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A termination proof for epsilon substitution
using partial derivations
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Abstract

Epsilon substitution method introduced by Hilbert is a successive approximation process pro-
viding numerical realizations from proofs of existential formulas. Most convergence (termination)
proofs for it use assignments of decreasing ordinals to stages of the process and work only for
predicative systems. We describe a new ordinal assignment for the case of .rst-order arithmetic
admitting extension to impredicative systems. It is based on an interpretation of individual ep-
silon substitutions forming the substitution process as incomplete .nite proofs, each encoding a
complete but in.nite proof.
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1. Introduction

The theory of deductive program synthesis and veri.cation relies on complete proofs
of speci.cations. Such proofs are assumed to be found by an automated deduction pro-
gram or constructed manually using a proof-checking system. This contradicts practice:
even in mathematics most proofs are very far from being complete, and veri.cation of
programs usually checks only “principal” parts. However this practice can be supported
by some existing and new theory.

When speci.cations do not require inductive proofs, the main program synthesis tool
is Herbrand’s theorem. For existential formulas ∃xR(x) with quanti.er-free R(x) there
is a transformation of any .rst-order proof � :∃xR(x) into a set of witnesses t1; : : : ; tn
such that R(t1)∨ · · · ∨R(tn). The whole proof � is needed in the standard formulation,
while in fact only quanti.er inferences are used, and the whole propositional part is
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redundant. Predicate inferences contain mathematically and algorithmically interesting
part of the proof; propositional part is usually the most labor-consuming and often
non-interesting part. An exact formulation of the observation above uses �-calculus
(see below) that works for classical logic.

The main pragmatic reason for having constructive or intuitionistic proofs is a pos-
sibility to extract programs from proofs � :∃xA(x) without any restriction for A(x).
In this new logic one cannot completely ignore the propositional part of �: implica-
tions contribute signi.cantly into the complexity of the eventual program. Most pro-
gram extraction methods here are based on functional interpretations that are based on
Brouwer–Heyting–Kolmogorov interpretation of constructive logical connectives. These
interpretations diBer in the amount of information they need. For example modi.ed re-
alizability mr, a functional interpretation introduced by G. Kreisel, ignores negative
premises of implications:

x mr(¬A → B) ≡ ¬A → x mr B:

Another manifestation of the same phenomenon is Harrop’s theorem.

Theorem 1.1. For arbitrary A; B, if ¬A→∃xB(x) is derivable (in intuitionistic 2rst- or
higher-order logic, intuitionistic 2rst- or higher-order arithmetic, etc.), then ¬A→B(t)
for some t is derivable in the same theory.

In fact ¬A can be replaced by any ∨;∃-free formula C. Proofs of such lemmas
C, even of number-theoretic identities, to say nothing about Riemann hypothesis or
Fermat’s last theorem, can be very complicated, but they can be skipped if we are
interested only in the program.

1.1. Finite and in2nite proofs of existential sentences

This paper extends to �-calculus the approach of [8], where a set of reductions (cut-
elimination transformations) for ordinary .nite derivations in .rst-order arithmetic with
induction schema was derived from similar reductions for in.nitary derivations. Using
the apparatus and results from [4,5] one can describe a motivation for these reductions
as follows. Let

h → h∞

be a standard translation of .nite arithmetic derivations into in.nitary derivations that
essentially replaces induction axiom A0∧∀x(Ax→A(sx))⇒An by its derivation con-
sisting of series of cuts over A0; A1; : : : ; A(n−1). Let E be a canonical operator reducing
cut-degree (the maximal complexity of cuts) by one. Then the standard de.nition of a
.nite derivation can be modi.ed so that it is possible to de.ne a “pre-image” of E on
.nite derivations: there is a primitive recursive operation E such that

E(h∞) ≡ (Eh)∞: (1.1)

More speci.cally, there are primitive recursive operations tp(h); o(h); h[i] providing for
every .nite derivation h the last rule and the ordinal measure tp(h); o(h) of h∞ as
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well as the notation h[i] for the in.nitary derivation of the ith premise of the last
rule. More precisely, o(h) is an ordinal less than �0 providing an approximation of the
ordinal height ‖h∞‖, and h[i] is a derivation in H such that (h[i])∞ = h∞(i):

: : : (h[i])∞: �(hi) : : :
h∞ : �(h)

tp(h):

Let h∈H be a derivation of an existential sentence ∃yPy. Let h′ : = E : : : Eh, where
E is applied cutdegree(h) times. Then (h′)∞ is cutfree, and consists essentially of a
.nite number of ∃-rules

Axiom : Pn1; : : : ; Pnk ;∃yPy ok
...

Pn1;∃yPy o1

∃yPy o(h′)
;

where Pnk is a true sentence. In other words, nk is the required value for y and a
sequence Pn1; : : : ; Pnk provides a computation of this value, while ordinals o(h′)¿
o1¿: : : ; etc. assigned to subderivations provide estimates of convergence.

1.2. �-Substitution and incomplete proofs

In this paper we apply this schema to epsilon substitution method introduced by
Hilbert (cf. [6]). It is a successive approximation process providing numerical realiza-
tions from proofs of existential formulas. The language uses epsilon terms �xF[x], read
as the least x satisfying F[x]. The main axioms of the corresponding formalism are
critical formulas

F[t] → F[�xF[x]]: (1.2)

The H -process for a given .nite system Cr of critical formulas generates .nite substi-
tutions of numerals for closed canonical epsilon-terms (having no closed �-subterms).
All canonical �-terms not mentioned in the substitution have default value 0. The initial
substitution S0 is identically 0. If substitutions

S0; : : : ; Si (1.3)

are already generated, and Si is not yet a solving substitution (satisfying all critical
formulas in Cr), take the .rst formula in Cr which is false under Si, i.e. for which
Si(F[t]) = true; Si(F[�xF]) = false. Set

Si+1(�xF) = (the least n6 t) (Si(F[n]) = true)

drop the values of higher rank (Section 2.3) and preserve remaining values.
Ackermann [2] proved that the sequence (1.3) terminates for every system Cr of

critical formulas in .rst-order arithmetic after a .nite number of steps in a solution
Sk satisfying all critical formulas in Cr. He assigned ordinals less than �0 to sections
of the H -process consisting of consecutive substitutions of restricted rank, and proved
that ordinals of the sections strictly decrease.



190 G. Mints / Theoretical Computer Science 303 (2003) 187–213

In the present paper we assign ordinals o(S0)¿o(S1)¿ · · · to substitutions in the H -
process (1.3) by embedding the H -process into normalization (cut elimination) process
for certain in.nite derivation, called original derivation in [11], Section 6.3. In more
detail, a formal system PA�∗ where e-substitutions are derived is introduced in Section 5
below. Derivations in PA�∗ are .nite, but treated as notations for in.nite derivations in
the system �PA ( cf. [11] and Section 4 below) via translation h∞ (Section 6 below).
Some of the rules of PA�∗ are transformed into the same rules of the in.nitary system
�PA, but rules Re; Er ;Dr ;W! are “invisible”: they are modeled in �PA by transformations
Re;E;D;W of in.nite derivations de.ned in Section 4.

An ordinal o(h) is assigned to every PA�∗-derivation h by a simple primitive re-
cursive de.nition (De.nition 5.5). This recursion models a standard de.nition of the
ordinal height ‖h∞‖ of the in.nite translation h∞. In fact operations ∞ and o use
additional argument � (see below).

To assign an ordinal to an �-substitution Si generated by an H -process, the sequence
(1.3) is enriched by steps of adding default zero values needed for all computations,
so that (1.3) becomes a .nite sequence �i of inferences by the rules Fr;H of Section 3.
The pair (Si; �i) is interpreted as a PA�∗-derivation hi, but this interpretation uses
in an intermediate step of (primitive) recursion more complicated PA�∗-derivations
(Section 8). The main goal of introduction of the system PA�∗ was to explicate these
intermediate steps. They appear here naturally as notations for stages of cut elimination
applied to the in.nite original derivation. This connection easily proves

o(Si; �i) ¿ o(Si+1; �i+1)

(cf. (7.5)) and hence termination of the �-substitution process.
Derivable objects (sequents) of PA�∗ contain components (e; ?); (e; ?0) indicating that

e has the default value 0, as well as components (e;+). New (compared to previous lit-
erature on epsilon substitution method, for example [10,11]) component (e;+) indicates
that the value of the �-term e is de.ned, but unknown yet. Presence of such compo-
nents makes our derivations only partial. Operations on partial derivations de.ned here
are successful because the values of unde.ned �-terms turn out to be computed by the
time these values are actually needed for further computations.

Most de.nitions related to �-substitution are taken from [11].
The de.nitions of a computable expression, correct substitution, H-step, axioms of

PA-systems are slightly changed in the same direction as De.nitions 5.2, 5.3 in [3].
The change makes the de.nitions closer to [6]. It remains to be seen whether present
approach can help in correcting a (defective) termination proof from [1].

2. �-Substitution process

2.1. The language of �-substitutions

De�nition 2.1. Variables x; y; z; : : : are for natural numbers. Numerical terms are vari-
ables, 0; St and �xF for all formulas F . There are many (as much as needed) primitive
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recursive predicates including =. Formulas are constructed from atomic formulas by
propositional connectives: ∧FG; →FG;¬F; : : : written as (F ∧G); (F →G); : : : :

Quanti.ers can be de.ned from � in a standard way.
Critical formulas:

(pred) s �= 0 → s = S�x(s = Sx);
(�) F[t] → F[�vF]:

De�nition 2.2. An �-term is canonical if it is closed and contains no proper closed
�-subterms. An expression e is simple if it is closed and contains no �. TRUE (FALSE)
denotes the set of all true (false) simple formulas. [A simple formula contains no
variables and is constructed from computable atomic formulas by Boolean connectives.
Every simple term is a numeral].
N is the set of natural numbers.

De�nition 2.3. A sequent is a .nite function from canonical �-terms into the set
{?; ?0;+}∪N.

A sequent will be written as a .nite list consisting of components of the form

(e; ?); (e; ?0); (e;+); (e; n):

An �-substitution is a sequent without components of the form (e; ?0).

De�nition 2.4. Two sequents !;& are multiplicable if &∪! is a function after ?0 is
identi.ed with ? and (e;+) with (e; n), if both are present. In this case we write &∗!
for &∪!, and say that & ∗ ! is de.ned.

The set FV (e) of free variables of an expression e is de.ned in the standard way:
�x binds x. An expression e is closed iB FV (e) = ∅.

We identify expressions which are equivalent modulo renaming of bound variables;
e[x=u] denotes the result of substituting u for each free occurrence of x in e, where
bound variables in e are renamed if necessary. If x is known from the context we write
e[u] for e[x=u].

We assume as always a .xed system

Cr = {Cr0; : : : ; CrN}
of closed critical formulas.

2.2. Computations with the �-substitutions

De�nition 2.5. An �-substitution S is total if dom(S) is the set of all canonical
�-terms.

PS := S ∪{(e; ?) : e is a canonical �-term =∈dom(S)} is called the standard extension
of S.
(1) If (e; u)∈ S and u �= ?, then e ,→1

S u.
(2) If (e; ?)∈ S, then e ,→1

S 0.
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(3) If 06i6n; ei ,→1
S e

′
i then e0e1 : : : en ,→1

S e0 : : : ei−1e′i ei+1 : : : en.
(4) If F ,→1

S F
′ then �xF ,→1

S �xF
′.

De�nition 2.6. e is S-reducible if there exists an e′ with e ,→1
S e

′. Otherwise e is
S-irreducible or in S-normal form. ,→S denotes the transitive and reQexive closure
of ,→1

S .
The unique S-irreducible expression e∗ with e ,→S e∗ is called the S-normal-form of

e and denoted by |e|S .
De�nition 2.7. Let S be an �-substitution.

An expression e is S-computable if |e|S does not contain closed �-terms.
S computes a set + of closed formulas iB all formulas in + are S-computable.
For a pair (�xF[x]; n)∈ S de.ne

Cr(e; S) := F <n= := F[x=n] ∧ ¬F[x=0] ∧ · · · ∧ ¬F[x=(n− 1)]:

If t is not a numeral, then F <t= :=F[t]. Let

F(S) := {Cr(e; S): (e; n) ∈ S for n ∈ N}:
S is computationally inconsistent (ci) if A ,→S FALSE for some A∈F(S). Otherwise S
is computationally consistent (cc). [For example S does not compute some A∈F(S)].

S is correct if ∧F(S) ,→S �.
Let

CR(S) := {F <|t|S = : critical formula F[t] → F[�xF[x]] is in Cr}
S is solving iB S is cc and Cr ,→S�.
S is +-free if it has no components (e;+).
S is computing iB all formulas A∈F(S) are S-computable.
S is deciding iB S is computing and the critical formulas Cr0; : : : ; CrN are S-comput-

able.

Note: +-Components of a substitution S are never used in a computation ,→S . A
sequent (e;+); & is correct (cc,ci) iB & is correct (cc,ci).

If S is total then every expression is S-computable.

De�nition 2.8. The H-rule applies to an �-substitution S if S is cc, non-solving and
computes Cr ∪CR(S).

De�nition 2.9. For any .nite set + of expressions let N+ be the number of distinct
closed �-terms occurring in expressions in +.

2.3. The rank function

The rank is a measure of nesting of bound variables. For closed expressions it will
be the same as in [6,11]. Note that an arbitrary closed �-term �xF can be written as

�xF ≡ �xF ′[x1=t1; : : : ; xn=tn]; n¿ 0; (2.1)

where �xF ′ is canonical, and t1; : : : ; tn are closed �-terms.
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De�nition 2.10. If e does not contain �, then rk(e) := 0.
If �xF is canonical, then

rk(�xF) := max{rk(f): f is a closed �-subterm of F[x=0]} + 1:

In particular, if F does not contain �, then rk(�xF) = 1.
If (2.1) holds with a canonical �xF ′, then

rk(�xF) := max{rk(�xF ′[x1=0; : : : ; xn=0]; rk(t1); : : : ; rk(tn)}:

For an arbitrary closed expression e,

rk(e) := max{rk(t): t is a closed �-subterm of e}:

De�nition 2.11 (Truncation to a given rank). For each �-substitution S and r¡! we
set

S6r := {(e; u) ∈ S: rk(e) 6 r}:

Analogously we de.ne S¿r ; S¡r; S¿r .

Lemma 2.1. If S; S ′ are �-substitutions with S6r = S ′
6r then |e|S = |e|S′ holds for all

closed expressions e of rank 6r.

2.4. H -process

Let us recall some de.nitions from [11].

De�nition 2.12. Let S be an �-substitution such that PS is non-solving. (Then |CrI | PS ∈
FALSE for some I6N .)

Set rI := rk(�x|F | PS), where CrI =F0 →F[�xF].
Cr(S) :=CrI , where I6N is such that
|CrI | PS ∈ FALSE&∀J6N [|CrJ | PS ∈ FALSE⇒ rI¡rJ ∨ (rI = rJ ∧ I6J )].
Let Cr(S) =F0 →F[�xF]:
�x|F | PS is called the H -term of S.
The H -value v of S is de.ned as follows:

(a) if F0 = (s �= 0), and F = (s= Sx) then v := |s| PS − 1,
(c) if F0 =F[t] then v := the unique n∈N with |F | PS <n= ,→ PS TRUE.

De�nition 2.13 (The step of the �-substitution process). If PS is non-solving then

H (S) := (S \ {(e; ?)})6rk(e) ∪ {(e; v)};

where e is the H -term and v the H -value of S.

The following properties of H (S) are well known (cf. [6,11]).
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Lemma 2.2 (Properties of H(S)). Let S be an �-substitution such that PS is correct
and non-solving, and let e be the H -term, v the H -value of S. Then the following
holds:
(a) (e; ?)∈ PS,
(b) |e|H (S) = v �= 0,
(c) H (S) is correct.

De�nition 2.14. The H -process for the system Cr of critical formulas Cr0; : : : ; CrN
with an initial substitution S0 is de.ned as follows:

Sn+1 :=

{
H (Sn) if Sn is non-solving;

∅ otherwise:

The H -process terminates iB there exists an n∈N such that Sn is solving.
If the initial substitution is not mentioned (as will be mostly the case), it is assumed

that

S0 ≡ ∅:

3. The system �PA

The system �PA is the arithmetical part of the in.nitary system �EA from [11] with
the changes in the de.nitions of computations, H-rule, etc. made in Section 2.4.

Sequents are +-free.
Axioms:

AxF(&) & is ci;

AxS(&) & is solving;

AxHe;v(&) e is the H-term; v is the H-value of &:

Rules of inference:

(e; ?0); & : : : (e; n); & : : : (n ∈ N)
&

Cute;

(e; ?); & : : : (e; n); & : : : (n ∈ N)
&

CutFre;

(e; ?); &
&

Fre
(e; v); &6rk(e)

(e; ?); &
He;v

if the H -rule applies to (e; ?); &, and e is the H -term, v the H -value of (e; ?); &.
Note: The de.nition of AxS here is changed compared to [11]: it is not required that

& be deciding, i.e. compute all formulas in Cr ∪CR;F(S). As a consequence, such
axioms can become c.i., that is AxF as a result of further “computations”, for example if
formulas ! are added by weakening W! (Section 4.2.2). However, branches containing
such axioms are cut oB anyway during cut elimination.
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In the above rules e denotes a canonical �-term not in dom(&).

De�nition 3.1. We call e the main term of the respective inference.

De�nition 3.2. A derivation d∈ �PA is de.ned in a standard way (cf. [5]) using in-
ference symbols AxX;X∈{F;S;H}; Cut;CutFr; Fr;H.

For each inference symbol T in this list |T| denotes the set of indices for the
premises of T:

|Cute| := {?0; 0; 1; : : : ; }; |CutFre| := {?; 0; 1; : : : ; }; |Fre| ≡ |He;v| := {0}:
The result of a T-inference with premises derived by di is written T{di}i∈‖T‖.

The last sequent of d is denoted �(d).

For example the following derivation:

AxH
(g; ?); (f; ?); (e; ?)

(f; ?); (e; ?)
Frg

(e; ?)
Frf

∅ Fre

is FreFrfFrgAxH((g; ?); (f; ?); (e; ?)) in our notation. The proof-.gure

AxHe;v

(e; ?0); (f; ?); (g; ?)

(e; ?0); (f; ?)
Frg

: : :
AxS

(e; ?0); (f;m) : : :

(e; ?0)
CutFrf

: : :
AxS
(e; n) : : :

∅ Cute

becomes

CuteCutFrfFrgAxHe;v(&){AxS((e; ?0); (f;m))}m∈N{AxS((e; n))}n∈N;
where &≡ (e; ?0); (f; ?); (g; ?).

De�nition 3.3. The ordinal height ‖h‖ is determined in a standard way beginning
with 1 for the axioms:

‖AxX(&)‖ = 1; ‖T{di}i∈|T|‖ := sup(‖di‖ + 1)i∈|T|:

De�nition 3.4. Let d be a deduction (from some assumptions) in �PA.
d is an r-deduction iB Cut(d)¡r &CutFr(d) ¡ 0 & Fr(d)¿r &H (d)¿r.
d is an r+-deduction iB Cut(d)¡r &CutFr(d) = r & Fr(d)¿r &H (d)¿r.

Let us recall from [11] the de.nition of a path (from an empty sequent ∅ to a
sequent & in a derivation of &).
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We indicate a path here not by sequents constituting it as in [11], De.nition 30, but
by a sequence of branches of inferences beginning with lowermost one and leading
from ∅ to &. For example, if the sequence is

(g; ?); (f; 3); (e; ?0)

(f; 3); (e; ?0)
Frg

(e; ?0)
CutFrf

∅ Cute

then �≡Cute?0CutFrf3Frg.
The length lth(�) is the number of components in �.
For example, lth(Cute?0CutFrf3Frg) = 3.
A 2-deduction for 2∈{r; r+} is de.ned below exactly as in [11].

De�nition 3.5. If T is an inference then rk(T) denotes the rank of its main term.
If d is a deduction, X is one of the symbols Cut, CutFr, Fr, H, and ./ is one of the

symbols ¡;6;¿;¿; = then
X(d) ./ r :⇔ rk(T) ./ r for every X-inference T in d.
Hence “Cut(d)¡r” means that all cuts in d have rank ¡r, and “X(d)¡0” means

that there are no X-inferences in d.
The same notation is used for path in a deduction, so that “Cut(�)¡r” means that

all cuts in � have rank ¡r, and “X(�)¡1” means that there are no X-inferences in �.
d is an r-deduction iB Cut(d)¡r &CutFr(d)¡0 & Fr(d)¿r &H(d)¿r.
d is an r+-deduction iB Cut(d)¡r &CutFr(d) = r & Fr(d)¿r &H(d)¿r.
An r-path � is de.ned like r-deduction:
Cut(�)¡r &CutFr(�)¡0 & Fr(�)¿r &H(�)¿r.
A proper r+-path � is de.ned like an r+-deduction:
Cut(�)¡r &CutFr(�) = r & Fr(�)¿r &H(�)¿r.

Lemma 3.1. For a given e there can be at most one occurrence of Te for T∈
{Cut;CutFr} in a given path.

Proof. Induction using the condition e =∈dom(&).

4. Operations on in�nite derivations

4.1. Original derivation

The next de.nition describes construction of the original derivation, orig(&) for a
+-free sequent &, cf. Section 6.3 of [11].

De�nition 4.1. (1) & is AxX; X∈{F;S;H}. orig(&) :=AxX(&).
(2) Otherwise. Put

orig(&) := Cute{orig((e; u); &)}u∈{?0}∪N; (4.1)
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where term e is chosen below and AxX is AxA unless (e; u); & is an axiom of other
kind.
(a) & computes Cr. Then e is the .rst (in some .xed ordering) canonical �-term in

|CR(&)|&.
(b) & does not compute Cr. Then e is the .rst (in some .xed ordering) canonical

�-term in |Cr|&.

Lemma 4.1. Let & be a +-free sequent, not AxX for X �=A.
(1) orig(&) is a derivation in �PA consisting of axioms and Cut-inferences of rank

6r0 (De2nition 5.3.2)
(2) If & computes Cr, then ‖orig(&)‖6N|CR(&)|& + 1
(3) In general, ‖orig(&)‖6! + N|Cr|& .

Proof. Induction on |Cr|& with induction on |CR(&)|& in the basis.

4.2. Cut-reduction operator Re

We formalize here the most essential part of the Cut-elimination proof from Section 6
of [11]: cut-reduction of one Cut:

(e; ?0); & : : : (e; n); & : : :
&

Cute: (4.2)

Corresponding operator Re eventually produces a derivation of & from derivations
d∗ : (e; ?0); & and d̃ : {dn : (e; n); &}n∈N plus the place of the Cute in a bigger derivation
of the sequent ∅. This place is given by an r-path � for & where r = rk(e).
Red∗d̃� is de.ned by recursion on d∗, so that d∗ in general is a subderivation of

the left premise of Cute (4.2) (cf. De.nition 2.4 of multiplication *):

(e; ?0); 6 : : : dn : (e; n)& : : :
(e; ?); 6 ∗& Red∗d̃�:

Below we present schematically original derivation with Cut which is reduced, and the
result of reduction by the operator Re:

AxHe;v

(e; ?); 6
... d0

(e; ?0); &

...dv
: : : dv : (e; v)& : : :
d : &

...�
∅

Cute
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... W!dv
(e; v)66r ∗&
... FRH�

(e; v)66r ∗&6r

(e; ?)6 ∗& He;v

...d0

(e; ?); &

... dv
: : : dv : (e; v)& : : :

&
...�
∅

CutFre

The de.nition uses auxiliary operators FRH�;W! to be described in the next sub-
sections.

De�nition 4.2. Let d∗ : (e; ?0); 6 and dn : (e; n)& for all n∈N be r+-derivations, se-
quents (e; ?0); 6 and & be multiplicable. Let � be an r + 1-path for &,

d̃ := {dn: (e; n); &}n∈N: (4.3)

Let d∗ ≡T{d∗
i }i∈|T|.

(1) d∗ ≡AxX((e; ?0); 7) and AxX �=AxHe; v for any v:

Red∗d̃� := AxX((e; ?); 7);

(2) T �=Ax:

Red∗d̃� := T{Red∗
i d̃�}i∈|T|;

(3) d∗ ≡AxHe; v((e; ?0); 6):

Red∗d̃� := He;v(FRH�)W! dv

where dv is taken from (4.3) and

! := ((e; v); 66r): (4.4)

Lemma 4.2. Let the conditions of De2nition 4.2 be satis2ed, that is d∗ : (e; ?0); 6 and
dn : (e; n); & for n∈N are r+-derivations, sequents (e; ?); 6 and & are multiplicable,
� is an r + 1-path for &.
Then Red∗d̃� is an r+-derivation and if ‖dn‖68 for all n∈N, then

‖Red∗d̃�‖6 8 + lth(�) + 1 + ‖d∗‖

Proof. Induction on d∗ with the same cases as in De.nition 4.2.
(1) ‖Red∗d̃�‖= 168 + lth(�) + 1 + ‖d∗‖.
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(2) ‖Red∗d̃�‖= ‖T{Red∗
i d̃�}i∈|T| =

sup(‖Red∗
i d̃�}i∈|T|‖ + 1) 6 (IH) sup(8 + lth(�) + 1 + ‖d∗

i ‖ + 1) =

8 + lth(�) + 1 + sup(‖d∗
i ‖ + 1) (continuity of +) = 8 + lth(�) + 1 + ‖d∗‖

(3) ‖Red∗d̃�‖= ‖He; v(FRH�)W! dv‖= ‖FRH�W! dv‖ + 1

6 (Lemma 4:3) ‖W! dv‖ + lth(�) + 1 6 (Lemma 4:4)

‖dv‖ + lth(�) + 1 6 (since‖dv‖6 8)8 + lth(�) + 1

4.2.1. Repetition of Fr;H-inferences: FRH�.

De�nition 4.3. If � is an (r + 1)-path, then FRH� is the result of deleting from
� all inferences except Fr;H.

Lemma 4.3. Let � be an (r+1)-path for & and !6r be a correct sequent such that
&6r ⊆!. Then FRH� is a deduction of ! from & ∗ ! and

rk(e) ¿ r + 1; lth(FRH�) 6 lth(�):

Proof (Cf. Lemma 6.4 in Mints et al. [11]). Use induction on � with subcases cor-
responding to the uppermost inference T. The case T≡CutFre is impossible, since
� is an r + 1-path. T≡Cute is pruned since its main formula is already in !. Only
Fre;He; v-inferences are retained since rk(e)¿r.

Example. �≡ FreCutfuHg; vFrh; !≡fu; q0; &≡ e?fugvh?. Then
FRH�≡ FreHg; vFrh.

&
�
∅

e?fugvh?

e?fugv
Frh

e?; fu
Hg;v

e?
Cutfu

∅ Fre
& ∗ !

FRH�
!

e?; gv; h?; !

e?; gv; !
Frh

e?; !
Hg; v

!
Fre

4.2.2. Weakening: W!d or d ∗ !.
The next de.nition corresponds to Lemma 6.3 of [11].

De�nition 4.4. Let d be an r+-derivation of a sequent &. Let !6r be a correct sequent
such that & ∗ ! is de.ned and (!f)¿r ⊆&; !t¿r. We de.ne by recursion on d a
derivation W!d (denoted in [11] and below by d ∗ !) of & ∗ ! obtained from d by
deleting inferences Cute;CutFre with e∈dom(!).
(1) d≡Cute{du}u∈{?0}∪N. Here rk(e)¡r.

(a) e =∈dom(!): d ∗ ! :=Cute{du ∗ !}u∈{?0}∪N.
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(b) (e; ?)∈!. Impossible, since !t¿r; rk(e)¡r.
(c) (e; u)∈!; u∈{?0}∪N :d ∗ ! :=du ∗ !.

(2) d≡CutFre{du}u∈{?}∪N. Here rk(e) = r.
(a) e =∈dom(!) :d ∗ ! :=CutFre{du ∗ !}u∈{?}∪N.
(b) (e; ?0)∈!. Impossible, since rk(e) = r, hence (e; ?0)∈ (!f)¿r ⊆&, the con-

clusion of CutFre.
(c) (e; u)∈!; u∈{?}∪N :d ∗ ! :=du ∗ !.

(3) d≡Td0; T∈{Fre;He; v} :d ∗ ! :=Td0 ∗ !.
(4) d≡AxX(&) :d ∗ ! :=AxX′(& ∗ !) for a suitable X′.

This de.nition can be abbreviated as follows. Let d≡T{di}i.
If T �=Cut;CutFr or the main formula of T is not in !, then

d ∗ ! := T{di ∗ !}i :

Otherwise d has a branch ending in its endsequent and consisting of inferences to be
skipped over:

d′

=
...
=
|
d

where d′ is the derivation of the uppermost sequent of this branch, i.e. d′ does not
end in a redundant inference, but the inference following d′ is redundant. Then d ∗
! :=d′ ∗ !.
Note: The number of consecutive inferences to be skipped over is bounded by the

number of components in !.

Lemma 4.4. ‖d ∗ !‖6‖d‖.

Proof. No new inferences are added to d.

4.2.3. Elimination of degree-r cuts: Er d�.
To de.ne E, operation Re is used, so argument � is needed.

De�nition 4.5. Let d :& be an (r + 1)-derivation, and � be an (r + 1)-path for &.
(1) d≡AxX(&) :Erd� :=d,
(2) d≡Cute{du}u∈{?0}∪N; rk(e) = r.
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Erd� := CutFre(Re(Erd?0 (�Cute?0))d̃�)d̃; where d̃ ≡ {Erdn(�Cuten)}n∈N:
...

Re(Erd?0 (�Cute?0))d̃�
(e; ?0); &

...
Erdn(�Cuten)

d̃ : : : : (e; n); & : : :
Erd� : &

...�
∅

CutFre:

(3) Otherwise. d≡T{di}i∈|T| :Erd� :=T{Erdi(�Ti)}i∈|T|.

Lemma 4.5. Let d :& be an (r + 1)-derivation, � be an (r + 1)-path for &. Then

Erd� is an r+-derivation; ‖Erd�‖6 !‖d‖:

Proof. Cf. Lemma 6.6 in [11]. The only non-trivial case is 2.
Let 8 := sup{‖dn‖ : n∈N}. We have by IH and Lemma 4.2:

‖Erdn(�Cuten)}‖6 !8

‖Re(Erd?0 (�Cute?0))d̃�‖6 !8 + lth(�) + 1 + !‖d?0‖ = !8 + !‖d?0‖

since ‖d?0‖¿0 by de.nition, hence !‖d?0‖ is a principal number for addition. Now use
‖d?0‖; 8¡‖d‖:

‖Erd�‖ = ‖CutFre(Re(Erd?0 (�Cute?0))d̃�)d̃

= sup(‖Re(Erd?0 (�Cute?0))d̃�‖ + 1; {‖Erdn(�Cuten)}‖ + 1}n∈N)

6!8 + !‖d?0‖ + 1 ¡ !‖d‖

4.2.4. Operation D: replacing CutFr by Fr.

De�nition 4.6. (1) DAxX(&) :=AxX(&).
(2) DT{di}i :=T{Ddi}i, if T �=CutFr.
(3) DCutFre{di}i := FreDd?.

5. System PA�∗
Derivable sequents have at most one +-component.
Deductions will have a linear form

�n+1 �′
n+1

�n
...

�i+1

�i
...
�1

...
�′

1

�0



202 G. Mints / Theoretical Computer Science 303 (2003) 187–213

with the leftmost main branch consisting of +-free sequents �0; �1; : : : and the right
branches containing sequents �′

1 ; : : : ; �
′
n+1 that have exactly one +-component.

Axioms

AxF(&) & is ci

AxS(&) & is solving

AxHe;v(&) e is the H-term; v is the H-value of &

AxA(&) & is not AxF;AxS;AxH

Rules of inference

(e; ?0); & (e;+); &
&

Cute
(e; ?); & (e;+); &

&
CutFre

(e; ?0); 6 (e;+); &
(e; ?); 6 ∗& Re

&
&
Er

&
&

Dr

(e; ?); &
&

Fre:
(e; v); &6rk(e)

(e; ?); &
He;v

&
! ∗& W!

In these rules e is a canonical term such that premises and conclusion are legal sequents.
In the rules Cute;CutFre; Fre;He; v the conclusion & should be +-free.

De�nition 5.1. A quasi-derivation in PA�∗ is a .nite tree proceeding from axioms
(in its leaves) by inference rules.

Quasi-derivations in PA�∗ are written as linear sequences using inference symbols
in the same way as derivations in �PA (Section 3).

The de.nition of a 2-path is extended to sequents &≡ (e;+); &′ with +-free &′:
the path contains a unique occurrence of Cute+ or CutFre+ corresponding to (e;+).

De�nition 5.2. Let �′T0�′′ be a 2-path (2∈{r; r+}) in ePA for a +-free sequent
(e; 0); &′ with T∈{Cute;CutFre} and the component T0 corresponding to (e; 0). Then
�′T+�′′ is a 2-path in PA�∗ for (e;+); &′ and the component T+ corresponds to

(e;+).
In this case, �[e=n] := �′Tn�′′

Otherwise, �[e=n] := �.

The next de.nition singles out derivations d∈PA�∗ among quasi-derivations. In fact
additional arguments are needed. We de.ne a relation (h; �)∈ 2 (read “h over a path �
is a 2-derivation”) by primitive recursion on h for 2∈{r; r+}, r¿0, a quasi-derivation
h and a path � for �(h). In most cases the component � is just extended in a natural
way. Expression r+ is treated as r + 1

2 in inequalities like r+¿s.
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De�nition 5.3. (1) h≡AxX(&); X �=A : (h; �)∈ 2 for all 2.
(2) h≡AxA(&). Let

f& :=
{

0 & is + -free
f if & ≡ (f;+); &′

r0 := max{rk(f) :f is a closed �-term in |Cr ∪CR(&)|&; f �=f&}.
Then (h; �)∈ 2 iB r0¡r.
(3) h≡Cuteh0h1. This case is similar to the AxA-clause: (h; �)∈ 2 iB

(h0; �Cute?0) ∈ 2; (h1; �Cute+) ∈ 2 and rk(e) ¡ r: (5.1)

(4) h≡CutFreh0h1 : (h; �)∈ r+ iB

(h0; �CutFre?) ∈ r+; (h1; �CutFre+) ∈ r+ and rk(e) = r: (5.2)

(5) h≡Reh0h1 : (h; �)∈ r+ iB
rk(e) = r; �(h0)≡ (e; ?0); 6 ; �(h0)≡ (e;+); &,
�≡ �′CutFre?:, where �̃ := �′Cute?0: is a path for (e; ?0); 6
with (Cute?0) corresponding to (e; ?0),
�′ is an r + 1-path for &; : is an r+-path,
(h0; �̃)∈ r+; (h1; �′;Cute+)∈ r+.

...h0

(e; ?0); 6
...: r+

(e; ?0); &

...h1
(e;+); &

&
...�′ r + 1
∅

Cute

...h0

(e; ?0); 6

...h1
(e;+); &

(e; ?); 6 ∗& Reh0h1

...:
(e; ?); &

...h1
(e;+); &

&
...�′
∅

CutFre

(6) h≡ Erh0 : (h; �)∈ r+ iB (h0; �)∈ r + 1 and � is an r + 1-path.
(7) h≡He; vh0 : (h; �)∈ 2 iB (h0; �He; v)∈ 2 and rk(e)¿r.
(8) h≡ Freh0 : (h; �)∈ 2 iB (h0; �Fre)∈ 2 and rk(e)¿2 [rk(e)¿r+ means rk(e)¿r].
(9) h≡W!h0 : (h; �)∈ r+ iB
(h0; �′)∈ r+ for some �′; !t¿r; !6r is a correct +-free sequent, ! ∗ �(h0) is

de.ned, (!f)¿r ⊆�(h0).

...h0
&
...�′

...W!h0
! ∗&

...�

(10) h≡Drh0: (h; �)∈ r iB (h0; �)∈ r+.

Let us summarize De.nition 5.3.
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Lemma 5.1. (1) (T{hi}i∈|T|; �)∈ 2 implies (hi; �i)∈ 2′ for 2∈{r; r+},
with �i ≡ �Ti, 2′ ≡ 2 except
T≡Re, where �0 ≡ �′CutFre?:; �1 ≡ �Cute+,
T≡ Er , where �0 ≡ �; 2′ ≡ r + 1,
T≡Dr , where �0 ≡ �; 2′ ≡ r+,
(2) (hi; �i)∈ 2∈{r; r+}, for all i∈ |T| and suitable paths �i implies (T{hi}i∈|T|; �)

∈ 2 for a suitable � except
T≡Cute with rk(e)¿r,
T≡CutFre with rk(e) �= r or 2 �= r+,
T≡He; v with rk(e)¡r,
T≡ Fre with rk(e)¡2,
or T∈{Re; Er ;W!;Dr} with similar exceptions.

Proof. By inspection.

Let us de.ne an ordinal o(h) of a PA�∗-derivation h intended to be a good approxi-
mation to the ordinal height of h∞. When the last sequent �(h) contains a +-component

�(h) ≡ (e;+); �′

we will have

o(h[e=n])6o(h) for all n ∈ N: (5.3)

De�nition 5.4. ;& :=




0 if & is + -free
1 if & ≡ (e;+); &′

and either& computes Cr and e occurs in |CR(&)|&
or & does not compute Cr and e occurs in |Cr|&:

De�nition 5.5. Let h∈PA�∗; � be a path for �(h).

o(h; �) :=




1 if h ≡ AxX(&); X �= A
N|CR(&)|& + 1 − ;& if h ≡ AxA(&);

& computes Cr
! + N|Cr|& − ;& if h ≡ AxA(&)

otherwise
o(h1; �′Cute+) + lth(�) + 1 + o(h0; �) if h = Reh0h1 and

� ≡ �′Cute?0:
!o(h0 ;�) if h = Erh0

o(h0; �T) + 1 if h = Th0;
T ∈ {Fre;He;v;Dr ;W!}

max(o(h0; �T?′); o(h1; �T+)) + 1 if h ≡ Th0h1;
T ∈ {Cute;CutFre}

where ?′ is ?0 for Cut and is ? for CutFr.

We de.ne substitution h[e=n], h∈PA�∗; n∈N.
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De�nition 5.6. If �(h) does not contain (e;+), then h[e=n] := h.
In the following:

�(h)≡ (e;+); �′; �(h[e=n]) := (e; n); �′ (5.4)

(1) h≡AxX(�(h)); X �=A : h[e=n] :=AxX′((e; n); �′) for a suitable X′.
(2) h≡AxA : h[e=n] :=AxX((e; n); �′) for a suitable X.
(3) h≡Th0 : h[e=n] :=Th0[e=n].
(4) h≡Rfh0h1 : h[e=n] :=Rfh0[e=n]h1.

Comments: Condition (5.4) excludes Cut;CutFr; Fr;H as a last rule in h.
To 4: If h≡Rfh0h1, then (e;+) occurs only in �(h0), not in �(h1).

Lemma 5.2. (1) If � is a 2-path for �(h), then �[e=n] is a 2-path for �(h[e=n]).
(2) If (h; �)∈ 2, then (h[e=n]; �[e=n])∈ 2; o(h[e=n]; �[e=n])6o(h).

Proof. 1. If �≡ �′T + �′′; �(h)≡ (e;+); &′ (De.nition 5.2), where �′T0�′′ is a
2-path for (e; 0); &′, then �[e=n]≡ �′Tn�′′ is a 2-path for (e; n)&′.

2. Consider cases in De.nition 5.6 assuming
�(h)≡ (e;+); �′, � := �′(T′+)�′′; T′ ∈{Cute;CutFre}.
Cases 1,2: �[e=n] is again a 2-path, h[e=n] is again an axiom.
Case 3: h≡Th0.
Case 3.1: T≡ Es. Then �(h)≡�(h0); 2≡ r+; s≡ r; (h0; �)∈ r. By IH and clause 1

of present lemma, (h0[e=n]; �[e=n])∈ r, hence (Erh0[e=n]; �[e=n])∈ r+.
Case 3.2: T≡W!. Again, �[e=n] is a 2-path for �(h[e=n]) and
(h0[e=n]; �′[e=n])∈ r+, hence (W!h0[e=n]; �[e=n])∈ r+.
Case 3.3: T≡Dsh0. Like Case 3.2.
Case 4: T≡Rfh0h1.

(f; ?0); 6 (f;+); &
(f; ?); 6 ∗& Re:

We have h[e=n]≡Rfh0[e=n]h1. Assume �≡ �1;Cutf?0; : is a 2-path for (f; ?0); 6 , �1 is
a 2-path for & and a component (e;+) occurs in �(h0). Since this component is not in
&, it occurs in �(h0) and f �= e. Consider the occurrence of T′

e + in � corresponding
to (e;+). It is not in �1Cutf?0, hence

: ≡ :′;T′
e+; :′′; �[e=n] ≡ �1;Cutf?0; :′;T′

en; :
′′

and �[e=n] is a 2-path for �(h0)[e=n] by the part 1 of this lemma. Hence (h[e=n]; �[e=n])
∈ 2.
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6. In�nite translation

We de.ne an in.nite translation for h∈PA�∗ with an r-path � for �(h) as an
additional argument.

De�nition 6.1. Let h∈PA�∗. Assume �(h) to be +-free.
(1) h≡AxX(&); X �=A : (h; �)∞ := h.
(2) h≡AxA(&) : (h; �)∞ := orig(&), cf. De.nition 4.1.
(3) h≡Cuteh0h1: (Cf. De.nition 5.6)

(h; �)∞ := Cute(h0; �Cute?0)∞{(h1[e=n]; �Cuten)∞}n∈N:
(4) h≡CutFreh0h1: similarly to the case of Cut:

(h; �)∞ := CutFre(h0; �CutFre?)∞{(h1[e=n]; �CutFren)∞}n∈N:
(5) h≡Reh0h1:

(h; �)∞ := Re(h0; �̃)∞{(h1[e=n]; �′Cuten)∞}n∈N �′;

where �≡ �′CutFre?0:; �̃≡ �′Cute?0:, cf. De.nitions 5.3.5, 4.2.
(6) h≡ Erh0� : (h; �)∞ :=Er(h0; �)∞�, cf. De.nition 4.5.
(7) h≡Drh0 : (h; �)∞ :=D(h0; �)∞, cf. De.nition 4.6.
(8) h≡Th0; T≡ Fre;He : (h; �)∞ :=T(h0; �)∞.
(9) h≡W!h0 : (h; �)∞ :=W!(h0; �)∞, cf. De.nition 4.4.

If �(h)≡ (e;+); �′, then (h; �)∞ := {(h[e=n]; �[e=n])∞}n∈N.

Then for h≡Th0h1;T∈{Cute;CutFre} one can write

(h; �)∞ ≡ T(h0; �T?′)∞(h1; �T+)∞:

6.1. Correctness of the in2nite translation

Theorem 6.1. Let h∈PA�∗; (h; �)∈ 2∈{r; r+}, where r¿0. Then
(1) If �(h) is +-free, then (h; �)∞ ∈ �PA is a 2-derivation.
(2) If �(h) = (e;+)�′, then for every n∈N; (h[e=n]; �[e=n])∞ ∈ �PA is a 2-derivation.

Proof. Induction on h.
(1) h≡AxX(&); X �=A.

(a) If �(h) (that is &) is +-free, then (h; �)∞ ≡ h, it does not contain any inference
rules and is a 2-derivation in �PA.

(b) If �(h)≡ (e;+)&′, then �[e=n] is a 2-path for (e; n); &′ in �PA (Lemma 5.2),
and the previous argument applies.

(2) h≡AxA(&). Let f&; r0 be as in the clause 2 of De.nition 5.3.
(a) & is +-free. Then (h; �)∈ 2 iB r0¡r. By Lemma 4.1 orig(&) is a deriva-

tion consisting only of axioms and cuts of rank 6r0. Hence orig(&) is a
2-derivation in �PA for 2∈{r; r+}.

(b) &≡ (e;+); &′. Then h[e=n] is AxX or AxA, and one of cases 1a, 2a applies.
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(3) h≡Cuteh0h1. Here & is +-free and (h; �)∈ 2 iB (5.1) is true. By IH, (h0;
�Cute?0)∞; (h1; �Cute+)[e=n]∞ are 2-derivations in �PA for any n. Since only
Cute is added to these derivations to form (h; �)∞, the latter is a 2-derivation in
�PA.

(4) h≡CutFreh0h1. Here 2= r+, sequent & is +-free and (h; �)∈ r+ iB (5.2) is true.
By IH, (h0; �CutFre?)∞; (h1[e=n]; �CutFren)∞ are r+-derivations in �PA for any

n. Since only CutFre is added to these derivations to form (h; �)∞, the latter is an
r+-derivation in �PA.

(5) h≡Reh0h1. We have (h; �)∈ r+ for r = rk(e), and �≡ �′CutFre?:, where �′ is an
r + 1-path for &,

(h0; �̃)∈ r+; (h1; �′Cute+)∈ r+ for �̃≡ �′Cute?0:.
If �(h) is +-free,

(h; �)∞ := Re(h0; �̃)∞{(h1[e=n]; �′Cuten)∞}n∈N �′

Apply IH, Lemma 5.2, Lemma 4.2.
If �(h) contains +, then corresponding component (f;+) belongs to �(h0),

since �(h1) already contains (e;+). Substitute (h0[f=m]; �̃[f=m])∞ for (h0; �̃)∞ in
the argument for +-free case.

(6) h≡ Erh0. If �(h) is +-free, we have (h0; �)∞ ∈ r + 1 by IH and (h; �)∞ ∈ r+ by
Lemma 4.5. +-case is treated as before.

(7) h≡Th0; T≡ Fre;He; v.
Apply IH and de.nition of 2-derivation: one can add Fre;He; v with rk(e)¿r to

(h0; �)∞ except the case T≡ Fre; 2≡ r+, when rk(e)¿r is needed.
(8) h≡W!h0 : (h; �)∈ r+ iB (h0; �)∈ r+; !t¿r; !6r is a correct +-free sequent, �(h0)

∗ ! is de.ned, (!f)¿r ⊆�(h0). As before.
(9) h≡Drh0 : (h; �)∈ r if (h0; �)∈ r+. As before.

7. Reduction of �nite derivations: operations tp�(h); h�[i]

Let us de.ne (following ideas in [5] and de.nition in [7]) for every derivation
h∈PA�∗ with a +-free �(h) the last rule tp�(h) of (h; �)∞ and the notations h�[i]∈PA
�∗ for premises of that last rule. A path � is used as an additional argument.

More precisely, if tp�(h) :=T =∈{Cut;CutFr}, then h�[0] is a derivation in PA�∗
such that (h; �)∞ ≡T(h�[0]; �T)∞:

(h�[0]; �T)∞ : �(h0)
(h; �)∞ : �(h) T: (7.1)

If tp�(h) :=T∈{Cute;CutFre}, then h�[0] : (e; ?′); �(h) and h�[1] : (e;+); �(h) are
derivations in PA�∗ such that

(h�[0]; �T?′)∞ : (e; ?′); �(h) : : : (h�[1][e=n]; �Tn)∞ : (e; n); �(h) : : :
(h; �)∞ : �(h) T (7.2)

with ?′ ≡ ?0 for T≡Cute and ?′ ≡ ? for T≡CutFre.
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Leaving out �-subscripts and using notation

h′ ≡ Th[0]h[1] for tp(h) ≡ T ∈ {Cute;CutFre}; h′ ≡ Th[0] otherwise (7.3)

we will have

h[0]; h[1]; h′ ∈ PA�∗; h ∈ 2 ⇔ h′ ∈ 2 (2 ∈ {r; r+}): (7.4)

De�nition 7.1. Let h∈PA�∗; �(h)+-free.
(1) h≡AxX(&).

(a) X �=A : tp�(h) :=AxX.
(b) X =A. Let e be the �-term such that (4.1) holds. Put

tp�(h) :=Cute, h�[0] :=AxX((e; ?0); &); h�[1] :=AxA((e;+); &) for a suit-
able X .

(2) h≡Th0h1 or h≡Th0 with T∈{Cute;CutFre; Fre; He; v}:
tp�(h) :=T; h�[i] := hi; i∈ |T|.

(3) h≡ Erh0:
(a) tp�(h0)≡Cute, rk(e) = r:

tp�(h) := CutFre; h�[1] := Erh0�[1]; h�[0] := Re(Erh0�[0])h�[1];

Here is an original derivation h (with h0 replaced by h′0) and the new derivation
h′ ≡CutFreh�[0]h�[1]:

h0�[0] : (e; ?0); � h0�[1] : (e;+); �
h′0 : �

Cute

h : �
Er

h0�[0] : (e; ?0); �

(e; ?0); �
Er

h0�[1] : (e;+); �
h�[1] : (e;+); �

Er

h�[0] : (e; ?); �
Re

h0�[1] : (e;+); �
h�[1] : (e;+); �

Er

h′ : �
CutFre

(b) Otherwise. tp�(h) := tp�(h0); h�[i] := Erh0�[i].
Note that tp�(h0)≡CutFrg. is impossible. If rk(g) = r′¿r, then Dr′ must occur
between CutFrg and Er . Otherwise Er cannot occur below CutFrg.

(4) h≡Reh0h1. Let T := tp�(h0).
(a) T≡AxX;X �=He; v for any v : tp�(h) :=AxX
(b) T �=Ax : tp�(h) :=T; h�[i] :=Reh0�[i]h1;
(c) T≡AxHe; v((e; ?0; 6)):

tp�(h) := He;v; h�[0] := (FRH�)W!h1[e=v];

where like in (4.4), ! := (e; v; 66r) (cf. De.nition 4.2).
(5) h≡W!h0. Let T := tp�(h0).

(a) T =∈{Cute;CutFre} or e =∈dom(!):

tp�(h) := tp�(h0); h�[i] := W!(h0�[i])
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(b) T∈{Cute;CutFre} and (e; u)∈!; u∈{?; ?0}∪N:

tp�(h) := tp(h−); h�[i] := h−� [i];

where

h− :=
{

W!h0�[0] if u =?; ?0

W!h0�[1][e=u] if u ∈ N
For example, if !≡ (e; n); !′, then

h0�[0] : (e; ?0); � h0�[1] : (e;+); �
h0 : �
! ∗ � W!

Cute

h0�[1][e=n] : (e; n); �
h′ : (e; n); !′ ∗ � W!:

Comment: The number of recursion steps in 5b is bounded by lth(!): it is the length
of the branch leading to the derivation d′ described at the end of De.nition 4.4.

Lemma 7.1. If & is AxA; e =∈dom(&), then (e;+); & is AxA.

Proof. The new sequent cannot become another kind of an axiom, since (e;+) cannot
be used in computations and does not contribute to F(&).

7.1. Correctness of tp�(h); o(h)

Theorem 7.2. Let h∈PA�∗; (h; �)∈ 2∈{r; r+}, where r¿0, sequent �(h) is +-free
and h =∈{AxF;AxS;AxH}. Then (7.1,7.2), (7.4) are satis2ed and

o(h�[i]; �tp�(h)i) ¡ o(h; �) for i ∈ |tp�(h)| (7.5)

Proof. Induction on h. Below we often apply Lemma 5.1 when T is one of tp�(h);
tp�i(h[i]) and get around most of the restrictions in that lemma, since T is an inference
symbol of �PA, hence T =∈{Re; Er ;W!;Dr}. In computations we often leave out paths
and corresponding subscripts.
(1) h≡AxX(&). Consider X≡A when the axiom is expanded into a Cute.

Since (e; ?0); & and (e;+); & extend &, we have

AxX((e; ?0); &) ∈ 2; AxA((e;+); &) ∈ 2:

Since the term e in (4.1) belongs to the set used for computation of r0; rk(e)6
r0¡r. Hence by De.nition 5.3

h′ ≡ CuteAxX((e; ?0); &)AxA((e;+); &) ∈ 2:

(2) h≡Th0h1 or h≡Th0 with T∈{Cute;CutFre; Fre;He; v}: Here h′ ≡ h.
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(3) h≡ Erh0�. Then h∈ r+; h0 ∈ r + 1.
(a) tp�(h0)≡Cute with rk(e) = r. We have

tp�(h) := CutFre; h�[1] := Erh0�[1]; h�[0] := Re(Erh0�[0])h�[1];

Further, h′0 =Cuteh0[0]h0[1]∈ r+1 (IH,(7.4)), which implies h0[0], h0[1]∈ r+1
(Lemma 5.1). This implies in turn by De.nition 5.3:

Erh0[0];Erh0[1] ∈ r+; h[1] ∈ r+; h[0] ∈ r+; h′ = CutFreh[0]h[1] ∈ r+

o(h) = !o(h0) o(h�[1]) = !o(h0�[1]) ¡ !o(h0) by IH

o(Erh0�[0]) = !o(h0�[0]) ¡ !o(h0) by IH

o(h�[0]) = o(h�[1]) + lth(�) + 1 + o(Erh0�[0]) ¡ !o(h0)

since all terms are less than !o(h0) which is a principal number for addition.
(b) tp(h0) �=Cute with rk(e) = r. With T := tp(h0) we have

h′0 ≡T{h0[i]}i ∈ r+1 (IH, (7.4)), which implies h0[i]∈ r+1 (Lemma 5.1.1),
h[i]≡ Erh0[i]∈ r+ (De.nition 5.3) and h′ ≡T{Erh0[i]}∈ r+ by Lemma 5.1.2.
Exceptions of Lemma 5.1.2 do not apply since T �≡CutFrf (otherwise h′0 ∈ s+

�= r+1) and if T≡Cutf, then rk(f)¡r by the condition de.ning the present
subcase.

o(h[i]) = !o(h0[i]) ¡ !o(h0) (IH) = o(h)

(4) h≡Reh0h1; �(h) is +-free.

h0 : (e; ?0); 6 h1 : (e;+)&
Reh0h1 : (e; ?); 6 ∗&

;

where 6 ∗& is +-free, h; h0; h1 ∈ r+ for r = rk(e). Consider the same subcases as
in the De.nition 7.1 clause 4. Let T := tp�(h0). We have

o(h) ≡ o(h1) + lth(�) + 1 + o(h0):

(i) T≡AxX; X �=He; v for any v. Then h′ ≡AxX(6 ∗&)∈ 2 for any 2.
(ii) T �=Ax : tp�(h)≡T; h�[i]≡Reh0�[i]h1;

h′0 ≡T{h0[i]}i ∈ r+(IH; (7:4)) implies h0[i]∈ r+ (Lemma 5.1.1), Reh0[i]h1

∈ r+ (De.nition 5.3), h′ ≡T{Reh0[i]h1}i ∈ r+ (Lemma 5.1.2).

o(h) ≡ o(h1) + lth(�) + 1 + o(h0) ¿ by IH;

o(h1) + lth(�) + 1 + o(h0�[i]) = o(h�[i]):

(iii) T≡AxHe; v((e; ?0; 6)) : tp�(h)≡He; v;

h�[0] ≡ (FRH�)W!h1[e=v]

o(h) ≡ o(h1) + lth(�) + 1 + o(h0) ¿ by IH

o(h1[e=v]) + 1 + lth(FRH�) + 1 = o(h�[0]) + 1;
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where like in (4.4), !≡ (e; v; 66r) and FRH� is a sequence of Fr;
H-inferences of rank ¿r (Lemma 4.3).

AxH
(e; ?); 6

...:
(e; ?0); &

...
: : : dv : (e; v)& : : :
d : &

...�
∅

... W!dv
(e; v)66r ∗&
... FRH�

(e; v)66r ∗&6r

(e; ?)6 ∗&
...�:
∅

He;v

h1 ∈ r+, h1[e=v]∈ r+, W!h1[e=v]∈ r+, (De.nition 5.1), h[0]∈ r+ (De.nition 5.1),
since FRH� is a sequence of Fr;H-inferences of rank ¿r), h′ ≡He; vh[0]∈ r+

(De.nition 5.3).
h≡W!h0. Let T := tp�(h0) �=Ax.

(h0; �′)∈ r+ for some �′; !t¿r; !6r is a correct +-free sequent, ! ∗�(h0) is
de.ned, (!f)¿r ⊆�(h0).

(5) (a) T �≡Cute;CutFre or e =∈dom(!) : tp�(h) =T; h�[i] =W!(h0[i]). We have
2= r+; h0 ∈ r+ (De.nition 5.3), h′0 ≡T{h0[i]}∈ r+ (IH), h0[i]∈ r+ (Lemma
5.1.1), h[i]≡W!(h0[i])∈ r+ (De.nition 5.3), h′ ≡T{h[i]}∈ r+ (Lemma 5.1.2).

o(h) = o(h0) + 1 ¿ o(h0�[i]) + 1 = o(W!(h0�[i]) = o(h�[i]):

(b) T≡Cute;CutFre, (e; u)∈!, u∈{?; ?0}∪N. Here
If u∈{?0; ?}, then u≡?0 for T≡Cute and u≡? for T≡CutFre (cf. De.nition 4.4).
tp�(h) := tp(h−); h�[i] := h−[i] where

h− :=
{

W!h0�[0] if u =?; ?0;
W!h0�[1][e=u] if u ∈ N;

so h′ ≡ (h−)′, and (h−)′ ∈ r+ by the same argument as in the previous subcase.

o(h�[i]) = o(h−[i]) = o(W!h0�[i][e=u]) = o(h0�[i][e=u]) + 1

6 o(h0�[i] + 1 ¡ o(h0) + 1 = o(h)

8. Ackermann-style termination proof

Theorem 8.1. The H-process terminates

Proof. Let

h := D1E1 : : :DnEnAxA(∅);
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where n is the maximal rank of �-terms in Cr. Denoting

hr := ErDr+1Er+1 : : :DnEnAxA(∅)

we have: (AxA(∅); ∅)∈ n + 1; (hr; ∅)∈ r+; (Drhr; ∅)∈ r. Hence h≡D1h1 describes a
cut-free form |d| of the original derivation d of the empty sequent: since (h0; ∅)∈ 1,
|d| ≡ (h0; ∅)∞ is a 1-derivation in PA�, that is a cut-free derivation of ∅ by Theorem 6.1.
Put

�0 := ∅; hn+1 := h�n [0]; �n+1 := (�n tp(hn; �n0))

or, dropping some arguments, hn ≡ h0[0] : : : [0]; n times. According to relations (7.1),
(7.2) (cf. Theorem 6.1 and Lemma 6.9 of [11]), a cut-free derivation |d| of the empty
sequent is a protocol of a terminating H -process. More precisely, the top sequent of
|d| is an axiom AxS, and all other inferences are of the kind Fr or H.

By (7.5), for every n, if hn is not yet an axiom, then

o(hn) ¿ o(hn+1): (8.1)

Hence (by induction on �0) the sequence hn terminates in an axiom AxS, that is in a
solution.

Note: Our formulation of �PA and PA�∗ allow “irrelevant” applications of Cut; CutFr;
Fr that do not “compute” any subterm in Cr ∪CR. (It is possible they can accelerate an
H-process). However our cut elimination transformations introduce such redundancies
only to preserve periodicity of the H-process. This provides a bound for the number of
Fr between any two applications H;H ’ of H -rules in a normal derivation: this is the
number of Fr needed to make H ’ applicable after H plus the total number of Fr in the
whole H-process before H . In view of this bound on the number of consecutive Fr-
inferences, there is a primitive recursive function providing the numbers ki; i= 1; 2; : : :
of the premises of H-inferences in this sequence, and it is possible to get rid of Fr.
This is not necessary, since ordinals strictly decrease at all rules including Fr.

9. Reductions

Let us list reductions h �→ h′ with paths dropped.
(1) AxA(&) �→ CuteAxX((e; ?0); &)AxA((e;+); &).
(2) (a) ErCuteh0h1 �→ CutFre(Re(Erh0)(Erh1))Erh1,

(b) ErT{hi} �→ T{Erhi}.
(3) (a) ReAxX((e; ?0); 6)h1 �→ AxX((e; ?); 6 ∗ �(h1)), if X �=He; v,

(b) ReT{hi}h′ �→ T{Rehih′}; Ax �=T∈ �PA,
(c) ReAxHe; v((e; ?0); 6)h1 �→ He; vFRH�W!h1[e=v],

where ! := (e; v); 66r .
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(4) (a) If T =∈{Cute;CutFre} or e =∈dom(!), then W!T{hi} �→ T{W!hi}.
(b) If T∈{Cute;CutFre}, e∈dom(!), then

W!Th0h1 �→ W!h0, if (e; ?′)∈!,
W!Th0h1 �→ W!h1[e=n], if (e; n)∈!.

It is in 3c that (e;+) in �(h1) is replaced by (e; v), and h1[e=v] is transferred to the
main branch.
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