
Computers and Mathematics with Applications 63 (2012) 239–254

Contents lists available at SciVerse ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

Efficient polynomial root-refiners: A survey and new record
efficiency estimates
J.M. McNamee a, Victor Y. Pan b,c,∗

a Department of Computer Science and Engineering, York University, 4700 Keele St, Toronto, ON, M3J 1P3, Canada
b Department of Mathematics and Computer Science, Lehman College of the City University of New York, Bronx, NY 10468, USA
c Ph.D. Programs in Mathematics and Computer Science, The Graduate Center of the City University of New York, New York, NY 10036, USA

a r t i c l e i n f o

Article history:
Received 7 November 2011
Accepted 9 November 2011

Keywords:
Iterative root-refiners
Efficiency
Simultaneous iterations
Polynomial factorization
Companion matrix methods

a b s t r a c t

A typical iterative polynomial root-finder begins with a relatively slow process of
computing a crude but sufficiently close initial approximation to a root and then rapidly
refines it. The policy of using the same iterative process at both stages of computing an
initial approximation and refining it, however, is neither necessary nor most effective. The
efficiency of an iteration at the former stage resists formal study and is usually decided
empirically, whereas formal study of the efficiency at the latter stage of refinement is not
hard and is the subject of the current paper. We define this local efficiency as log10 q

d =

log10(q1/d) (q is the convergence order, and d is the number of function evaluations per
iteration); it is inversely proportional to the number of flops involved. Assuming that about
2n flops are needed per evaluation of a polynomial of a degree n at a single point, we extend
the definition to cover the recent matrix methods for polynomial root-finding as well as
somemethods that combine n approximations to all n roots to refine them simultaneously.
For the approximation of a single root of a polynomial of degree n, the maximum local
efficiency achieved so far is log10 2 ≈ 0.301 . . . , but we show its growth to infinity for
simultaneous approximation of all n roots as n grows to infinity.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Polynomial root-finding: some history

Univariate polynomial root-finding is the oldest problem ofmathematics and computationalmathematics; it was central
for these fields from the Sumerian and Babylonian times (the third millennium B.C.) and well into the XIXth century A.D.
Its study was responsible for the introduction of some basic concepts and algorithms, e.g., groups, fields, algebraic and
meromorphic functions, the Regula Falsi and secant algorithms, and irrational, negative, and nonreal numbers. For more on
the rich and exciting history of this study see, for example, the books [1,2] and surveys [3,4].

At present, univariate polynomial root-finding is a fundamental operation of computer algebra, particularly critical
for geometric modelling and algebraic geometric computations such as the computation of the intersection of algebraic
curves and surfaces, which amounts to the solution of systems of polynomial equations. The most popular solution
algorithms, employing Gröbner bases, reduce the latter task to accurate root-finding for high degree univariate polynomials.

∗ Corresponding author at: Department of Mathematics and Computer Science, Lehman College of the City University of New York, Bronx, NY 10468,
USA. Tel.: +1 914 737 2637; fax: +1 718 960 8969.

E-mail addresses:mcnamee@cse.yorku.ca (J.M. McNamee), victor.pan@lehman.cuny.edu, v_y_pan@yahoo.com (V.Y. Pan).
URL: http://comet.lehman.cuny.edu/vpan/ (V.Y. Pan).

0898-1221/$ – see front matter© 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.camwa.2011.11.015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82426578?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.camwa.2011.11.015
http://www.elsevier.com/locate/camwa
http://www.elsevier.com/locate/camwa
mailto:mcnamee@cse.yorku.ca
mailto:victor.pan@lehman.cuny.edu
mailto:v_y_pan@yahoo.com
http://comet.lehman.cuny.edu/vpan/
http://comet.lehman.cuny.edu/vpan/
http://comet.lehman.cuny.edu/vpan/
http://comet.lehman.cuny.edu/vpan/
http://comet.lehman.cuny.edu/vpan/
http://comet.lehman.cuny.edu/vpan/
http://dx.doi.org/10.1016/j.camwa.2011.11.015

240 J.M. McNamee, V.Y. Pan / Computers and Mathematics with Applications 63 (2012) 239–254

Other important application areas of polynomial root-finding include control and signal processing (see the demonstrations
on pages XIV and XV of [5]).

Over the centuries, especially since the advent of computers, there have been hundreds if not thousands of different
methods devised for numerical approximation of the roots of polynomials. A large number (perhaps most) of them are
listed in the bibliography by McNamee [6], and many are described in the two-part monograph by McNamee and Pan [7,5].

1.2. Our subject: iterative techniques for polynomial root-finding and root-refining

The roots of a polynomial of a degree higher than four must be computed approximately because there exist no explicit
expressions for them using arithmetic operations and radicals, and so the known methods are iterative; for example, they
begin with a sufficiently close initial approximation x0 to a root and recursively improve it.

Simultaneous methods proceed similarly for all roots of a polynomial (see Section 5), whereas the matrix root-finders
use iterative eigenvalue algorithms applied to companion or generalized companion matrices associated with a given
polynomial (see Section 4).

A typical iterative polynomial root-finder begins with a relatively slow process of computing a crude but reasonably
close initial approximation to a root and then rapidly refines it. The policy of using the same iterative process at both stages
of computing an initial approximation and refining it, however, is neither necessary nor most effective. The efficiency of
an iteration at the former stage resists formal study and is usually decided empirically (see [8]), although this difficulty is
overcome, for example, in [9–13]. In contrast, estimating the efficiency of the latter stage of refinement is not so hard, and
is the subject of the current paper.

Namely, we assume that some black box algorithms have already supplied desired initial approximations to the roots;
then we study root-refining by iterations that converge with order q right from the start. For example, q = 2 for Newton’s
method provided that a root lies substantially closer to an initial approximation than to any other root. Reneger [14] provides
specific estimates based on the results of [15,16], and this study has been extended to other root-finders aswell (see [17,18]).

1.3. Iterative root-finders and root-refiners: classification

We assume a polynomial equation f (x) = 0, and a reasonably good initial approximation x0 to its root x = ζ . Then we
apply an iterative method such as xi+1 = φ(· · ·), where φ depends for example on xi, f (xi) and its derivatives, repeating the
iteration until some convergence criterion is satisfied. Or the iteration may be more complicated (see (2)–(4) below). The
following classes cover a large part of the iterative methods of Sections 2 and 3; in particular, classes (3) and (4) are covered
in Sections 2.2 and 3.2.
(1) One point, without memory: the new approximation xi+1 is defined as a function of

xi, f (xi), f ′(xi), . . . , f (s−1)(xi) for i = 0, 1, . . . , i.e.,
xi+1 = φ(xi, f (xi), f ′(xi), . . . , f (s−1)(xi)).

(2) One point, with memory. Here we re-use old values:
xi−1, . . . , xi−m for a fixed positive integerm, i.e., xi+1 is given by

φ(xi, xi−1, . . . , xi−m, f (xi−1), . . . , f (xi−m), . . . , f (s−1)(xi−1), . . . , f (s−1)(xi−m)).

The overall work (over all i = 1, 2, . . . , k) is almost the same as for one point without memory provided that k is large
enough.
(3)Multi-point (without memory). It proceeds thus:

z1 = φ1(xi, f (xi), . . . , f (s−1)(xi)),
z2 = φ2(xi, f (xi), . . . , f (s−1)(xi), z1, f (z1), . . . , f (s−1)(z1)),
· · · · · · · · · · · ·

· · · · · · · · · · · ·

zj = φj(xi, f (xi), . . . , f (s−1)(xi), z1, f (z1), . . . , f (s−1)(z1), . . . ,

zj−1, f (zj−1), . . . , f (s−1)(zj−1)) (j = 3, . . . , n),
xi+1 = zn,

where n ≥ 4 is a fixed integer.
(4)Multi-point with memory: as above, but we also use old values:

xi−ℓ, f (xi−ℓ), . . . , f (s−1)(xi−ℓ) (ℓ = 1, . . . ,m).

1.4. Efficiency: definition

We define the efficiency of an iterative root-refiner as the inverse of the work needed to obtain a desired accuracy of
solution. This may be derived as follows: suppose we start with a guess having error 10−1 and seek an estimate within the

J.M. McNamee, V.Y. Pan / Computers and Mathematics with Applications 63 (2012) 239–254 241

error bound 10−D. Let the method have order q, i.e., for a root ξ , we have

|xi+1 − ξ |

|xi − ξ |q
= C ≠ 0,∞,

where q is not necessarily an integer. For the sake of demonstration, let C = 1. Then, after one step, the initial error bound
ϵ0 = 10−1 decreases to ϵ1 = 10−q, after two steps, to ϵ2 = (10−q)q = 10−q2 , and so on.

Finally, after N steps, the output error is bounded by ϵN = 10−qN andmust stay below 10−D. Therefore we should choose

N =

logD
log q

≈

logD
log q

.

Hereafter, log stands for log10; that is, we assume logarithm to base 10.
Now, suppose that each iteration requires d function or derivative evaluations (in our crude estimate of efficiency we

ignore the cost of combining the different function values; for high degrees this makes little difference). Then the work
equals Nd ≈ logD d

log q . Hence, the efficiency equals

1
Work

≈
1

logD
log q
d
,

but D is problem dependent rather than method dependent, and it is usual to ignore it. Thus we finally define

Eff =
log q
d

= log

q

1
d

. (1.1)

Many authors use just q
1
d , but the back and forth transition to our definition is immediate. For an example, Newton’smethod

has q = d = 2, and so q
1
d =

√
2 = 1.414, whereas our definition gives Eff = log

√
2 =

1
2 log 2 = .1505.

The increase of the efficiency in (1.1) by a factor f corresponds to the decrease by the same factor of the arithmetic time
of the solution, measured by the number of flops involved.

1.5. Contents

In the next two sections, we recall a number of iterativemethodswhich have efficiencies in the above sense of (somewhat
arbitrarily) more than .225; we classify them depending on their derivation and whether they use only the values of the
input polynomial or also its derivatives and possibly higher-order derivatives. Table 1 at the end of the paper summarizes
the respective estimates. In Sections 4 and 5, we recall that the evaluation of a polynomial of a degree n at a point takes
about 2n flops, extend our study to cover matrix methods for polynomial root-finding and root-refining (in Section 4) and
simultaneous methods (in Section 5), and show that for the class of the latter methods the efficiency can dramatically
increase. Section 6 concludes the paper.

2. Iterative methods not using derivatives

2.1. Interpolation methods

We consider first Muller’s method [19], derived by fitting a quadratic through the three most recent approximations
(xj, f (xj))(j = i, i − 1, i − 2) and finding where the quadratic cuts the x-axis. By applying Newton’s divided difference
interpolation formula, we compute

xi+1 = xi −
2f (xi)

b ±

b2 − 4af (xi)

,

where

a = [xi, xi−1, xi−2] =
[xi, xi−1] − [xi−1, xi−2]

xi − xi−2
,

b = [xi, xi−1] + (xi − xi−1)a,

[xi, xi−1] =
f (xi)− f (xi−1)

xi − xi−1
,

and [xi−1, xi−2] is similar. If the quantity under the square root sign is positive, we take the sign of the square root to be that
of b; otherwise, we take the sign which will make the denominator larger in magnitude. Householder [20] shows that the
order is 1.839, and since we only need one new function evaluation per step, the efficiency is log 1.839 = .265. For a Fortran
program, see [21].

242 J.M. McNamee, V.Y. Pan / Computers and Mathematics with Applications 63 (2012) 239–254

Sharma [22] generalizes Muller’s method to a family of methods based on fitting the general quadratic

Q (x, y) = ax2 + by2 + cx + dy + e

through the three points (xj, fj)(j = i, i − 1, i − 2). He thus obtains the iteration

xi+1 = xi −
2fi(bfi − d)

c ±

c2 − 4afi(bfi − d)

.

Here, c and d depend on a, b, and the (xj, fj), while a and b may be chosen to give different members of the family. For
example, a = 0, b = 1 gives inverse parabolic interpolation (see the cited paper for details). The order and efficiency are
the same as for Muller’s method.

Jarratt [23] considers general polynomial interpolation (direct and inverse). The latter case, which is easier, proceeds by
fitting

x =

n−
j=0

ajyj

to the points (fi−k, xi−k)(k = 0, 1, . . . , n) by Lagrange’s or Newton’s divided difference interpolation. Then the next estimate
is given by y = 0 or xi+1 = a0. For n = 4, the order is 1.984, giving an efficiency of .2975.

The secant method uses

xi+1 = xi − fi
xi − xi−1

fi − fi−1
.

A variation known as Regula Falsi starts with f (x0)f (x1) < 0 and at each iteration replaces whichever of the old points has
the sign of the function value the same as that of the new point (the old point is replaced by the new one).

The secant and Regula Falsi methods are not particularly efficient, but Anderson and Björck [24] modify Regula Falsi so
that, when

fifi+1 > 0,

they use

xi+2 = xi+1 −
fi+1

f
′

i+1

, (2.1)

where f
′

i+1 is the derivative of the interpolating parabola to (xk, fk)(k = i − 1, i, i + 1) at xi+1, namely

f
′

i+1 = [xi+1, xi] + [xi+1, xi−1] − [xi−1, xi]. (2.2)

(If fifi+1 < 0, an unmodified Regula Falsi step is taken.) Now, if xi+2 does not lie in the interval [xi−1, xi+1], we take

xi+2 = xi+1 − (xi−1 − xi+1)
fi+1

1
2 fi−1 − fi+1

.

The efficiency varies between .226 and .233.
King [25] improves the Anderson and Björck method as follows (starting with (x0, f0) and (x1, f1), where f0f1 < 0 as in

Regula Falsi):
(1) Find xi+1 from (xj, fj) (j = i − 1, i) by a secant step and calculate fi+1. If fifi+1 < 0, set (xB, fB) = (xi, fi); else, set
(xB, fB) = (xi−1, fi−1).
(2) Perform computations defined by Eqs. (2.1) and (2.2) above to obtain xi+2. If this is not in [xi+1, xB], obtain xi+2 by using

xi+2 = xi+1 − (xB − xi+1)
fi+1

1
2 fB − fi+1

.

Replace fB by fB
2 . Calculate fi+2.

(3) If fi+1fi+2 < 0, set (xB, fB) = (xi+1, fi+1). In any case, replace (xi−1, fi−1), (xi, fi), and (xi+1, fi+1) by (xi, fi), (xi+1, fi+1), and
(xi+2, fi+2), respectively, and return to step 2.

The order is 1.839, as for Muller’s method, but King’s method has the advantage of guaranteeing convergence for real
roots. For complex roots we can apply other methods such as Muller’s.

Kogan [26] presents a method that uses the following extension of the secant method:

xi+1 = xi −
f (xi)

[xi−1, xi][xi−2, xi−1] − f (xi−1)[xi−2, xi]
.

According to Kogan, this method has order 1.84 and hence efficiency .2648.

J.M. McNamee, V.Y. Pan / Computers and Mathematics with Applications 63 (2012) 239–254 243

A nonstationary method is proposed in [27]:

xi+1 = xi −
f (xi)

[xi−1, xi] +

i∑
s=2

[xi−s, . . . , xi]
i−1∏

j=i−s+1
(xi − xj)

(i = 1, 2, . . .),

where

[xk−s, . . . , xk] =
[xk−s+1, . . . , xk] − [xk−s, . . . , xk−1]

xk − xk−s
(s = 1, . . . , k),

with
[xk, xk] = f (xk).

For example,

x2 = x1 −
f (x1)

[x0, x1]
,

x3 = x2 −
f (x2)

[x1, x2] + [x0, x1, x2](x2 − x1)
,

x4 = x3 −
f (x3)

[x2, x3] + [x1, x2, x3](x3 − x2)+ [x0, . . . , x3](x3 − x2)(x3 − x1)
.

The convergence order itself converges to 2 as i increases, so the efficiency approaches log 2 = .3010.

2.2. Multi-point methods

Traub [28] shows that one-point iterationswithoutmemory, using s−1 derivatives, are of order atmost s. Withmemory,
the maximum order is s + 1.

Kung and Traub [29] describe amulti-point iteration of order 2n−1 using n evaluations and conjecture that this is optimal
among allm-point iterations using n evaluations and no memory.
They define a set of iterations {ψj} as follows:

ψ0 = x,
ψ1 = x + βf (x),
· ·

· ·

ψj+1 = Qj(0),
where Qj(y) is the inverse interpolatory polynomial for f at f (ψk)(k = 0, 1, . . . , j). For example,

ψ2 = x0 −
βf (ψ0)f (ψ1)

f (ψ1)− f (ψ0)
,

ψ3 = ψ2 −
f (ψ0)f (ψ1)

f (ψ2)− f (ψ0)

[
ψ1 − ψ0

f (ψ1)− f (ψ0)
−

ψ2 − ψ0

f (ψ2)− f (ψ0)

]
,

and the authors give an Algol program for computing ψn for n ≥ 4. They show that the order is 2n−1, and that, among all
Hermite interpolatory function iterations using n evaluations, the above order is maximal.

Werschultz [30] considers a class of multi-point methods with memory using Hermite information, i.e., assuming initial
approximation x0 available, we recursively compute xi+1 from xi using

f (j)(zi−s,ℓ), 0 ≤ j ≤ rℓ − 1, 1 ≤ ℓ ≤ k, 0 ≤ s ≤ m
for fixed integers k, m, r1, . . . , rk. The number of new function evaluations per iteration is

n =

k−
ℓ=1

rℓ,

and the memory ism.
zi,ℓ+1 depends on

zi.q, f (zi,q), f (j)(zi,q) (j = 1, . . . , rℓ − 1; q = 1, . . . , ℓ);

zi−s,q, f (zi−s,q), f (j)(zi−s,q) (q = 1, . . . , k; s = 1, . . . ,m; j = 1, . . . , rℓ − 1).
If k = 1, we have one-point iterations withmemory; ifm = 0, we havemulti-point iterations withoutmemory.Werschultz
shows that the order of suchmethods is bounded by 2n (so the efficiency is bounded by log 2) and that this is nearly attained
for k = n, r1 = · · · = rn = 1 (i.e., no derivatives used) and for a moderately large m. This result is reached by a Hermite
interpolatory method.

244 J.M. McNamee, V.Y. Pan / Computers and Mathematics with Applications 63 (2012) 239–254

2.3. Methods based on rational approximation

Jarratt and Nudds [31] use rational approximation, i.e., they fit

f (x) =
x − c
ax + b

through the three points (xi−j, f (xi−j))(j = 0, 1, 2). Then the next approximation to the roots is given by

xi+1 = xi +
(xi − xi−1)(xi − xi−2)fi(fi−1 − fi−2)

(xi − xi−1)(fi−2 − fi)fi−1 + (xi − xi−2)(fi − fi−1)fi−2
,

where of course fi = f (xi), etc. The order and efficiency are the same as that of Muller’s method, but the method of [31] has
the advantage of finding real roots without using complex arithmetic (in contrast to Muller).

Larkin [32] uses a rational approximation, i.e., fits the given polynomial f (x) by

f̃ (x) =
x − xn+1

Qn−2(x)
for a fixed integer n > 2. He computes

wjk = wj+1,k−1 +
wj+1,k−1 − wj,k−1

(wj,k−1 − xj)/(wj+1,k−1 − xj+k)− 1
for j = 1, . . . , n − 1; k = 2, . . . , n − 1, and thewj1 given by the secant rule

wj1 = xj+1 −
xj+1 − xj
fj+1 − fj

fj+1,

where (starting from initial guesses x1, x2) the xj are given by

xn+1 = w1,n−1 (n = 2, 3, . . .). (2.3)

For example, if we go up to n = 4, the order of calculation is f1, f2, w11, x3 = w11, f3, w21, w12, x4 = w12, f4, w31,
w22, w13, x5 = w13. Larkin proves that if x1 and x2 are close enough to a root ζ , then xi → ζ as i → ∞ with convergence
order 2.

The later paper Larkin [33] gives a simpler method (we mention the previous method because there exists a program
based on it — see later). He defines

h(x) =
1

f (x)
.

Then let h[xn, xn+1, . . . , xn+k] denote the nth divided difference based on the points (xr , hr)(r = n, n + 1, . . . , n + k)with

h[xj] = hj ≡ h(xj) =
1

f (xj)
(j = 1, 2, . . .).

Starting from two initial guesses x1, x2, he computes

xn+1 = xn −
h[x1, . . . , xn−1]

h[x1, . . . , xn]
.

The divided differences can be computed recursively by

h[xj, . . . , xj+k] =
h[xj+1, . . . , xj+k] − h[xj, . . . , xj+k−1]

xj+k − xj
. (2.4)

There is a problem as n gets larger, namely the divided differences become very large, and there is a danger of overflow.
Also for large n the number of ‘overhead’ calculations (i.e., other than function evaluations) increases. These problems can
be overcome if we restrict k in (2.4) to a fixed number such as 5; that is, if we generate {xn}(n = 1, 2, . . . , k + 1) by (2.4),
and subsequently use

xn+1 = xn +
h[xn−k, xn−k+1, . . . , xn−1]

h[xn−k, . . . , xn]
.

Thusweonly use divided differences as far as the k is restricted, and points prior to (xn−k, hn−k) are not used in the calculation
of xn+1. The orders of convergence for various values of k are as follows:

k 1 2 · · · 5 · · · 11
q 1.618 1.889 · · · 1.984 · · · 2.000.

Norton [34] describes an algorithm based on Larkin’s paper [32] and its combination with bisection where necessary.
Along with other parameters, the user needs to set n equal to the maximum degree of rational interpolation. Norton
recommends n = 5 for simple roots, or n = 3 for multiple roots. He suggests a higher value for functions which are
hard to evaluate, such as high-degree polynomials.

J.M. McNamee, V.Y. Pan / Computers and Mathematics with Applications 63 (2012) 239–254 245

2.4. Miscellaneous methods

Henrici [35] gives a derivation of Aitken’s12 method (proposed in [36]) for accelerating the convergence of a sequence
which converges linearly, such as

xi+1 = φ(xi) (2.5)

(the method of successive approximation). The12 method can be written as

x′

i = xi −
(xi+1 − xi)2

xi+2 − 2xi+1 + xi
(2.6)

(note that the denominator in the right-hand side is 12xi; hence the name of the method). It is suggested that we start
with x0, form x1 and x2 by (2.5), and apply (2.6) with i = 0 to produce x′

0; then repeat the above process to convergence
(hopefully). This process has quadratic convergence and evaluates as many functions per iteration as the basic process (2.5).
In particular, the efficiency is log 2 = .3010 if a single evaluation is used in (2.5).

Kalantari [37] defines

fi = f (xi), fij =
fi+1,j − fi,j−1

xj − xi
(xi ≠ xj),

and recommends the iteration in which the 4-tuple (x1, x2, x3, x4) is replaced by the 4-tuple (B(4)4 , x1, x2, x3) for

B(4)4 = x1 −

f11

f23 f24
f33 f34

f12 f13 f14
f22 f23 f24
0 f33 f34

,

and of course the process is repeated to convergence. This method has efficiency .2934, which is close to the record high
value for methods of this class.

3. Methods using derivatives

3.1. Methods using Hermite interpolation

Hindmarsh [38] considers a class of Hermite interpolatory functions. He finds a function Pn(x) satisfying

P (k)n (xn−i) = f (k)(xn−i), (k = 0, . . . ,mi − 1; i = 1, . . . , ℓ), (3.1)

where themi are fixed integers, ℓ is the number of previously defined xn−i used in calculating xn, and the xn−i are previously
found estimates for the root ζ . Then xn is found as a root of Pn(x) = 0.

More practically, we define the inverse function

F(y) = f −1(y),

and fit Qn(y) to F(yi) as in (3.1); then we take

xn = Qn(0).

Actually, Hindmarsh finds that the most efficient method of this class has mi = 1 for all i (i.e., it uses no derivatives), and
large ℓ. As ℓ converges to ∞, the efficiency converges to log 2.

Kung and Traub [29] propose a family of inverse Hermite interpolatory formulas starting with

w1 = x,

w2 = x −
f (x)
f ′(x)

,

w3 = w2 −
f (x)f (w2)

[f (x)− f (w2)]2

f (x)
f ′(x)

;

the authors supply an Algol program to construct higher-order methods.wn has efficiency log(21− 1
n); e.g., n = 4 gives .226.

3.2. Multi-point methods

Neta [39] proposes a method having order 10.81 and efficiency .2585. For a fixed triple (w0, z0, x0), he recursively
computes triples (wi, zi, xi), i = 1, 2, . . . as follows:

wi = xi−1 −
f (xi−1)

f ′(xi−1)
+ [f (wi−1)φz − f (zi−1)φw]

f (xi−1)
2

f (wi−1)− f (zi−1)
,

246 J.M. McNamee, V.Y. Pan / Computers and Mathematics with Applications 63 (2012) 239–254

where

φw =
wi−1 − xi−1

[f (wi−1)− f (xi−1)]2
−

1
[f (wi−1)− f (xi−1)]f ′(xi−1)

,

and φz is the same, but with zi−1 in place ofwi−1. Then he obtains

zi = xi−1 −
f (xi−1)

f ′(xi−1)
+ [f (wi)φz − f (zi−1)ψw]

f (xi−1)
2

f (wi)− f (zi−1)
,

where

ψw =
wi − xi−1

[f (wi)− f (xi−1)]2
−

1
[f (wi)− f (xi−1)]f ′(xi−1)

.

Finally, he computes

xi = xi−1 −
f (xi−1)

f ′(xi−1)
+ [f (wi)ψz − f (zi)ψw]

f (xi−1)
2

f (wi)− f (zi)
,

where

ψz =
zi − xi−1

[f (zi)− f (xi−1)]2
−

1
[f (zi)− f (xi−1)]f ′(xi−1)

. (3.2)

Bi et al. [40] present a family of eighth-order methods with four evaluations, and hence efficiency log 8
4 = .2258 (this is

optimum for four evaluations and no memory). A useful member of this family is as follows:

yi = xi −
f (xi)
f ′(xi)

,

zi = yi −
2f (xi)− f (yi)
2f (xi)− 5f (yi)

f (yi)
f ′(xi)

,

xi+1 = zi −
f (xi)+ (γ + 2)f (zi)

f (xi)+ γ f (zi)
f (zi)

f [zi, yi] +
2(f [zi,xi]−f ′(xi))

zi−xi
(zi − yi)

,

where γ is a parameter. The value γ = 1 gave very good results.
There are several other methods of order 8 with four evaluations in the literature, but we do not mention them here to

save space; and it is unlikely that any of them will be substantially better than the one reported above.
Neta [41] gives a method of order 16 with five evaluations, as follows. Let

wi = xi −
f (xi)
f ′(xi)

,

zi = wi −
f (wi)

f ′(xi)
f (xi)+ 2f (wi)

f (xi)
.

Now let

Fδ = f (δi)− f (xi),

φδ =
δi − xi
F 2
δ

−
1

Fδ f ′(xi)
,

where δ = w or δ = z (e.g., if δ = w, δi = wi, Fδ = f (wi)− f (xi)).
Next, compute

D =
φw − φz

Fw − Fz
, γ = φw − DFw,

ti = xi −
f (xi)
f ′(xi)

+ γ f 2(xi)− Df 3(xi),

Ft = f (ti)− f (xi), φt =
ti − xi
F 2
t

−
1

Ft f ′(xi)
,

e =

φt−φz
Ft−Fz

−
φw−φz
Fw−Fz

Ft − Fw
,

d =
φt − φz

Ft − Fz
− e(Ft + Fz), c = φt − dFt − eF 2

t ,

J.M. McNamee, V.Y. Pan / Computers and Mathematics with Applications 63 (2012) 239–254 247

and finally

xi+1 = xi −
f (xi)
f ′(xi)

+ cf 2(xi)− df 3(xi)+ ef 4(xi).

The efficiency is log(5√16) = .2408.
Geum and Kim [42] give another family of methods of order 16 with five evaluations (and thus efficiency .2408). They

use

yi = xi −
f (xi)
f ′(xi)

,

zi = yi − Kf (ui)
f (yi)
f ′(xi)

,

si = zi − Hf (ui, vi, wi)
f (zi)
f ′(xi)

,

xi+1 = si − Wf (ui, vi, wi, ti)
f (si)
f ′(xi)

,

where

Kf (ui) =

1 + βui +

−9 +

5β
2

u2
i

1 + (β − 2)ui + (−4 + β2)u2
i
,

Hf (ui, vi, wi) =
1 + 2ui + (2 + σ)wi

1 − vi + σwi
,

Wf (ui, vi, wi, ti) =
1 + 2ui + (2 + σ)viwi

1 − vi − 2wi − ti + 2(1 + σ)viwi
+ G(ui, wi).

Here, β and σ are free parameters, and G(u, w) is an analytic function, while

ui =
f (yi)
f (xi)

, vi =
f (zi)
f (yi)

, wi =
f (zi)
f (xi)

, ti =
f (si)
f (zi)

.

The authors experimented with several values of (β, σ), and had most success with β = 2, σ = −2, and

G(u, w) = −
1
2
[uw[6 + 12u + u2(24 − 11β)+ u3φ1 + 4σ]] + φ2w

2,

where

φ1 = 11β2
− 66β + 136; φ2 = 2u(σ 2

− 2σ − 9)− 4σ − 6.

Alefeld and Potra [43] present another bracketing method as follows. Assume that the interval [a, b] contains a root ζ .
Let y0 = a and z0 = b, and for i = 0, 1, 2, . . . compute

yi+1 = yi −1f (yi, zi)−1f (yi),

z i+1 = yi −
f (yi)

1f (yi, yi+1)
,

zi+1 = min{z i+1, zi},

where1f (s, t) is the divided difference of f (x) at the points s and t . It is proved that yi and zi → ζ from below and above.
The efficiency is only .191, but again convergence is guaranteed.

3.3. Methods using quadratics

King [44] describes the ‘‘Tangent parabola’’ method as follows. Let

a0 = f0 − f2 + f ′

1(x2 − x0),

b0 = 2x1(f2 − f0)+ f ′

1(x
2
0 − x22),

c0 = x2(2x1 − x2)f0 + x0(x0 − 2x1)f2 + x0x2(x2 − x0)f ′

1,

where

fi = f (xi) and f ′

i = f ′(xi) (i = 0, 1, 2, . . .).

248 J.M. McNamee, V.Y. Pan / Computers and Mathematics with Applications 63 (2012) 239–254

Then we compute

x3 =
1
2

x2 +

−b0 ±

b20 − 4a0c0

2a0

 .

Also, let

A1 = f ′

1 − f ′

3; B1 = 2(x1f ′

3 − x3f ′

1),

C1 = 2(x1 − x3)f2 − x22A1 − x2B1,

and then

x4 =

−B1 ±

B2
1 − 4A1C1

2A1
.

The process may of course be repeated until convergence.
The convergence order is 3, and two evaluations are required per iteration, so the efficiency is .238.

Costabile et al. [45] give a method for real roots based on quadratic interpolation, with successive approximations
bracketing the root (as in bisection or Regula Falsi). The iteration used is

xi+1 = xi −
2fi

f ′

i ±

f 2i − 4σifi

, (3.3)

where

σi =
fi−1 − fi − f ′

i (xi−1 − xi)
(xi−1 − xi)2

.

Select x0 and x1 so that

f (x0)f (x1) < 0, (3.4)

and choose the sign in (3.3) so that x2 is in [x0, x1] (it is proved that this exists and is unique). Then define the new x1 as
x0 or the old x1 so that (3.4) remains true. Finally, we iterate to convergence, which is guaranteed. The efficiency is .190,
lower than that of most methods considered in this work; but it is mentioned because of its valuable feature of guaranteed
convergence.

The later paper Costabile et al. [46] presents a method similar to Muller’s except that they fit a quadratic through the
two latest approximations and the point mid-way between them. The authors also use bracketing as before to ensure global
convergence to a real root. The order is 2 and the efficiency .3105, among the highest known for this type of method.

4. Companion matrix methods

4.1. Algorithms based on repeated squaring

Hereafter, we write

p(x) = xn + cn−1xn−1
+ · · · + c1x + c0. (4.1)

We define the companion matrix of this polynomial as

C =

0 1 0 0 · · · 0
0 0 1 0 · · · 0
· · · · · · · · · · · · · · · · · ·

0 · · · · · · 0 0 1
−c0 −c1 · · · · · · −cn−2 −cn−1

 , (4.2)

and then

det(xI − C) = p(x) (4.3)

(see [47]), and so we can find polynomial roots as the eigenvalues of this special matrix. This leads to companion matrix
methods; they can be extended to the case of nonmonic polynomials (see [48,49]).

Stewart [50] and Householder [51] extend the work of Sebastiao e Silva [52] by starting with an arbitrary nontrivial
polynomial h0(x) of degree less than n, and applying

hi+1 = [hi]
2 mod p(x), i = 0, 1,

Then they employ companion matrix methods.

J.M. McNamee, V.Y. Pan / Computers and Mathematics with Applications 63 (2012) 239–254 249

In particular, Stewart shows that, if

|h0(r1)| > |h0(ri)| (ri ≠ r1),

then hi(x)
hi(0)

converges to π1(x)
π1(0)

, where

π1(x) =
p(x)
x − r1

, so x − r1 =
p(x)
π1(x)

.

Finally, he shows that

hi = [h0(C)]2
i

1
0
··

··

0

 ,
where by hi he denotes the coefficient vector of hi(x). For a simple root, the convergence is quadratic, but the efficiency is
low. The transition from hi to hi+1 requires order n log n flops, that is, order log n function evaluations. This feature persists
in the amended variants of this approach in [53,54].

4.2. Companion and generalized companion matrix eigen-solvers based on QR and LR algorithms

Another group of the companion matrix methods incorporates the powerful QR eigenvalue algorithm and its variations.
The local efficiency of these algorithms is not at the highest level, but we include them because they have good empirical
global convergence (right from the start), even though the known formal estimates do notmatch such an excellent empirical
property.

Matlab incorporates the classical QR algorithm, which takes order n2 flops per iteration. Uhlig [55] proposes its practical
improvement for polynomial root-finding, which he calls the DQR algorithm. Such a variation on the QR method (see [56])
still takes order n2 flops per iteration; this corresponds to order n function evaluations per iteration. He applies the Euclidean
Algorithm to find a tridiagonal matrix whose characteristic polynomial is p(z). He then transforms the given unsymmetric
tridiagonal matrix to a complex symmetric one, and applies Givens transformations to implement the QRmethod (for more
details see Uhlig’s papers or [7, Chapter 6]). Uhlig has written a program pzero based on his method; it is available from his
web-site at www.auburn.edu/~uhligfd/m_files/pzero.m.

Bini et al. [57,58] stay with the QR algorithm but exploit the rank structure of the companion and diagonal +

rank-one (hereafter DPR1) generalized companion input matrices to decrease the number of flops per iteration step to
cn for a scalar c provided all the eigenvalues are real. Eigen-solving for DPR1 matrices is equivalent to root-finding for the
important secular equations (see the details in [57], and the references therein).

To define the latter matrices, assume n distinct values s1, . . . , sn; then define a rank-one matrix Ed with diagonal entries

di =
p(si)
qi(si)

,

where

qi(x) =

∏
j≠i

(x − sj),

and finally define an associated generalized companion matrix

C = Ds − Ed, (4.4)

where Ds =

[
s1 0 ··

·· ·· ··

·· 0 sn

]
(i.e., it is a diagonal matrix with the (i, i) element si) and Ed of rank one is arbitrary; Elsner [59]

proposes

Ed =

d1 d2 ·· dn
d1 d2 ·· dn
·· ·· ·· ··

d1 d2 ·· dn

 .
Then (4.3) still holds for C of (4.4), that is, C is indeed a generalized companion matrix. This can be readily deduced based on
Lagrange interpolation (see [59] or [60]).

The restriction required in [57,58] that the inputmatrix should have only real eigenvalues has been removed in a number
of subsequent algorithms (see [61–65]). The paper [66] proposes further practical acceleration based on replacing the QR by
the LR scheme for a restricted class of totally positive input matrices. The number of flops per iteration is still of order cn,
where c varies depending on the selected representation for structuredmatrices. It has order n under the knownnumerically
stable representations; by relaxing this requirement, one can decrease it to a constant, which, however, is still too large to
make the resulting algorithms competitive for root-refining.

http://www.auburn.edu/~uhligfd/m_files/pzero.m

250 J.M. McNamee, V.Y. Pan / Computers and Mathematics with Applications 63 (2012) 239–254

4.3. Companion and generalized companion matrix eigen-solvers based on the inverse power iteration and its variations

Bini, Gemignani and Pan in the paper [67] apply the inverse power method to companion and DPR1 generalized
companion matrices.

The inverse power method for a general matrix C is defined as follows. Let z(0) be a sufficiently close approximation to
an eigenvalue zj of C, and let

v =

n−
k=1

akvk

with ‖v‖2 = 1, where vk, (k = 1, . . . , n) are the eigenvectors of C and ak ≠ 0. Let

x(0) = v,
y(i) = (C − z(i−1)I)−1x(i−1),

x(i) =
y(i)

‖y(i)‖2
,

z(i) = x(i)TCx(i).
Solution of all the above equations is repeated for i = 1, 2,

Then the pairs (y(i), z(i)) quadratically converge to an eigenvector/eigenvalue pair (vj, zj) (under certain conditions). Section 3
of the paper [67] describes several methods of choosing the initial z. It is estimated that for C in (4.4) the vector product
(C− zI)−1x can be computed in 9n flops, whereas 7n flops suffice in the case of C in (4.2); clearly in both cases the vector Cx
can be computed even faster. This method is most attractive where only a few roots of p(x) are required. A program IPSOLVE
implementing it can be found at the web-site www.bezout.dm.unipi.it.

Hereafter, we assume that a function evaluation takes 2n ± O(1) flops.
Pan and Zheng [68] propose and test two nontrivial extensions where the flops bounds per iteration are decreased to

4n + 1 and 3n + 4 in the case of companion matrices C in (4.2) (this can be interpreted as 2 and 1.5 function evaluations,
which implies the efficiencies 1

2 log 2 = .1505 and 2
3 log 2 = .2007, respectively), and to 5n+ 1 and 4n+ 2 flops in the case

of DPR1 generalized companion matrices C in (4.4) (this can be interpreted as 2.5 and 2 function evaluations, which implies
the efficiencies 2

5 log 2 = .1204 and 1
2 log 2 = .1505, respectively).

5. Simultaneous methods

5.1. WDK and Aberth algorithms

The heading of this section refers to numerous methods that combine n approximations to all the n roots to refine them
simultaneously. Milovanovic and Petkovic [69] compare ten suchmethods for polynomials of moderate degrees nwhere no
special initial information apart from the coefficients is assumed, and conclude that the best of this class is the Gauss–Seidel
version of the Weierstrass–Durand–Kerner (hereafter WDK) method (see [70–72]). Let z(k)i be denoted by zi and z(k+1)

i by ẑi
(where k is the iteration number and i is the index of the root towards which zi is supposedly converging). Then the method
in question uses

ẑi = zi −
p(zi)

i−1∏
j=1
(zi − ẑj)

n∏
j=i+1

(zi − zj)
(i = 1, . . . , n). (5.1)

For large n, however, Petkovic and Milovanovic [73] find the Gauss–Seidel Improved Ehrlich–Aberth method best, namely

ẑi = zi −
1

p′(zi)
p(zi)

−

i−1∑
j=1

1
zi−ẑj

−

n∑
j=i+1

1

zi−zj+
p(zj)
p′(zj)

. (5.2)

Bini and Fiorentino, extending Bini [74], have written a robust program called MPSOLVE (see [75]). It implements
Ehrlich–Aberth’s method (see [76,77]), namely

ẑi = zi −
1

p′(zi)
p(zi)

−

i−1∑
j=1

1
zi−ẑi

−

n∑
j=i+1

1
zi−zj

. (5.3)

It uses multiprecision and can give the multiplicity of the roots. It is available at the web-site www.bezout.dm.unipi.it.
It never failed on 1000 polynomials of degree up to 25,000. The program Polzeros is a slightly different implementation of
Ehrlich–Aberth’s method, also to be found at the above web-site.

http://www.bezout.dm.unipi.it
http://www.bezout.dm.unipi.it

J.M. McNamee, V.Y. Pan / Computers and Mathematics with Applications 63 (2012) 239–254 251

Iterations (5.1)–(5.3) approximate all n roots by using 4n2
± O(n), 8n2

± O(n) and 6n2
± O(n) flops per iteration loop,

respectively, and converge (locally) with order 2, 3, and 3, respectively, and so the cost of an iteration loop is translated into
2n ± O(1), 4n ± O(1),and 3n ± O(1) function evaluations, which is roughly 2, 4, and 3 per root, respectively. This implies
quite low efficiencies 1

2 log 2 = .1505, 1
4 log 3 = .119, and 1

3 log 3 = .159, respectively.

5.2. Simultaneous methods based on refinement of polynomial factorization

Some other simultaneous methods rely on recursive refinement of polynomial factorization, studied in [9,78,10–13,
79,8]. Next, we outline some of these techniques. Further details can be found in the above papers and in Chapter 15
of [5].

Suppose we are given the coefficients of a monic polynomial

p(x) =

n−
i=0

pixi = pn(x − x1) · · · (x − xn)

for n ≠ 0 and sufficiently close initial approximations z1, . . . , zn to its n simple roots x1, . . . , xn, supplied, for example, by
the WDK or Ehrlich–Aberth algorithms.

This defines an approximate factorization

p(x) ≈ f (x) = pn(x − z1) · · · (x − zn),

and conversely the algorithms of Schönhage [9] extending Ostrowski [80,81] readily recover approximate roots from such
a factorization. Now, our task is the refinement of a crude initial factorization. We recursively apply Newton’s multivariate
iteration, assuming for simplicity that p(x) is monic, pn = 1.

Iteration recursively updates the linear factors

f1 = x − z1, . . . , fn = x − zn

to produce new factors

f (new)1 = f1 + t1, . . . , f (new)n = fn + tn.

Here, the scalars t1, . . . , tn define Newton’s corrections and satisfy the partial fraction decomposition (hereafter PFD)
r
f

=
t1
f1

+ · · · +
tn
fn
,

r = r(x) = p − f , p = p(x) and f = f (x).

Consequently,

ti =
r
qi

mod fi =
r(zi)
qi(zi)

for

qi =
f
fi
, i = 1, . . . , n.

We can rewrite these expressions as

z(new)i = zi −
p(zi)
qi(zi)

, i = 1, . . . , n,

and arrive at the WDK classical iteration (without the Gauss–Seidel updating). Its convergence order is still 2, and its
efficiency is still 1

2 log 2 = .1505. It may be surprising that the simple link between computing the factorization p(x) ≈

f (x) = pn(x − z1) · · · (x − zn) and the WDK algorithm had not been observed until Pan and Zheng [8].

5.3. Simultaneous divide and conquer methods based on recursive polynomial factorization

It may be even more surprising that the efficiency of the factorization approach can dramatically increase where it is
recast in the divide and conquer iterative process covered in [10–13] and Chapter 15 of [5]. Indeed, assume a sufficiently
close initial approximation to a balanced factorization of the polynomial p into the product of two factors of comparable
degrees,

p ≈ q = f1f2 (5.4)

where

c− ≤ deg f1/ deg f2 ≤ c+ (5.5)

252 J.M. McNamee, V.Y. Pan / Computers and Mathematics with Applications 63 (2012) 239–254

for two positive constants c− and c+, and then recursively update it; namely, extend the above construction by writing

f (new)i = fi + ti

for i = 1, 2 and Newton’s correction polynomials ti satisfying

r
q

=
t1
q1

+
t2
q2
, (5.6)

where deg tj < deg fj and qj =
q
fj
for j = 1, 2.

We can compute this PFD by using O(n log2 n) flops (see, for example, [82], Problem 4.2c (PART·FRAC), pp. 30–31).
The iterative updating process endswith sufficiently close approximations of the factors f1 and f2. Thenwe can recursively

factorize both of them in similar fashion until we arrive at the complete approximate factorization

p(x) =

n−
i=0

pixi ≈ pn(x − x̃1) · · · (x − x̃n),

where x̃1 ≈ x1, . . . , x̃n ≈ xn approximate the n distinct roots of p within required accuracy. An effective algorithm
for computing an initial approximate factorization has been combined with such a refinement process in [10–13] to
approximate all n complex roots of a polynomial by using record and nearly optimal number of bitwise (Boolean)
operations.

Now, represent the above recursive process of refining the factorization by a binary tree with a root p, which has two
children f1 and f2; each of them in turn has two children such that f1 ≈ f11f12 and f2 ≈ f21f22, etc. At every level of the tree,
its nodes represent polynomials whose degrees sum to n − l, where l denotes the number of linear factors output at the
previous levels. The tree has O(log n) levels due to bound (5.5). It follows that computing Newton’s corrections for all factor
polynomials at each level takes O(n log2 n) flops.

This is translated intoO(log
2 n
n) function evaluations and the efficiency n log q

c′ log2 n
, where c ′

≠ 0 is a fixed constant and q is the
order of convergence. Newton’s iteration has local quadratic convergence, and the substitution of q = 2 turns the estimated
efficiency into

n
c ′′ log2 n

for a positive constant c ′′
= c ′/ log 2; then the efficiency grows to infinity as the degree n increases to infinity.

The divide and conquer factorization has practical limitations. The factors readily lose sparseness of an input polynomial
and may have much larger coefficients. A further modification is needed to avoid numerically unstable computation of the
PFDs.

6. Conclusions and further work

The problem of polynomial root-refining that starts with some crude but reasonably close initial approximations to the
roots is practically important. It can be effective to specialize root-refiners at this local stage by choosing them independently
of the global methods that supply crude initial approximations.

With this motivation, we have surveyed a number of iterative root-refiners and estimated their efficiency, which in our
definition is inversely proportional to the arithmetic time of the solution (that is to the number of flops involved) and which
indeed naturally measures the efficiency of a root-refining process. According to our measure, which is just a variation of a
customary concept of numerical analysis, themost efficient iterativemethods for refining a single root appear to be those by
Aitken [36], Hindmarsh [38], Jarratt [23], Kogan et al. [27], Larkin [32,33], and Costabile et al. [46], although their lead over
some other methods is rather narrow. It is most surprising that the simultaneous refinement of all roots based on divide
and conquer polynomial factorization can dramatically increase the efficiency; namely, we can make the efficiency grow to
infinity as the degree n of the polynomial grows to infinity. This observation should be investigated further, both formally
and experimentally, possibly with the incorporation of the techniques from Chapter 15 of [5] and [8].

Table 1 summarizes our estimates of Sections 2 and 3 for the efficiency of refining a single root. All the estimates
are bounded by .3010 and for large degree n are dramatically less than the efficiency n

c′′ log2 n
for a positive constant c ′′

(obtained at the end of Section 5). Other estimates of Sections 4 and 5 are less than .2010 and are too low to compete even
with cited record estimate .3010. We cover the supporting algorithms in Sections 4 and 5 because they are technically
important and have very good empirical global convergence, but we do not include the respective estimates in the
table.

Acknowledgement

The second author was supported by NSF Grant CCF-1116736 and PSC CUNY Awards 63153–0041 and 64512–0042.

J.M. McNamee, V.Y. Pan / Computers and Mathematics with Applications 63 (2012) 239–254 253

Table 1
Efficiency of polynomial root-refining.

AUTHOR(S) DATE SOURCE EFFY REAL ONLY

Muller 1956 Math. Tab. Aids Comput. 10 208 .265
Sharma 2004 Comput. Math. Appl. 48 709 .265
Jarratt 1970 Num. Meths. Nonlin. Alg. Equs. 1–26 .2975
Anderson/Björck 1973 BIT 13 253 .233 yes
King 1976 Computing 17 49 .265 yes
Kung/Traub 1974 J. Ass. Comp. Mach. 21 643 →.3010
Jarratt/Nudds 1965 Comput. J. 8 62 .265 yes
Kogan 1966 Tashkent Gos. Nauen Trudy Vyp. 276 53 .265
Kogan et al. 2007 Appl. Math. Comp. 188 75 →.3010
Larkin 1980 Math. Comp. 35 803 →.3010
Larkin 1981 Numer. Math. 37 93 →.3010
Aitken 1926 Proc. Roy. Soc. Edin. 46 289 .3010
Kalantari 2000 J. Comp. Appl. Math. 126 287 .2934
Hindmarsh 1972 SIAM J. Num. Anal. 9 205 →.3010
Neta 1983 J. Comput. Math. 14 191 .2585
King 1973 Numer. Math. 18 298 .238
Bi et al. 2009 Appl. Math. Comput. 214 236 .2258
Neta 1981 J. Comput. Math. 9 353 .241
Geum/Kim 2011 J. Comput. Appl. Math. 235 3178 .2408
Costabile et al. 2001 Numer. Algs. 28 87 .190 yes
Costabile et al. 2006 Calcolo 43 39 .3010
Alefeld/Potra 1988 ZAMM 68 331 .190 yes

References

[1] E.T. Bell, The Development of Mathematics, McGraw-Hill, New York, 1940.
[2] C.A. Boyer, A History of Mathematics, Wiley, New York, 1968.
[3] V.Y. Pan, Solving a polynomial equation: some history and recent progress, SIAM Review 39 (2) (1997) 187–220.
[4] V.Y. Pan, Solving polynomials with computers, American Scientist 86 (1998) 1998.
[5] J.M. McNamee, V.Y. Pan, 2012, Numerical Methods for Roots of Polynomials, Part 2, 780 + XIX pages, submitted for publication by Elsevier publishers.
[6] J.M. McNamee, A 2002 update of the supplementary bibliography on root of polynomials, J. Comput. Appl. Math. 142 (2002) 433–434. also at web-site

www.yorku.ca/~mcnamee/.
[7] J.M. McNamee, Numerical Methods for Roots of Polynomials (Part 1), Elsevier, Amsterdam, 2007.
[8] V.Y. Pan, A.-L. Zheng, 2011, Root-finding by expansion with independent constraints, Computers and Mathematics (with Applications) 62, 62, pp.

3164–3182, Proceedings version is in Proceedins of International Symposium on Symbolic-Numerical Computations (SNC 2011), San Jose, California,
June 2011, edited by Marc Moreno Masa, ACM Press, New York.

[9] A. Schönhage, The Fundamental Theorem of Algebra in Terms of Computational Complexity, Department of Math., University of Tübingen, Tübingen,
Germany, 1982.

[10] V.Y. Pan, 1995, Optimal up to polylog factors sequential and parallel algorithms for approximating complex polynomial zeros, in: Proc. 27th Ann. ACM
Symp. on Theory of Computing, pp. 741–750, ACM Press, New York.

[11] V.Y. Pan, Optimal and nearly optimal algorithms for approximating polynomial zeros, Computers andMath. (with Applications) 31 (12) (1996) 97–138.
[12] V.Y. Pan, 2001, Univariate polynomials: nearly optimal algorithms for factorization and rootfinding, in: Proc. International Symposium on Symbolic

and Algebraic Computation (ISSAC ’01), pp. 253–267, ACM Press, New York.
[13] V.Y. Pan, Univariate polynomials: nearly optimal algorithms for factorization and rootfinding, J. Symbolic Computations 33 (5) (2002) 701–733.
[14] J. Renegar, On the worst-case arithmetic complexity of approximating zeros of polynomials, J. Complexity 3 (1987) 90–113.
[15] M.-H. Kim, 1985, Computational complexity of the Euler type algorithms for the roots of complex polynomials, PhD Thesis, City University of New

York.
[16] S. Smale, Newton’s method estimates from data at one point, in: R.E. Ewing, K.I. Cross, C.F. Martin (Eds.), The Merging Disciplines: New Directions in

Pure, Applied and Computational Math., Springer, 1986, pp. 185–196.
[17] J.H. Curry, On zero finding methods of higher order from data at one point, J. Complexity 5 (1989) 219–237.
[18] M.S. Petkovic, D. Herceg, Point estimation of simultaneous methods for solving polynomial equations: a survey, J. Comput. Appl. Math. 136 (2001)

183–207.
[19] D.E. Muller, A method for solving algebraic equations using an automatic computer, Math. Tables Aids Comput. 10 (1956) 208–215.
[20] A.S. Householder, The Numerical Treatment of a Single Nonlinear Equation, McGraw-Hill, New York, 1970.
[21] I. Barrodale, K.B. Wilson, A Fortran program for solving a non-linear equation by Muller’s method, J. Comput. Appl. Math. 4 (1978) 159–166.
[22] J.R. Sharma, A family of methods for solving nonlinear equations using quadratic interpolation, Comput. Math. Appls. 48 (2004) 709–714.
[23] P. Jarratt, Nonlinear equations in one variable, in: P. Rabinowitz (Ed.), Numerical Methods for Nonlinear Algebraic Equations, Gordon and Breach,

London, 1970, pp. 1–26.
[24] N. Andersen, A. Björck, A new high order method of Regula Falsi type for computing a root of an equation, BIT 13 (1973) 253–264.
[25] R.F. King, Methods without secant steps for finding a bracketed root, Computing 17 (1976) 49–57.
[26] T.I. Kogan, Generalization of the method of chords for an algebraic or transcendental equation, Tashkent Gos. Univ. Nauen. Trudy Vyp. 276 (1966)

53–56. (in Russian).
[27] T. Kogan, L. Sapir, A. Sapir, A nonstationary iterative second-order method for solving nonlinear equations, Appl. Math. Comput. 188 (2007) 75–82.
[28] J.F. Traub, Optimal iterative processes: theorems and conjectures, Proc. 1971 IFIP Congress (1971) 1273–1277. Booklet TA-1.
[29] H.T. Kung, J.F. Traub, Optimal order of one-point and multipoint iterations, J. Assoc. Comput. Mach. 21 (1974) 643–651.
[30] A.G.Werschultz, Maximal order for multipoint methods withmemory using Hermitian information, Intern. J. Comput. Math. Sec. B 9 (1981) 223–241.
[31] P. Jarratt, D. Nudds, The use of rational functions in the iterative solution of equations on a digital computer, Computer J. 8 (1965) 62–65.
[32] F.H. Larkin, Root-finding by fitting rational functions, Math. Comp. 35 (1980) 803–816.
[33] F.H. Larkin, Root finding by divided differences, Numer. Math. 37 (1981) 93–104.
[34] V. Norton, Algorithm 631: finding a bracketed zero by Larkin’s method of rational interpolation, ACM Trans. Math. Softw. 11 (1985) 120–134.
[35] P. Henrici, Elements of Numerical Analysis, Wiley, New York, 1964.
[36] A.C. Aitken, On Bernoulli’s numerical solution of algebraic equations, Proc. Roy. Soc. Edin. 46 (1926) 289–305.

http://www.yorku.ca/~mcnamee/

254 J.M. McNamee, V.Y. Pan / Computers and Mathematics with Applications 63 (2012) 239–254

[37] B. Kalantari, Generalization of Taylor’s theorem and Newton’s method via a new family of determinantal interpolation formulas and its applications,
J. Comput. Appl. Math. 126 (2000) 287–318.

[38] A.C. Hindmarsh, Optimality in a class of root-finding algorithms, SIAM J. Numer. Anal. 9 (1972) 205–214.
[39] B. Neta, A new family of higher order methods for solving equations, Int. J. Comput. Math. 14 (1983) 191–196.
[40] W. Bi, Q. Wu, H. Ren, A new family of eighth-order iterative methods for solving non-linear equations, Appl. Math. Comput. 214 (2009) 236–245.
[41] B. Neta, On a family of multipoint methods for non-linear equations, Int. J. Comput. Math. 9 (1981) 353–361.
[42] Y.H. Geum, Y.I. Kim, A biparametric family of optimally convergent sixteenth-order multipoint methods with their fourth-step weighting function as

a sum of a rational and a generic two-variable function, J. Comput. Appl. Math. 235 (2011) 3178–3188.
[43] G. Alefeld, F.A. Potra, On two higher-order enclosing methods of J.W. Schmidt, Zeit. Ang. Math. Mech. 68 (1988) 331–337.
[44] R.F. King, Tangent methods for nonlinear equations, Numer. Math. 18 (1972) 298–304.
[45] F. Costabile, M.I. Gualtieri, R. Luceri, A new iterative method for the computation of the solutions of nonlinear equations, Numer. Algs. 28 (2001)

87–100.
[46] F. Costabile, M.I. Gualtieri, R. Luceri, A modification of Mullers method, Calcolo 43 (1) (2006) 39–50.
[47] L. Brand, The companion matrix and its properties, Amer. Math. Monthly 71 (1964) 629–634.
[48] C.F. Jónsson, S. Vavasis, Solving polynomials with small leading coefficients, SIAM J. Matrix Anal. Appl. 26 (2) (2005) 400–412.
[49] R.M. Corless, On a generalized companion matrix pencil for matrix polynomials expressed in the Lagrange basis, in: Dongming Wang, Lihong Zhi

(Eds.), Symbolic-Numeric Computation, Birkhäuser, Basel/Boston, 2007, pp. 1–15.
[50] G.W. Stewart, Short notes: on the convergence of Sebastiao E Silva’s method for finding a zero of a polynomial, SIAM Rev. 12 (1970) 458–460.
[51] A.S. Householder, Generalization of an algorithm by Sebastiao e Silva, Numerische Math. 16 (1971) 375–382.
[52] J. Sebastiao e Silva, Sur une méthode d’Approximation semblable a celle de graeffe, Portugal Math. 2 (1941) 271–279.
[53] J.P. Cardinal, On two iterative methods for approximating the roots of a polynomial, in: J. Renegar, M. Shub, S. Smale (Eds.), Lectures in Applied

Mathematics, in: Proceedings of AMS-SIAM Summer Seminar: Mathematics of Numerical Analysis: Real Number Algorithms, vol. 32, American
Mathematical Society, Providence, Rhode Island, 1995, pp. 165–188. Park City, Utah.

[54] V.Y. Pan, Amended DSeSC power method for polynomial root-finding, Computers and Math. (with Applications) 49 (9–10) (2005) 1515–1524.
[55] F. Uhlig, General polynomial roots and their multiplicities in O(n)memory and O(n2) time, Lin. Mult. Alg. 46 (1999) 327–359.
[56] F. Uhlig, The DQR algorithm, basic theory, convergence and conditional stability, Numer. Math. 76 (1997) 515–553.
[57] D.A. Bini, L. Gemignani, V.Y. Pan, Fast and stable QR eigenvalue algorithms for generalized companion matrices and secular equation, Numerische

Math., 3 (2005) 373–408. Also Technical Report 1470, Department of Math., University of Pisa, Pisa, Italy, July 2003.
[58] D.A. Bini, L. Gemignani, V.Y. Pan, Improved initialization of the accelerated and robust QR-like polynomial root-finding, Electron. Trans. Numer. Anal.

17 (2004) 195–205. Proc. version in CASC’2004.
[59] L. Elsner, A remark on simultaneous inclusions of the zeros of a polynomial by Gershgorin’s theorem, Numer. Math. 21 (1973) 426–427.
[60] C. Carstensen, Linear construction of companion matrices, Lin. Alg. Appl. 149 (1991) 191–214.
[61] D.A. Bini, F. Daddy, L. Gemignani, On the shifted QR iteration applied to companion matrices, Electron. Trans. Numer. Anal. 18 (2004) 137–152.
[62] D.A. Bini, Y. Eidelman, L. Gemignani, I. Gohberg, A fast QR eigenvalue algorithm for Hessenberg matrices which are rank-one perturbations of unitary

matrices, SIAM J. Matrix Anal. Appl. 29 (2) (2007) 566–585.
[63] D.A. Bini, P. Boito, Y. Eidelman, L. Gemignani, I. Gohberg, A fast implicit QR eigenvalue algorithm for companion matrices, Linear Algebra Appl. 432

(2010) 2006–2031.
[64] S. Chandrasekaran, M. Gu, J. Xia, J. Zhu, A fast QR algorithm for companion matrices, Operator Theory Adv. Appl. 179 (2007) 111–143.
[65] M. Van Barel, R. Vandebril, P. Van Dooren, K. Frederix, Implicit double shift QR-algorithm for companionmatrices, Numer. Math. 116 (2010) 177–212.
[66] R. Bevilacqua, E. Bozzo, G.M. Del Corso, qd-type methods for quasiseparable matrices, SIAM J. Matrix Anal. Appl. 3 (32) (2011) 722–747.
[67] D.A. Bini, L. Gemignani, V.Y. Pan, Inverse Power and Durand–Kerner iterations for univariate polynomial root-finding, Comput. Math. Appl. 47

(2004)447–459. Also Technical Report TR 2002 020, CUNY Ph.D., Program in Computer Science, Graduate Center, City University of New York, 2002.
[68] V.Y. Pan, A.-L. Zheng, New progress in real and complex polynomial root-finding, Computers and Math. (with Applications) 61 (2011) 1305–1334.
[69] G.V. Milovanovic, M.S. Petkovic, On computational efficiency of the iterative methods for the simultaneous approximation of polynomial zeros, ACM

Trans. Math. Softw. 12 (1986) 295–306.
[70] K. Weierstrass, Neuer Beweis des fundamentalsatzes der algebra, in: Mathematische Werker, Mayer und Müller, Berlin, 1903, pp. 251–269. Tome III.
[71] E. Durand, Solutions Numeriques des Equations Algebriques, in: Equations du type F(x) = 0: racines d’un polynome, 1, Masson, Paris, 1960.
[72] I.O. Kerner, Ein gesamtschrittverfahren zur berechnung der nullstellen von polynomen, Numer. Math. 8 (1966) 290–294.
[73] M.S. Petkovic, G.V. Milovanovic, Computational efficiency of the simultaneous methods for finding polynomial zeros: comparison of various

algorithms, in: D. Herceg (Ed.), Numerical Methods and Approximation Theory, University of Novi Sad, 1985, pp. 89–93.
[74] D.A. Bini, Numerical computation of polynomial zeros by means of Aberth’s method, Numer. Algs. 13 (1996) 179–200.
[75] D.A. Bini, G. Fiorentino, Design, analysis and implementation of a multiprecision polynomial rootfinder, Numer. Algs. 23 (2000) 127–173.
[76] L.W. Ehrlich, A modified Newton method for polynomials, Comm. ACM 10 (1967) 107–108.
[77] O. Aberth, Iteration methods for finding all zeros of a polynomial simultaneously, Math. Comp. 27 (122) (1973) 339–344.
[78] C.A. Neff, J.H. Reif, 1994, An o(n1+ϵ) algorithm for the complex root problem, Proc. 35th Ann. IEEE Symp. on Foundations of Computer Science, pp.

540–547, IEEE Computer Society Press.
[79] P. Kirrinnis, Polynomial factorization and partial fraction decomposition by simultaneous Newton’s iteration, J. Complexity 14 (1998) 378–444.
[80] A.M. Ostrowski, Recherches sur la méthode de Graeffe et les zéros des polynomes et des series de Laurent, Acta Math. 72 (1940) 99–257.
[81] A.M. Ostrowski, Solution of Equations and Systems of Equations, second ed., Academic Press, New York, 1966.
[82] D. Bini, V.Y. Pan, Polynomial and Matrix Computations, Vol. 1: Fundamental Algorithms, Birkhäuser, Boston, 1994.

	Efficient polynomial root-refiners: A survey and new record efficiency estimates
	Introduction
	Polynomial root-finding: some history
	Our subject: iterative techniques for polynomial root-finding and root-refining
	Iterative root-finders and root-refiners: classification
	Efficiency: definition
	Contents

	Iterative methods not using derivatives
	Interpolation methods
	Multi-point methods
	Methods based on rational approximation
	Miscellaneous methods

	Methods using derivatives
	Methods using Hermite interpolation
	Multi-point methods
	Methods using quadratics

	Companion matrix methods
	Algorithms based on repeated squaring
	Companion and generalized companion matrix eigen-solvers based on QR and LR algorithms
	Companion and generalized companion matrix eigen-solvers based on the inverse power iteration and its variations

	Simultaneous methods
	WDK and Aberth algorithms
	Simultaneous methods based on refinement of polynomial factorization
	Simultaneous divide and conquer methods based on recursive polynomial factorization

	Conclusions and further work
	Acknowledgement
	References

