations< sα (implied
by 3◦) and Lemma 2 yield

Nα

([g̃1][g̃2]
)=Nα([g̃1]

)+Nα

([g̃2]
)
>Nα

([g̃1]
)+N([g̃2]

)
.

Note that in this case,Nα([g̃1][g̃2]) < 1. If Nα([g̃1])+Nα([g̃2])> 1, then

Nα

([g̃1][g̃2]
)= 1>Nα

([g̃1]
)=Nα

([g̃1]
)+N([g̃2]

)−N([g̃2]
)
.

Thus,∑
α∈Ak

min
{
fα(x), fα(y)

} ·Nα

([g̃1][g̃2]
)

>
∑
α∈Ak

min
{
fα(x), fα(y)

} · (Nα([g̃1])+N([g̃2])
)

−
∑
α∈Ak :

Nα([g̃1][g̃2])=1

min
{
fα(x), fα(y)

} ·N([g̃2]
)
. (c)
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Let us show that∑
α∈Ak

min
{
fα(x), fα(y)

}
> 1− 1

2k+1 +
1

22k+1 . (d)

Obviously,∑
α∈Ak

min
{
fα(x), fα(y)

}
>
∑
α∈Ak

fα(x)−
∑
α∈Ak

∣∣fα(x)− fα(y)∣∣. (5)

It follows from 2◦(a) and (b) that(5)> 1−dk(x, y)/2. By assumption, 1> kN([xε[g̃1][g̃2]·
y−ε]), and by the definition ofkN ,

kN
([
xε[g̃1][g̃2]y−ε

])
> 1/2k + 2k · dk(x, y);

therefore,dk(x, y) < 1/2k − 1/22k and(5)> 1− 1/2k+1+ 1/22k+1, which implies (d).
Let us show that

2k ·
∑
α∈Ak :

Nα([g̃1][g̃2])=1

min
{
fα(x), fα(y)

}
6 1− 1

2k
. (e)

We have

2k ·
∑
α∈Ak :

Nα([g̃1][g̃2])=1

min
{
fα(x), fα(y)

}
= 2k ·

∑
α∈Ak :

Nα([g̃1][g̃2])=1

min
{
fα(x), fα(y)

} ·Nα

([g̃1][g̃2]
)

6 2k · kB(x, y, [g̃1][g̃2]
)
.

By condition and the definition ofkN ,

1> kN
([
xε[g̃1][g̃2]y−ε

])
> 2k · kB(x, y, [g̃1][g̃2]

)+ 1/2k,

whence

2k · kB(x, y, [g̃1][g̃2]
)
< 1− 1/2k,

which gives (e).
Inequalities (c), (d), and (e) give

2k ·
∑
α∈Ak

min
{
fα(x), fα(y)

} ·Nα

([g̃1][g̃2]
)

> 2k ·
∑
α∈Ak

min
{
fα(x), fα(y)

} ·Nα

([g̃1]
)

+ 2k · (1− 1/2k+1+ 1/22k+1) ·N([g̃2]
)− (1− 1/2k

) ·N([g̃2]
)
,

whence

2k · kB(x, y, [g̃1][g̃2]
)

> 2k · kB(x, y, [g̃1]
)+ (2k − 1− 1/2+ 1/2k + 1/2k+1) ·N([g̃2]

)
.
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Direct evaluation shows that 2k−1−1/2+1/2k+1/2k+1> 1 for eachk, which completes
the proof of Lemma 5. 2
Lemma 6. If kN([xε[g̃]y−ε]) < 1, thenN([g̃]) < 1/2k.

Proof. By the condition and the definition ofkN , we have

1> 2k · kB(x, y, [g̃])+ 1/2k + 2k · dk(x, y).
By Lemma 3(i),

kB
(
x, y, [g̃])+ dk(x, y)> kB

(
x, x, [g̃]);

therefore

1> 2k · kB(x, x, [g̃])= 2k ·
∑
α∈Ak

fα(x) ·Nα

([g̃]).
Sinces< sα (see 3◦), Lemma 2 implies thatNα([g̃])>N([g̃]) for all α ∈Ak ; by condition
2◦(a), we have 16

∑
α∈Ak fα(x). Hence, 1> 2k ·N([g̃]), as required. 2

Lemma 7. If dm(x, z)6 1 andm> 0, then

2m · mB(x, z, [h])>N([h]).
Proof. By definition and becausem> 0, we have

2m · mB(x, z, [h])> 2 · mB(x, z, [h])= 2 ·
∑
α∈Ak

min
{
fα(x), fα(z)

} ·Nα

([h]).
Sinces< sα for all α ∈⋃A=⋃k∈NAk (see 3◦), Lemma 2 implies that

Nα

([h])>N([h]) for all α ∈Am.
This and 2◦(a) and (b) imply that

2m · mB(x, z, [h])
> 2 ·

( ∑
α∈Am

min
{
fα(x), fα(z)

}) ·N([h])
> 2 ·N([h]) ·( ∑

α∈Am
fα(x)−

∑
α∈Am

∣∣fα(x)− fα(z)∣∣)
> 2 ·N([h]) · (1− dm(x, z)/2).

By condition,dm(x, z)6 1, whence

2 · (1− dm(x, z)/2)> 2 · (1− 1/2)= 1 and

2m · mB(x, z, [h])>N([h]). 2
Lemma 8. Suppose thats ∈S and[g] = [xε[g̃]y−ε] ∈ [S∗(X)]. Then either

(a) N([g])= kN([g]) (andN([g])> 1/2k) for somek, or
(b) kB(x, y, [g̃])= dk(x, y)= 0 (andN([g])= 0) for all k.
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Proof. For k ∈N, put

ak = kB
(
x, y, [g̃])+ dk(x, y).

We have

kN
([g])= 2k · ak + 1/2k and N

([g])= inf
k

{
2k · ak + 1/2k

}
.

Lemma 3(ii) implies thatak 6 am for k 6 m. Clearly, if ak0 6= 0 for somek0, then the
sequence{2k ·ak+1/2k}∞k=0 has a minimal element, i.e., (a) holds. Otherwise (whenak = 0
for all k ∈N) (b) holds. 2

5. Statements

As previously, we omit the subscripts atN , N , andB.

Statement 1. Suppose thats ∈ S, a, b ∈ S(X), ab ∈ S∗(X), g ≡ axεx−εb, [g] ∈
[S∗(X)], and[ĝ] = [ab] has the schemeσĝ defined at the end of Section1. Then

N
([ĝ])6N([g]).

Proof. Apply induction onl(g). If g ≡ xεx−ε, then the assertion is obvious. Suppose that
l(g) > 2 and the required inequality holds for shorter words of the specified form. Consider
all possible cases.

(1) a, b 6≡ e.
(1.1)[g] is nonfactorable, i.e.,a ≡ yδã, b≡ b̃z−δ, [g] = [yδ[ãxεx−εb̃]z−δ], and

N
([g])= inf

k

{
2k ·

∑
α∈Ak

min
{
fα(y), fα(z)

} ·Nα

([ãxεx−εb̃])+ 1

2k
+ 2k · dk(y, z)

}
.

Clearly,[ĝ] = [yδ[ãb̃]z−δ], where[ãb̃] = [ ̂ãxεx−εb̃]. By the induction hypothesis,

N ′
([ãb̃])6N ′([ãxεx−εb̃])

for anys′ ∈S; therefore,

N
([g])> inf

k

{
2k ·

∑
α∈Ak

min
{
fα(z), fα(y)

} ·Nα

([ãb̃])+ 1

2k
+ 2k · dk(y, z)

}
=N([ĝ]),

whenceN([g])>N([ĝ]).
(1.2)[g] is factorable, i.e.,[g] = [g1] . . . [gn], wheren> 2 and all[gi] are nonfactorable.
(1.2.1a)l(g1)6 l(a), i.e.,a ≡ g1ã for someã ∈ S∗(X) andg2 . . . gn ≡ ãxεx−εb. Endow

ãxεx−εb with the scheme such that[ãxεx−εb] = [g2] . . . [gn]. We have

N
([g])= n∑

i=1

N
([gi])=N([g1]

)+ n∑
i=2

N
([gi])

>N
([g1]

)+N([g2] . . . [gn]
)=N([g1]

)+N([ãxεx−εb]).



O.V. Sipacheva / Topology and its Applications 101 (2000) 181–212 195

Let [ãb] = [ ̂ãxεx−εb] (this, of course, refers to the choice of a scheme forãb). Clearly,
[ĝ] = [g1][ãb]. By the induction hypothesis,N([ãxεx−εb])>N([ãb]), hence,

N
([g])>N([g1]

)+N([ãb])>N([g1][ãb]
)=N([ĝ]).

Thus,N([g])>N([ĝ]), andN([g])>N([ĝ]).
(1.2.1b)l(gn)6 l(b). This is considered similarly to (1.2.1a).
(1.2.2)n= 2, g1≡ axε, g2≡ x−εb. Because the words[g1] and[g2] are nonfactorable,

they can be represented as

[g1] =
[
y−ε[ã]xε], [g2] =

[
x−ε[b̃]zε].

Clearly,[ĝ] = [y−ε[ã][b̃]zε]. We have

N
([g1]

)= inf
k

{
kN
([
y−ε[ã]xε])},

N
([g2]

)= inf
m

{
mN
([
x−ε[b̃]zε])},

N
([ĝ])= inf

l

{
lN
([
y−ε[ãb̃]zε])}.

Let us show that for anyk andm not both equal to zero, there existsl such that

lN
([
y−ε[ã][b̃]zε])6 kN

([
y−ε[ã]xε])+ mN

([
x−ε[b̃]zε]). (a)

For this purpose, we have to consider further subcases.
(1.2.2.1a)k <m. Putl = k. By Lemma 4,

kB
(
y, z, [ã][b̃])6 kB

(
x, y, [ã])+ kB

(
x, z, [b̃])+ dk(x, z)/2.

By Lemma 3(i),

kB
(
x, z, [b̃])6 mB

(
x, z, [b̃])+ dm(x, z)/2.

By condition 1◦(c) from the definition ofS, dk(x, z)6 dm(x, z). Thus, we have

kB
(
y, z, [ã][b̃])6 kB

(
x, y, [ã])+ mB

(
x, z, [b̃])+ dm(x, z),

and

kN
([
y−ε[ã][b̃]zε])
= 2k · kB(y, z, [ã][b̃])+ 1/2k + 2k · dk(y, z)
6 2k · kB(x, y, [ã])+ 2k · mB(x, z, [b̃])+ 2k · dm(x, z)
+ 1/2k + 2k · dk(x, y)+ 2k · dk(x, z). (1)

Condition 1◦(c) implies thatdk(x, z)6 dm(x, z); therefore,

2k · dm(x, z)+ 2k · dk(x, z)6 2k+1 · dm(x, z)6 2m · dm(x, z).
This proves inequality (a) forl = k.

(1.2.2.1b)m< k. This case is considered similarly to (1.2.2.1a).
(1.2.2.2)m= k > 0. Putl = k − 1. We have
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k−1B
(
y, z, [ã][b̃])6 k−1B

(
y, z, [ã])+ k−1B

(
y, z, [b̃])

6 k−1B
(
y, y, [ã])+ k−1B

(
z, z, [b̃]) (2)

(this follows from the definition ofk−1B). By Lemma 3(i),

(2)6 kB
(
x, y, [ã])+ dk(x, y)+ kB

(
x, z, [b̃])+ dk(x, z);

therefore,

k−1N
([
y−ε[ã][b̃]zε])

= 2k−1 · k−1B
(
y, z, [ã][b̃])+ 1/2k−1+ 2k−1 · dk−1(y, z)

6 2k−1 · kB(x, y, [ã])+ 2k−1 · dk(x, y)+ 2k−1 · kB(x, z, [b̃])+ 2k−1 · dk(x, z)
+ 1/2k + 1/2k + 2k−1 · dk−1(x, y)+ 2k−1 · dk−1(x, z)

6 kN
([
y−ε[ã]xε])+ kN

([
x−ε[b̃]zε])

(we applied 1◦(c)). This proves (a) fork =m= l + 1.
Thus, for anyk andm not both equal to zero,
(i) there existsl satisfying (a), hence,
(ii) N([ĝ])6 kN([g1])+ mN([g2]), and, therefore,
(iii) N([ĝ])6 kN([g1])+ mN([g2]).

Obviously, the last inequality also holds fork =m= 0. We have

N
([ĝ])6N([g1]

)+N([g2]
)

and, finally,N([ĝ])6N([g]).
(2) a 6≡ e andb ≡ e, i.e.,g ≡ axεx−ε.
(2.1) [g] is nonfactorable, i.e., [g] = [yε[g̃]x−ε]. According to Remark 1, there exists a

(unique) representation[g̃] = [g̃1][g̃2] with nonfactorable[g̃2]. Let [g̃2] = [z−ε[ ˜̃g2]xε]. It
is directly verified that

[ĝ] = [yε[g̃1]z−ε
][ ˜̃g2

]
.

We have to prove thatN([ĝ])6N([g]). To this end, it suffices to show that
kN
([
yε[g̃1]z−ε

])+N([ ˜̃g2
])
6 kN

([g])
for all k such thatkN([g]) < 1. Note that all thesek are positive and meet the condition
N([g̃]) < 1/2k (Lemma 6), which implies thatN([g̃2]) < 1/2k.

Thus, takek such thatkN([g]) < 1. Letm> k andmN([g̃2])6 1. By 1◦(c), dk(x, z)6
dm(x, z); therefore,

2k+1 · dk(x, z)6 2m · dm(x, z)
and

2k+1 · dk(x, z)+N
([ ˜̃g2

])
6 2m · dm(x, z)+N

([ ˜̃g2
])
.

It follows from mN([g̃2])6 1 thatdm(x, z)6 1. By Lemma 7,

2k+1 · dk(x, z)+N
([ ˜̃g2

])
6 2m · mB(x, z, [ ˜̃g2

])+ 1/2m+ 2m · dm(x, z) (b)

for all m> k.
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As mentioned,N([g̃2]) < 1/2k. BecausemN([g̃2])> 1/2m by the definition ofmN , this
implies that

N
([g̃2]

)=N([g̃2]
)= inf

{
mN([g̃2]): m> k, mN([g̃2])6 1

}
.

Inequality (b) implies that

2k+1 · dk(x, z)+N
([ ˜̃g2

])
6N

([g̃2]
)
.

Applying Lemma 5 yields

2k · kB(x, y, [g̃1]
)+ 2k+1 · dk(x, z)+N

([ ˜̃g2
])
6 2k · kB(x, y, [g̃1][g̃2]

)
.

By Lemma 3(iii),

2k · kB(y, z, [g̃1]
)
6 2k · kB(x, y, [g̃1]

)+ 2k · dk(x, z),
hence,

2k · kB(y, z, [g̃1]
)+ 2k · dk(x, z)+N

([ ˜̃g2
])
6 2k · kB(x, y, [g̃1][g̃2]

)
.

Finally, it follows fromdk(y, z)6 dk(x, z)+ dk(y, z) that

2k · kB(y, z, [g̃1]
)+ 2k · dk(y, z)+N

([ ˜̃g2
])
6 2k · kB(x, y, [g̃1][g̃2]

)+ 2k · dk(x, y)
and

kN
([
yε[g̃1]z−ε

])+N([ ˜̃g2
])
6 kN

([
yε[g̃1][g̃2]x−ε

])= kN
([g]),

as required.
(2.2)[g] is factorable, i.e.,[g] = [g1] . . . [gn], wheren> 2 and all[gi] are nonfactorable.

We have

N
([g])=∑

i6n
N
([gi])=∑

i<n

N
([gi ])+N([gn]).

The wordgn has the form̃gnxεx−ε. Let us endow̃gn with the scheme such that[g̃n] = [ĝn]
(i.e., [g̃n] is obtained from[gn] by deleting the pairxεx−ε in the manner described in
Section 2). Obviously,[ĝ] = [g1] . . . [gn−1][g̃n]. By the induction hypothesis,

N
([ĝn])=N([g̃n])6N([gn]);

therefore,

N
([ĝ])=∑

i<n

N
([gi])+N([g̃n])6∑

i6n
N
([gi])=N([g]),

which proves thatN([ĝ])6N([g]).
(3) a ≡ e, b 6≡ e. Argument is similar to that in case (2).2

Statement 2. Suppose thats ∈S and[g] ∈ [S∗(X)]. ThenN([g])=N([g−1]).

Proof. Let us apply induction onl(g). If g ≡ e, then the assertion is obvious. Suppose that
l(g) > 0 and the statement is valid for shorter words. There are two possibilities:
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(A) The word [g] is factorable, i.e.,[g] = [g1] . . . [gn], wheren > 2 and all [gi] are
nonfactorable. Obviously,[g−1] = [g−1

n ] . . . [g−1
1 ] and l(gi) < l(g) for i 6 n. By the

induction hypothesis,N([g−1
i ])=N([gi ]) for i 6 n; therefore,

N
([g])=∑

i6n
N
([gi])=∑

i6n
N
([g−1

i ]
)=N([g−1]),

whenceN([g])=N([g−1]).
(B) The word[g] is nonfactorable, i.e.,[g] = [xε[g̃]y−ε]. Clearly,[g−1] = [yε[g̃−1]x−ε].

We have

kN
([g])= 2k · kB(x, y, [g̃])+ 1/2k + 2k · dk(x, y)

for all k. By the induction hypothesis,Nα([g̃]) = Nα([g̃−1]) for all α ∈ Ak , hence,
kB(x, y, [g̃])= kB(x, y, [g̃−1]). Thus,

kN
([g])= 2k · kB(x, y, [g̃−1])+ 1/2k + 2k · dk(x, y)

= kN
([
yε[g̃−1]x−ε])= kN

([g−1])
for all k. By definition,N([g])=N([g−1]) andN([g])=N([g−1]). 2
Statement 3. Suppose thath ∈ S(X), s ∈S, anda > 0. Then there existr ∈N+, s1, . . . ,

sr ∈ S, and b > 0 such that if [g] ∈ [S∗(X)] and Ni([g]) < b for all i 6 r, then
N([h[g]h−1]) < a.

Proof. Let us apply induction onl(h). For h ≡ e, the assertion is trivially true. Suppose
that l(h) > 0 and the statement is valid for shorter words.

Let h≡ xεh̃. For each[g] ∈ [S∗(X)], put [g̃] = [h̃[g]h̃−1]. Then for any[g], we have[
h[g]h−1]= [xε[g̃]x−ε]

and

N
[
h[g]h−1]= inf

k

{
kN
([
h[g]h−1])}.

Note that

kN
[
h[g]h−1]= 2k · kB(x, x, [g̃])+ 1/2k,

becausedk(x, x)= 0. Take a positive integerk0 such that 1/2k0−1< a. We have

N
[
h[g]h−1]6 2k0 · k0B

(
x, x, [g̃])+ 1/2k0

for any [g] from [S∗(X)]; therefore, to prove the statement, it suffices to findr ∈ N+,
s1, . . . , sr ∈ S, andb > 0 such that if[g] ∈ [S∗(X)] andNi([g]) < b for all i 6 r, then
k0B(x, x, [g̃]) < 1/22k0.

For any[g] ∈ [S∗(X)], we have

k0B
(
x, x, [g̃])= ∑

α∈Ak0
fα(x) ·Nα

([g̃]).
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Consider{
α ∈Ak0: fα(x) 6= 0

}= {α1, . . . , αs}
(this set is finite by condition 0◦(b) from the definition ofS). Since l(h̃) < l(h), the
induction hypothesis implies that for eachj 6 s, there existrj ∈ N+, sj1, . . . , sjrj ∈S,
and bj > 0 such that if[g] ∈ S and Nji([g]) < bj for all i 6 rj , thenNαj ([g̃]) <
1/(s · 22k0 · fαj (x)).

Put

{s1, . . . , sr } =
⋃
j6s
{sji : i 6 rj } and b=min

j6s
bj .

For each[g] ∈ [S∗(X)] such thatNi([g]) < b for i 6 r, we have

k0B
(
x, x, [g̃])= ∑

α∈Ak0
fα(x) ·Nα

([g̃])=∑
j6s

fαj (x) ·Nαj

([g̃])
<
∑
j6s

fαj (x) ·
1

s · 22k0 · fαj (x)
= s · 1

s · 22k0
= 1

22k0
,

as required. 2
Before formulating the next statement, let us mention that each word of length 2 from

S∗(X) admits the unique scheme{〈1,2〉}.

Statement 4. The set

U = {y ∈X: N
([x−1

0 y])< a}
is open inX for anyx0 ∈X, s ∈S, anda 6 1.

Proof. Note that ifN([x−1
0 y]) < a, thenN([x−1

0 y]) < 1 and

N
([x−1

0 y])=N([x−1
0 y])= inf

k

{
kN
([x−1

0 y])}
= inf

k

{
1/2k + 2k · dk(x, y)

}
.

Take y0 ∈ U . We must show thatU contains an open neighborhoodV of y0 in X.
SinceN([x−1

0 y0]) < a < 1 andN([x−1
0 y0]) > 0, there existsk0 such that 1/2k0 + 2k0 ×

dk0(x0, y0) < a, i.e.,

dk0(x0, y0) < (a − 2−k0)/2k0.

Findb > 0 for which

dk0(x0, y0) < (a − 2−k0)/2k0 − b
and put

V = {y ∈X: dk0(y0, y) < b
}
.
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By condition 0◦(c) from the definition ofS, the pseudometricdk0 is continuous onX;
therefore,V is open. Clearly,y0 ∈ V . For ally ∈ V , we havedk0(x0, y) < (a − 2−k0)/2k0,
whence

1/2k0 + 2k0 · dk0(x0, y)= k0N
([x−1

0 y])< a and

N
([x−1

0 y])6 k0N
([x−1

0 y])< a,
as required. 2

6. Definition and properties of seminorms‖·‖K

Let K be a nonempty finite subset of the familyS andK = {s1, . . . , sn}. For each
g ∈ F(X), put

‖g‖K =
{

min
{∑

i6n Ni

([g,σg]): σg is a scheme forg
}

if g ∈ S∗(X),
n otherwise.

Let us note some properties of the function‖·‖K .
(1) Obviously,‖e‖K = 0.
(2) If a, b ∈ F(X) and g = ab ∈ F(X) (i.e., g is irreducible and obtained fromab

by successively deleting all pairs of letters of the formxεx−ε), then ‖g‖K 6
‖a‖K + ‖b‖K .

Indeed, ifa or b does not belong toS∗(X), then‖a‖K + ‖b‖K > n. On the other hand,
‖g‖K 6 n, becauseN([h]) is never greater than 1; therefore,‖g‖K 6 ‖a‖K + ‖b‖K .
Suppose thata, b ∈ S∗(X). Then, clearly,g ∈ S∗(X). Let σa andσb be the schemes for
a andb, respectively, such that

‖a‖K =
∑
i6n

Ni

([a,σa]), ‖b‖K =
∑
i6n

Ni

([b,σb]).
For eachi 6 n, we have

Ni

([ab,σab])6Ni([a,σa])+Ni

([b,σb]),
hence,∑

i6n
Ni

([ab,σab])6∑
i6n

Ni
([a,σa])+∑

i6n
Ni

([b,σb])= ‖a‖K + ‖b‖K.
Sinceg is obtained fromab by successively deleting pairs of the formxεx−ε, it follows
from Statement 1 that there exists a schemeσg for g such thatNi([g,σg])6Ni([ab,σab]);
this scheme is uniquely determined by the schemeσab and the order of deleting the pairs
xεx−ε. Therefore,

‖g‖K 6
∑
i6n

Ni

([g,σg])6∑
i6n

Ni

([ab,σab])6 ‖a‖K + ‖b‖K.
(3) If g ∈ F(X), then‖g‖K = ‖g−1‖K .

This follows from Statement 2 forg ∈ S∗(X) and is obvious forg /∈ S∗(X).
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(4) For anyh ∈ F(X) and a > 0, there exist finiteL ⊂ S and b > 0 such that if
g ∈ F(X), ‖g‖L < b, andu= hgh−1 ∈ F(X), then‖u‖K < a.

Indeed, by Statement 3, there existL = {s′1, . . .s′r} ⊂ S andb > 0 such that if[g] ∈
[S∗(X)] andN ′i ([g]) 6 b for i 6 r, thenNi([h[g]h−1]) < a/n for i 6 n. Consider these
L andb. Without loss of generality, we will assume thatb < 16 n. Takeg ∈ F(X) with
‖g‖L < b. We haveg ∈ S∗(X), because otherwise‖g‖L > 1> b. Fix a schemeσg for g
such that

‖g‖L =
∑
i6r

N ′i
([g,σg]);

clearly,N ′i ([g,σg]) < b for i 6 r. Statement 1 implies that there exists a schemeσu for
u= hgh−1 for which

Ni

([u,σu])6Ni([h[g,σg]h−1]).
SinceN ′i ([g,σg]) < b for i 6 r, we haveNi([h[g,σg]h−1]) < a/n andNi([u,σu]) < a/n
for i 6 n. Therefore,

‖u‖K 6
∑
i6n

Ni

([u,σu])< n · a
n
= a.

Recall that a real-valued function‖·‖ on an arbitrary groupG is called aseminormif it
satisfies conditions (1)–(3) with‖·‖ instead of‖·‖K andG instead ofF(X). Seminorms
were introduced by Markov [3] (he called them norms). Thus,

N = {‖·‖K : K is a finite subset ofS
}

is a family of seminorms onF(X).
Using (1)–(4), we can easily verify that the familyN generates a group topology on

F(X); i.e., the family

B = {UK(a): K is a finite subset ofS, a > 0
}
,

where

UK(a)=
{
g ∈ F(X): ‖g‖K < a

}
,

satisfies the axioms of an open neighborhood base at the identity element. Let us show, for
example, that for anyK1,K2 ∈ [S]<ℵ0 anda1, a2> 0, there existL ∈ [S]<ℵ0 andb > 0
such that

UL(b)⊂UK1(a1)∩UK2(a2).

Clearly,∑
s∈K1∪K2

Ns

([g])>∑
s∈K1

Ns

([g]) and

∑
s∈K1∪K2

Ns

([g])>∑
s∈K2

Ns

([g])
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for any [g] ∈ [S∗(X)]; therefore,‖g‖K1∪K2 > ‖g‖K1 and ‖g‖K1∪K2 > ‖g‖K2 for every
g ∈ S(X). Because the cardinality ofK1 ∪K2 is not less than each of the cardinalities of
K1 andK2, this inequality is also valid forg ∈ F(X) \ S(X). Therefore,L=K1∪K2 and
b=min{a1, a2} meet the requirement.

Thus, the familyN generates a group topology onF(X). Each word from[S∗(X)] of
length 2 admits only one scheme{〈1,2〉}; therefore, for all finiteK ⊂S andg ∈ F2(X),
we have

‖g‖K =
∑
s∈K

Ns

([
g, {〈1,2〉}]),

and Statement 4 implies that the topologies generated by the seminorms‖·‖K on X are
coarser than the original topology ofX.

7. Principal statements

The last paragraph of the preceding section implies our first principal statement.

Principal Statement 1. The family of seminorms

N=
⋃{{‖·‖K : K is a finite subset ofS(P )}: P is a partially ordered set and

S(P ) is a family satisfying conditions0◦–3◦
}

generates a group topologyT onF(X) that is coarser than the topology ofFM(X).

Principal Statement 2 implies thatT coincides with the topology ofFM(X).

Principal Statement 2. Let Y be a nonempty subspace ofX such that any continuous
bounded pseudometric onY can be extended to a continuous pseudometric onX, and
‖·‖Y be a continuous seminorm onFM(Y ) with an upper bound of1/8. Then there exist
a partially ordered setP , a familyS satisfying the conditions0◦–3◦, and ans ∈S such
that‖g‖Y 6 ‖g‖{s} for all g ∈ F(Y )⊂ F(X).

Proof. As mentioned, by condition 3◦, the sought familyS (and the underlying ordered
setP ) should have a fairly complex structure: to everys= 〈A,F ,D〉 ∈S we must assign
triples

sα = 〈Aα,Fα,Dα〉 ∈S for all α ∈
⋃
A=

⋃
k∈N

Ak,

to everysα (as it belongs toS and hence satisfies 3◦), triples

sαβ = 〈Aαβ,Fαβ,Dαβ〉 ∈S for all β ∈
⋃
Aα =

⋃
k∈N

Aαk,

etc. Thus, the sought triples from S draws chains of other triples according to the scheme
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s= 〈A,F ,D〉 α1∈⋃A−→ sα1 = 〈Aα1,Fα1,Dα1〉
α2∈

⋃
Aα1−→ sα1α2

= 〈Aα1α2,Fα1α2,Dα1α2〉
α3∈⋃Aα1α2−→ · · · αn∈

⋃
Aα1α2...αn−1−→ sα1α2...αn

= 〈Aα1α2...αn,Fα1α2...αn,Dα1α2...αn〉
αn+1∈⋃Aα1α2...αn−→· · · .

This scheme shows only one chain drawn bys; in reality, each triple draws a tree of other
triples:

s...

α1∈⋃A
α′1∈

⋃A sα1...

α2∈⋃Aα1

α′2∈
⋃Aα1

sα1α2 . . ....
. . .

sα′1 . . ....
. . .

sα1α
′
2
. . .

... α3∈
⋃
Aα1α

′
2

sα1α
′
2α3

. . .
...

. . .

It is natural to label the triples (and their elements) by multiindices that indicate their
positions in the trees. For example, the multiindex ofs is empty and has zero length;
the triplessα with α ∈ ⋃A that are assigned tos (= 〈A,F ,D〉) have multiindicesα
of length one; for everyα1 ∈ ⋃A, the triplessα1α with α ∈ ⋃Aα1 that are assigned
to sα1 (= 〈Aα1,Fα1,Dα1〉) have multiindicesα1α of length two; the triplessα1α2α with
α ∈ ⋃Aα1α2 assigned tosα1α2, whereα1 ∈ ⋃A and α2 ∈ ⋃Aα1, have multiindices
α1α2α of length three; etc. Thus, the multiindices of the triples drawn bys have the form
α1α2 . . .αn, wheren ∈N and

α1 ∈
⋃
A=

⋃
k∈N

Ak,

α2 ∈
⋃
Aα1 =

⋃
k∈N

Aα1k,

...

αn ∈
⋃
Aα1α2...αn−1 =

⋃
k∈N

Aα1α2...αn−1k,

and can be treated as points in
⋃
k∈NP k (i.e., k-tuples of elements ofP with variable

lengthk).
We will construct a familyS whose all elements (triples) are determined by the sought

triple s according to condition 3◦ as described above. The underlying partially ordered set
P and the setC of multiindices (identified with tuples from

⋃
k∈NP k) will be constructed

by induction as the unions of certain setsP k,l andCk,l , respectively, over allk, l ∈ N in
such a way thatP k′,l′ ⊂ P k,l andCk′,l′ ⊂ Ck,l for k′ 6 k andl′ 6 l. Simultaneously with
constructingP k,l andCk,l , we will introduce partial orders on these sets such that the order
onP k,l (Ck,l) is an extension of that onP k′,l′ (Ck′,l′) wheneverP k′,l′ ⊂ P k,l (Ck′,l′ ⊂ Ck,l).
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Bearing this in mind, we will denote the orders on allP k,l by the same symbol6 and
the orders onCk,l by 4. The order6 will have the following special features, which are
important for our inductive construction:

if β ∈ P k,l andα 6 β, thenα ∈ P k,l (?)

(this allows us to extend6 from smaller sets to larger ones) and

for everyα ∈ P , the set ofβ ∈ P such thatβ 6 α is finite. (??)

The order onC ⊂⋃n∈NP n will be induced by the following natural order4 on
⋃
n∈NP n.

Forα1, . . . , αm,β1, . . . , βn ∈ P , we define

〈α1, . . . , αm〉4 〈β1, . . . , βn〉
if there exists a strictly increasing functionı : {1, . . . ,m}→ {1, . . . , n} such thatαk 6 βı(k)
for all k ∈ {1, . . . ,m} (this, in particular, implies thatm6 n).

We also define

〈α1, . . . , αm, k〉4 〈β1, . . . , βn, l〉
if k 6 l and〈α1, . . . , αm〉4 〈β1, . . . , βn〉.

We write

〈α1, . . . , αm, k〉 ≺ 〈β1, . . . , βn, l〉
if 〈α1, . . . , αm, k〉4 〈β1, . . . , βn, l〉 and 〈α1, . . . , αm, k〉 6= 〈β1, . . . , βn, l〉;

the relation〈α1, . . . , αm〉 ≺ 〈β1, . . . , βn〉 is defined similarly.
Note that if P satisfies condition(??), then the set of4-predecessors of any
〈α1, . . . , αm, k〉 ∈⋃n∈NP n ×N is finite.

Simultaneously with constructingP k,l andCk,l , we will construct familiesA, F , and
D labeled by multiindices fromCk,l and some auxiliary families. Elements ofA will be
related toP k,l andCk,l by

Ck,l =
⋃{{〈α1, . . . , αn〉: α1 ∈Ak1, α2 ∈Aα1k2, . . . , αn ∈Aα1...αn−1kn}:

n6 l, k1, . . . , kn 6 k
}
,

or equivalently,

Ck,l =
⋃{{〈α1, . . . , αn〉: 〈α1, . . . , αn−1〉 ∈ Ck,l−1, αn ∈Aα1...αn−1m}:

n6 l, m6 k
}
,

and

P k,l =
⋃{

Aα1...αnm: 〈α1, . . . , αn〉 ∈ Ck,l, m6 k
}
.

SinceCk,l ⊂⋃l
n=0(P k,l−1)

n, the order6 onPk,l−1 determines the order4 onCk,l .
The construction involves induction onk and l: first, we defineP 0,0, C0,1, Cn,0, and

P n,−1 for n ∈ N and then constructP k,l andCk,l+1 for 〈k, l〉 6= 〈0,0〉 assuming thatCk,l
andP k′,l′ for k′ 6 k, l′ < l are defined. Obviously, such induction is valid.
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Let us proceed to the construction.
PutP 0,0= {0}, C0,1= {〈0〉}, Cn,0= {∅}, andP n,−1= ∅ for all n ∈N.
Define a (continuous) pseudometricρY onY by

ρY (y1, y2)=max
{
4 · ‖yε1y−ε2 ‖Y : ε =±1

}
for y1, y2 ∈ Y.

Since‖·‖Y is bounded by 1/8, the pseudometricρY is bounded by 1/2. Take a continuous
pseudometricρ onX that extendsρY and is bounded by 1/2.

Choose an arbitrary pointx0 ∈ Y . Put U0 = X, A0 = {0}, d0 ≡ 0 on X2, γ0 =
{U0}, M0 = {x0}, f0 ≡ 1 onX, andF0 = {f0}. Note that sinceρ is bounded by 1/2,
the coverγ0 is a refinement of the cover{Bρ(x,1): x ∈X}.

Suppose thatk, l ∈ N, 〈k, l〉 6= 〈0,0〉, Ck,l with the order4 is defined, andP k′,l′ with
the order6 are defined for all pairs〈k′, l′〉 ∈ N× (N ∪ {−1}) such thatk′ 6 k andl′ < l
(in particular,P k,l−1 is defined). Suppose also that everyα ∈ P k,l−1 has a finite number
of 6-predecessors; then every element inCk,l ×N has a finite number of4-predecessors.
Take 〈α1, . . . , αn〉 ∈ Ck,l andm 6 k. If 〈α1, . . . , αn,m〉 has no predecessor with respect
to 4, thenn andm are necessarily zero, i.e.,〈α1, . . . , αn,m〉 = 〈0〉 = 〈∅,0〉; we have
already defined the objectsρ, A0, d0, γ0, M0 andF0 that correspond to this(n + 1)-
tuple. Let〈α1, . . . , αn,m〉 have preciselyr predecessors, wherer > 0. Suppose that for all
〈β1, . . . , βs, t〉 ∈ Ck,l × {0, . . . , k} with less thanr predecessors, we have already defined
the objectsρβ1...βs , Aβ1...βs t (along with the extension of6 to this set),dβ1...βs t , γβ1...βs t ,
Mβ1...βs t , andFβ1...βs t satisfying the following conditions:

0◦◦ (1) ρβ1...βs is a continuous pseudometric onX bounded by 1/2;
(2) Aβ1...βs t is a nonempty set, and every its element has a finite number of6-

predecessors;
(3) dβ1...βs t is a continuous pseudometric onX;
(4) γβ1...βs t = {Uβ : β ∈Aβ1...βs t } is a cover ofX that is open and locally finite with

respect to the topology generated bydβ1...βs t and indexed by the elements of
Aβ1...βs t (this means, in particular, that ifα 6= β , thenUα andUβ are different
elements ofγ even if they coincide as sets);

(5) Mβ1...βs t = {xβ : β ∈Aβ1...βs t } is a subset ofX such thatxβ ∈Uβ for anyβ and
xβ ∈ Y wheneverUβ ∩ Y 6= ∅;

(6) Fβ1...βs t = {fβ : β ∈ Aβ1...βs t } is a family of continuous nonnegative-valued
functions onX such that suppfβ =Uβ for eachβ .

1◦◦ If 〈θ1, . . . , θp, q〉 is an immediate predecessor of〈β1, . . . , βs, t〉 in Ck,l × N with
respect to the order4, then
(1)

Aθ1...θpq GAβ1...βs t ;
(2) for anyx fromX andθ fromAθ1...θpq ,

fθ (x)=
∑

β∈Aβ1...βs t (θ)

fβ(x)

(we remind the reader thatA(θ) stands for{α ∈A: θ 6 α});
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(3) for anyx andy fromX,

2 · dθ1...θpq (x, y)6 dβ1...βs t (x, y);
(4) for anyθ ∈Aθ1...θpq ,⋃{

Uβ : β ∈Aβ1...βs t (θ)
}=Uθ .

2◦◦ (1) If {xβ1, . . . , xβs } ⊂ Y , then the restriction ofρβ1...βs to Y 2 is

ρYβ1...βs
(y1, y2)

=max
{
4 · ‖xε1

β1
. . . x

εs
βs
yε1y
−ε
2 x
−εs
βs

. . . x
−ε1
β1
‖Y : ε, εi =±1

};
otherwise,ρβ1...βs ≡ 0 onX2;

(2) for anyx ∈X,∑
β∈Aβ1...βs t

fβ(x)> 1;

(3) for anyx, y ∈X,

2 ·
∑

β∈Aβ1...βs t

∣∣fβ(x)− fβ(y)∣∣6 dβ1...βs t (x, y);

(4) γβ1...βs t refines the cover{
Bρβ1...βs

(x,1/2t ): x ∈X}.
3◦◦ If 〈θ1, . . . , θp, q〉 ∈ Ck,l, q 6 k, 〈θ1, . . . , θp, q〉 has less thanr predecessors in
Ck,l × N with respect to4, and〈θ1, . . . , θp, q〉 6= 〈β1, . . . , βs, t〉, thenAθ1...θpq ∩
Aβ1...βs t = ∅; if in addition, there existθ ∈ Aθ1...θpq and β ∈ Aβ1...βs t such that
θ 6 β , then〈θ1, . . . , θp, q〉 ≺ 〈β1, . . . , βs, t〉.

Let us define similar objects for〈β1, . . . , βs, t〉 = 〈α1, . . . , αn,m〉 in such a way that
conditions 0◦◦–2◦◦ be fulfilled.

We start with introducing one more notation: put

Pred〈α1, . . . , αn,m〉
= {〈β1, . . . , βs, t〉 ∈ Ck,l ×N:

〈β1, . . . , βs, t〉 is an immediate predecessor of〈α1, . . . , αn,m〉
in Ck,l ×N with respect to4

}
.

Choose a continuous pseudometricρα1...αn onX satisfying condition 2◦◦(1) and bounded
by 1/2. Refine the cover

µ= {Bρα1...αn
(x,1/2m): x ∈X}

of X to a coverν open and locally finite with respect to the topology generated byρα1...αn .
Let us indexν using an arbitrary setA: ν = {Va: a ∈A}.

Each〈β1, . . . , βs, t〉 ∈ Pred〈α1, . . . , αn,m〉 has no more thanr − 1 predecessors and
belongs toCk,l×{0, . . . , k}; for all these sets the required objects are already defined. Take
〈β1, . . . , βs, t〉 ∈ Pred〈α1, . . . , αn,m〉 andβ ∈Aβ1...βs t and put
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Aβ =
{
a ∈A: Va ∩Uβ 6= ∅

}
and

Aα1...αnm[β] =
{
(a,β), 〈α1, . . . , αn,m〉: a ∈Aβ

}⊂A× {β} × {〈α1, . . . , αn,m〉
}
.

For anyα = (a,β), 〈α1, . . . , αn,m〉 ∈Aα1...αnm[β], putUα = Va ∩Uβ . The family

γα1...αnm[β] =
{
Uα : α ∈Aα1...αnm[β]

}
forms a cover of the subspaceUβ of X, consists of sets open with respect to the topology
T ′ generated onX by the pseudometric max(dβ1...βs t , ρα1...αn ), and is locally finite with
respect to the same topology (this follows from the definition ofν and condition 0◦◦(4)).

Take a partition of unity onUβ subordinated toγα1...αnm[β], i.e., a family{
gα : α ∈Aα1...αnm[β]

}
of nonnegative-valued functions onUβ continuous with respect toT ′ � Uβ and such that
suppgα =Uα for α ∈Aα1...αnm[β] and∑

α∈Aα1...αnm[β]
gα(x)= 1

for eachx ∈ Uβ (the sum is defined, becauseγα1...αnm[β] is locally finite). Such a family
can be constructed, for example, by settinggα(x)= ḡα(x)/∑ ḡα(x), whereḡα(x) is the
distance betweenx andX \ Uα with respect to the pseudometric max(dβ1...βs t , ρα1...αn ).
For eachα ∈Aα1...αnm[β] andx ∈X, put

fα(x)=
{

0 if x /∈Uβ ,
gα(x) · fβ(x) if x ∈Uβ .

We have ∑
α∈Aα1...αnm[β]

fα(x)=
∑

α∈Aα1...αnm[β]
gα(x) · fβ(x)= fβ(x)

for all x fromX.
Put

Aα1...αnm =
⋃{{Aα1...αnm[β]: β ∈Aβ1...βs t }:
〈β1, . . . , βs, t〉 ∈ Pred〈α1, . . . , αn,m〉

}
,

γα1...αnm =
⋃{{γα1...αnm[β]: β ∈Aβ1...βs t }:
〈β1, . . . , βs, t〉 ∈ Pred〈α1, . . . , αn,m〉

}
= {Uα : α ∈Aα1...αnm},

Fα1...αnm = {fα : α ∈Aα1...αnm}.
For eachα ∈Aα1...αnm, fix xα ∈ Uα such thatxα ∈ Y wheneverUα intersectsY and put

Mα1...αnm = {xα: α ∈Aα1...αnm}.
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Finally, put

dα1...αnm(x, y)

=max

{
ρα1...αn(x, y), 2 ·

∑
α∈Aα1...αnm

∣∣fα(x)− fα(y)∣∣,
max

{
2 · dβ1...βs t : 〈β1, . . . , βs, t〉 ∈ Pred〈α1, . . . , αn,m〉

}}
for all x, y ∈X.

The desired objects are constructed. It remains to extend the relation6 overAα1...αnm.
Let 〈β1, . . . , βs, t〉 ∈ Ck,l , t 6 k, 〈β1, . . . , βs, t〉 have no more thanr predecessors, the set
Aβ1...βs t be already defined,α ∈Aα1...αnm, andβ ∈Aβ1...βs t . We set

(i) β 6 α if and only if eitherβ = α or there exist〈θ1, . . . , θp, q〉 ∈ Pred〈α1, . . . , αn,m〉
andθ ∈Aθ1...θpq such thatβ 6 θ andα ∈Aα1...αnm[θ ];

(ii) α 6 β if and only if α = β .
Note that by construction, the setsAα1...αnm[θ ′] andAα1...αnm[θ ′′] are disjoint ifθ ′ 6= θ ′′.

Therefore, for everyα ∈ Aα1...αnm, there exists exactly oneθ such thatα ∈ Aα1...αnm[θ ];
this θ belongs to someAθ1...θpq , where〈θ1, . . . , θp, q〉 ∈ Pred〈α1, . . . , αn,m〉. Because
〈θ1, . . . , θp, q〉 has less thanr 4-predecessors, by the induction hypothesis (condition
0◦◦(2)), the number of6-predecessors ofθ is finite; therefore, the number of6-pre-
decessors ofα is also finite.

The construction immediately implies the fulfillment of conditions 0◦◦–2◦◦ with
〈β1, . . . , βs, t〉 = 〈α1, . . . , αn,m〉. It directly follows from the definition of6 on the sets
Aα1...αnm that after we constructAα1...αnm for all 〈α1, . . . , αn,m〉 ∈ Ck,l ×N with no more
thanr predecessors, condition 3◦◦ with 〈α1, . . . , αn,m〉 instead of〈β1, . . . , βs, t〉 andr+1
instead ofr will also be fulfilled.

After Aα1...αnm are constructed for all〈α1, . . . , αn〉 ∈ Ck,l andm6 k, put

P k,l =
⋃{

Aα1...αnm: 〈α1, . . . , αn〉 ∈ Ck,l, m6 k
}

and

Ck,l+1=
⋃{{〈α1, . . . , αl+1〉: 〈α1, . . . , αl〉 ∈ Ck,l , αl+1 ∈Aα1...αlm}: m6 k

}∪ Ck,l.
The construction is completed.
Put P = ⋃k,l P k,l and C = ⋃k,l Ck,l . The partially ordered setsP k,l satisfy condi-

tion (?) by construction; their orders6 extend each other, andP is also a partially or-
dered set. PutS= {sα1...αn : 〈α1, . . . , αn〉 ∈ C}. Conditions 0◦◦–3◦◦ and the transitivity of
the relations4 andG ensure the fulfillment of conditions 0◦–2◦ from Section 2. Note that
sβ1...βs < sα1...αn if and only if 〈β1, . . . , βs〉 ≺ 〈α1, . . . , αn〉. Thus, 3◦ also holds. Applying
the following lemma completes the proof of Principal Statement 2.

Lemma. If n ∈ N, 〈α1, . . . , αn〉 ∈ C is such thatxα1, . . . , xαn belong toY, ε1, . . . , εn =
±1, andg ∈ F ∗(Y ), then∥∥xε1

α1
. . . xεnαngx

−εn
αn

. . . x−ε1
α1

∥∥
Y
6 ‖g‖{sα1,...,αn }.
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Proof. Let us apply induction onl(g). For g = e, the assertion of the lemma is obvious.
Suppose thatl(g) > 0 and the lemma is valid for shorter words. Let[g] beg endowed with
a scheme such that‖g‖{sα1...αn } =Nα1...αn([g]). There are two possibilities:

(A) The word [g] is factorable, i.e.,[g] = [g1] . . . [gk], wherek > 2 and all [gi] are
nonfactorable. Sinceg is irreducible andg ≡ g1 . . . gk , all gi are also irreducible and,
therefore,gi ∈ F ∗(Y ). In addition,l(gi) < l(g). The induction hypothesis can be applied.
We have∥∥xε1

α1
. . . xεnαngx

−εn
αn

. . . x−ε1
α1

∥∥
Y

= ∥∥xε1
α1
. . . xεnαng1x

−εn
αn

. . . x−ε1
α1

. . . xε1
α1
. . . xεnαngkx

−εn
αn

. . . x−ε1
α1

∥∥
Y

6
∑
i6k

∥∥xε1
α1
. . . xεnαngix

−εn
αn

. . . x−ε1
α1

∥∥
Y
6
∑
i6k
‖gi‖{sα1,...,αn } 6

∑
i6k

Nα1...αn

([gi])
=Nα1...αn

([g])= ‖g‖{sα1,...,αn }.

(B) The word[g] is nonfactorable, i.e.,[g] = [xε[g̃]y−ε] (andl(g̃) < l(g)). We have

Nα1...αn

([g])= inf
k

{
kNα1...αn

([g])}.
Let us show that for eachk ∈N,

kNα1...αn

([g])> ∥∥xε1
α1
. . . xεnαngx

−εn
αn

. . . x−ε1
α1

∥∥
Y
.

Clearly, this inequality holds whenkNα1...αn([g])> 1. Now suppose that

kNα1...αn

([g])< 1

(this, in particular, implies thatk > 0). We have

kNα1...αn

([g])
= 2k ·

∑
α∈Aα1...αnk

min
{
fα(x), fα(y)

} ·Nα1...αnα

([g̃])+ 1

2k
+ 2k · dα1...αnk(x, y)

< 1;
therefore,

dα1...αnk(x, y)6 1/2k 6 1 and∑
α∈Aα1...αnk

min
{
fα(x), fα(y)

}
>
∑
α

fα(x)−
∑
α

∣∣fα(x)− fα(y)∣∣
>
∑
α

fα(x)− 1

2
> 1

2

(by conditions 2◦(a) and (b) from the definition ofS). Let us denote the element of the
finite set{

α ∈Aα1...αnk: min
{
fα(x), fα(y)

} 6= 0
}

that minimizesNα1...αnα([g̃]) asαmin. Fork > 0, we have
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kNα1...αn

([g])
> 2 ·

∑
α∈Aα1...αnk

min
{
fα(x), fα(y)

} ·Nα1...αnαmin

([g̃])+ 1

2k

>Nα1...αnαmin

([g̃])+ 1

2k
.

Since g ∈ S(Y ) and g ≡ xεg̃y−ε, we havex, y ∈ Y and g̃ ∈ F ∗(Y ). The relation
min{fαmin(x), fαmin(y)} 6= 0 and 0◦◦(6) imply that suppfαmin = Uαmin andx, y ∈ Uαmin ∈
γα1...αnk . Therefore,Uαmin intersectsY . It follows from condition 0◦◦(5) that xαmin ∈
Uαmin ∩ Y . By the induction hypothesis,

Nα1...αnαmin

([g̃])> ∥∥xε1
α1
. . . xεnαnx

ε
αmin

g̃x−εαmin
x−εnαn

. . . x−ε1
α1

∥∥
Y
,

and by conditions 2◦◦(1) and (4), sincex, y, xmin ∈ Uαmin ∈ γα1...αnk ,

2 · ∥∥xε1
α1
. . . xεnαnx

εx−εαmin
x−εnαn

. . . x−ε1
α1

∥∥
Y
6 1/2k,

2 · ∥∥xε1
α1
. . . xεnαnx

ε
αmin

y−εx−εnαn
. . . x−ε1

α1

∥∥
Y
6 1/2k.

Thus,

kNα1...αn

([g])
>
∥∥xε1
α1
. . . xεnαnx

ε
αmin

g̃x−εαmin
x−εnαn

. . . x−ε1
α1

∥∥
Y

+ ∥∥xε1
α1
. . . xεnαnx

εx−εαmin
x−εnαn

. . . x−ε1
α1

∥∥
Y

+ ∥∥xε1
α1
. . . xεnαnx

ε
αmin

y−εx−εnαn
. . . x−ε1

α1

∥∥
Y

>
∥∥xε1
α1
. . . xεnαnx

εg̃y−εx−εnαn
. . . x−ε1

α1

∥∥
Y
,

as required. 2
Principal Statement 2 immediately follows from the lemma withn = 0 (the words

x
ε1
α1 . . . x

εn
αn andx−εnαn . . . x

−ε1
α1 are then empty, andsα1...αn coincides withs = s∅) and the

definition of‖·‖{s}: for g ∈ F(Y ) \ F ∗(Y ), ‖g‖{s} is equal to the cardinality of{s}, i.e., 1,
while ‖g‖Y has an upper bound of 1/8. 2
Remark. If Y =X and dimX = 0, then all pseudometrics fromD and functions fromF
in the proof of Principal Statement 2 can be chosen rational-valued. Using Lemma 10, it
is easy to verify by induction on word lengths that the functionN is then also rational-
valued. Therefore, the seminorm‖·‖{s} is rational-valued, too. Thus, if dimX = 0, then the
topology ofFM(X) is generated by a family of rational-valued seminorms.

8. Main theorems

Theorem 1. Let X be a completely regularT1 space andY be its subspace. Then the
topological subgroup ofFM(X) generated byY is the free topological groupFM(Y ) if
and only if each bounded continuous pseudometric onY can be extended to a continuous
pseudometric onX.
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Proof. Sufficiency was proved by Pestov [5]. To prove necessity, we need the following
Markov theorem [3]:

Theorem. LetG be a topological group andU be an open neighborhood of the identity
element inG. Then there exists a continuous seminorm‖·‖ on G such that the set
{x ∈X: ‖x‖< 1} is contained inU .

Clearly, we can replace 1 by 1/8 and assume that‖·‖ has an upper bound of 1/8 in
Markov’s theorem. Applying Principal Statements 1 and 2 completes the proof.2
Corollary 1 (see also papers [7] by this author).If a completely regularT1 spaceX is
Dieudonné complete, then the groupFM(X) is Weil complete.

Proof. SinceX is Dieudonné complete, it can be embedded into a productP of metric
spaces as a closed subspace in such a way that every bounded continuous pseudometric
onX can be extended overP ; therefore, Theorem 1 can be applied. It says thatFM(X) is
a topological subgroup ofFM(P); obviously,FM(X) is closed inFM(P). Uspenskĭı [9]
proved that the free topological group of a product of metric spaces is Weil complete.
Therefore,FM(P) and its closed subgroupFM(X) are Weil complete. 2

Pestov proved that the Dieudonné completeness ofX is also necessary for the
completeness ofFM(X) (see the proof of Theorem 1 in [5]). This result and Corollary 1
imply the equivalence of the Dieudonné completeness of a completely regularT1 spaceX
and the Weil completeness of its free topological group.

Corollary 2. Any T0 topological groupG is a quotient group of a Weil completeT0

topological group.

Proof. Any completely regularT1 space is an image of a paracompact space under
a quotient map. LetX be a paracompact space andf be a quotient map ofX onto
G. Consider an extension off to a continuous homomorphism̂f :FM(X)→ G. This
homomorphism is open, becausef is quotient. Therefore,G is a quotient group ofFM(X).
The spaceX is Dieudonné complete as a paracompact space. According to Corollary 1, the
groupFM(X) is Weil complete. 2
Theorem 2 (see also [7]).If dimX= 0, thenindFM(X)= 0.

This immediately follows from the remark to Principal Statement 2.
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