
Journal of Mathematical Analysis and Applications 240, 324-339 (1999) 
Article ID jmaa.1999.6575, available online at  http://www.idealibrary.com on IOErl;L@ 

The Bartle Bilinear Integration and Carleman Operators1 

Francisco J. Freniche and Juan Carlos Garcia-Vfizquez' 

Departamento de Andisis Matemitico, Facultad de Matemiticas, 
Universidad de Sevilla, Apdo, 1160, Sevilla 41080, Spain 

Submitted by Richard M. Aron 

Received February 17, 1998 

Some characterizations of integrable functions in the bilinear sense of Bartle 
with respect to the injective tensor product are obtained. As a consequence it is 
shown that the kernels of Carleman compact operators coincide with these Bartle 
integrable functions. This result is applied to prove that every Carleman L-weak- 
compact operator is compact. An example showing the different behavior of the 
integrability with respect to the projective tensor product is given. A general Fubini 
theorem in this setting is shown. o 1999 Academic Press 

INTRODUCTION 

An operator u :  L,([O, 11) + L,([O, 11) is said to be integral or to be a 
kernel operator if there exists a measurable real function K ,  called the 
kernel of u ,  such that for every cp E L2([0, l]), the equality 

holds for almost every s. A special case of these type of operators are the 
so-called Carleman operators. An integral operator is said to be Carleman 
if for almost every s, the sections K(s ,  . ) of the kernel K are in L2([0, 11). 
Thus a Carleman operator is given by a strongly measurable vector valued 
function s E [0,1] + K(s ,  . ) E L2([0, 11). The study of these operators was 
indicated by Carleman in the 1920's and has been the subject of attention 
of many other researchers. 
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The concept of the Carleman operator can be extended in the following 
way: let L be an order continuous Kothe function space defined on the 
finite measure space (S, C, a )  [ll,  Section l.b.171 and let X be a Banach 
space. An operator u :  X + L is called a Carleman operator if there exists 
a strongly measurable function f :  S + X*, called the kernel of u ,  such 
that for every x E X the equality u ( x ) ( s )  = f ( s ) ( x )  holds for almost every 
s E S 161. 

In 1956, Bartle [ 11 introduced the so-called Bartle bilinear integration 
which we describe now: let X, Y ,  and 2 be Banach spaces and (S, C) be a 
measurable space. Let $: X X Y + 2 be a continuous bilinear map, f :  
S + X a strongly measurable function and v :  C + Y a countably additive 
vector measure. The Bartle semivariation is the set function llvll+(A) = 

s~pIIC;z"=~$(x,, v(A,))ll, where llxkll I 1 and ( A , )  is a measurable parti- 
tion of A.  We assume that the Bartle semivariation of v with respect to $ 
is dominated by the finite positive measure a on C, that is to say, 
a ( A )  + 0 if and only if 1 1  vll+(A) + 0 (* property in the original terminol- 
ogy of Bartle). The function f is said to be integrable in the sense of 
Bartle with respect to v and $ if 

1. 

2. 

there exists a sequence (f,) of simple functions that converges to 
f almost everywhere, 

the sequence of indefinite integrals jA$( f , ,  d v )  converges in the 
norm of 2 for each measurable set A ,  where j ,$(f , ,dv) = C;z"=,$(x,, 
v ( A ,  n A))  E 2, if f, = C;z"= lxk  xA,. 

The limit is usually denoted by j A $ ( f ,  dv). It can be seen that the limit of 
the sequence ( j A $ ( f , ,  dv)) exists in the norm of 2 uniformly for A E C, 
and so the indefinite integral j$ ( f ,  d v )  is countably additive. 

In this paper we establish a connection between Carleman operators 
and integrable functions in the bilinear sense of Bartle by using the space 
L1(v) of scalar functions which are integrable with respect to v [9] (see 
Section 2 for the definition). 

In Section 2 we characterize the Bartle integrability of a function with 
respect to a certain vector measure v and the injective tensor product in 
terms of the countably additivity of certain vector measure associated in a 
natural way to the function (cf. Theorem 2). We also obtain a characteriza- 
tion in terms of the L-weak compactness of the Carleman operator 
associated to the function (cf. Theorem 2). Some of these results show that 
there exist strong analogies between the Bartle bilinear integral with 
respect to the injective tensor product and the Pettis integral. 

In Section 3 we identify the space of X-valued Bartle integrable func- 
tions with respect to the injective tensor product with the space of 
weak*-to-weak continuous compact Carleman operators from X* into 
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L 1 ( v )  (cf. Theorem 4). We also prove that a Carleman operator from X 
into L 1 ( v )  is compact if and only if it is L-weak compact (cf. Proposition 
7). This result should be compared with that obtained in [6, Cor. 161 and [5, 
Theorem 4.21. We prove in Section 4 that the space of Bartle integrable 
functions with values in X is not complete when X is infinite dimensional 
and L 1 ( v )  is not purely atomic. Its completed space is X GE L1(v) .  

In Section 5 we prove that some of the characterizations of Bartle 
integrability with respect to the injective tensor product that we have 
obtained do no work for the projective tensor product. Finally, in Section 6 
we use the results obtained in Section 2 to show a general Fubini theorem 
for the injective tensor product of two vector measures. This theorem 
includes those considered in [3] and [8]. 

The notation is standard as can be found for instance in [ll] and [4]. If 
X is a Banach space, we shall denote by B, its closed unit ball. If Y is 
another Banach space then 5?(X,Y) is the space of bounded linear 
operators from X into Y. By Bil(X X Y) we denote the space of continu- 
ous bilinear forms defined on X X Y; sometimes this space will be 
canonically identified with 2(X, Y*).  

2. BARTLE BILINEAR INTEGRABILITY WITH RESPECT 
TO THE INJECTIVE TENSOR PRODUCT 

If v :  C + Y is a finitely additive vector measure defined on the a-field 
C of subsets of the set S, the variation of v is the measure IvI defined by 
lvl(A) = sup{Cz= lIIv(Ak)ll: ( A k )  partition of A}.  The semivariation of v is 
the set function llvll(A) = sup{ly*vl(A): IIy*II I l}. If Ilvll(S) < 00 we say 
that v has bounded semivariation. Countably additive vector measures 
have bounded semivariation. A control measure for v is a positive finite 
measure a such that a (A)  + 0 if and only if llvll(A) + 0. A theorem by 
Bartle, Dunford, and Schwartz states that such a measure always exists if v 
is countably additive which we suppose from now on. Moreover, this 
measure can be chosen as a = ly*vl, for certain y* E Y* [4], a result by 
Rybakov. 

In this section we study the Bartle bilinear integration with respect to 
the injective tensor product, that is, the bilinear map is $ = $€: X X Y + 

X GE Y given by $E(x,y) = x 8 y. We recall that the injective tensor 
product of X and Y is the completed space of X 8  Y, the space of 
weak*-to-weak continuous finite rank operators from X* into Y, endowed 
with the uniform norm of operators. In this case it is easy to see that the 
Bartle semivariation of v with respect to $€ coincides with the semivaria- 
tion of v ,  so it is dominated by a control measure of v. 



BARTLE BILINEAR INTEGRATION 327 

Let us recall that a measurable function p: S + R is said to be 
integrable with respect to a countably additive vector measure v :  C + Y if 

for any y* E Y*,  p is integrable with respect the scalar measure 
ly*vl and 

for each measurable set A there exists an element in Y ,  which is 
denoted by lAp d v ,  such that y * ( l A p  d v )  = lAp dy* v for every y* E Y*. 

The space of functions satisfying conditions (1) and (2) is denoted by 
L 1 ( v )  191. A norm is defined in L 1 ( v )  by setting I I  pII = sup{/l p(s) ld ly*vl (s ) :  
y* E By,}. With this norm L 1 ( v )  is an order continuous Kothe function 
space with the pointwise order. An equivalent norm is given by llpll = 

If f :  S + X is a function such that for any pair x* E X*, y* E Y*,  x * f  
is integrable with respect to ly*vl,  then we can define a finitely additive 
vector measure, which we will denote bylfdv with values in Bil(X* X Y * )  
in the following way. For any A E C, let us consider the bilinear map 
lA f d v defined by 

1. 

2. 

sup{II/A~p dvll:  A E CS. 

on each pair (x*, y * )  E X* X Y*. Using the closed graph theorem it can 
be seen that this bilinear map is separately continuous, therefore it is 
continuous. Since we have 

it follows from Nikodym-Grothendieck boundedness theorem [4] that this 
finitely additive measure has bounded semivariation. 

In the next Lemma we show that if the function f is Bartle integrable 
with respect to v and $€: X X Y + X $€ Y then its indefinite integral is 
precisely the measure l f d v .  Note that X $€ Y is (isometrically) a subspace 
of Bil(X* X Y*).  

LEMMA 1. Let f :  S + X be a Bartle integrable function with respect to v : 
C + Y a n d $ e : X x Y + X 6 E Y . T h e n f o r e v e y x *  E X * , x * f E L ' ( v ) a n d  
for a n y A  E we have l A $ € , ( f ,  d v )  = / A f d V  in Bil(X* X Y*).  

Pro05 If f = x x A  then l B $ € ( f ,  d v )  = x 8 v ( A  n B )  = l B f d v ,  hence 
the lemma follows for simple functions. 

Given an arbitrary Bartle integrable function f we can find a sequence 
(f,) of simple functions converging to f almost everywhere and such that 
j A $ € ( f , ,  d v )  converges to l A $ € ( f ,  v )  in X 6€ Y ,  uniformly for A E C. 
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Therefore, for fixed x* E X* , the sequence (x* f,) is Cauchy in L1( u) ,  and 
its limit must be x * f .  Thus f defines the vector measure l f d u  as we said 
above. 

For any measurable set A ,  we have that f,, du))(x*,  y * )  = 

/ , x * f ,  dy* u goes to l,x*fdy* u. It follows that l A $ E ( f , d u )  = /,fdu. I 
Let us recall that if u :  X + L is a bounded linear map and L is a 

Banach lattice then it is said that u is L-weak-compact if u(B,) is almost 
order bounded in L, that is, given E > 0 there exists e E L, e 2 0 such 
that u(B,) c [ -e,  el + E B ~ ,  where [ -e, el = { z  E L: -e I z I e}. If L 
is an order continuous Kothe function space on (S, 2, a )  it is known that 
this is equivalent to the condition lim,(,),,sup{llu(x>x,ll: llxll I 11 = 0. 

THEOREM 2. Let f :  S + X be a strongly measurable function. The 
following conditions are equivalent. 

The function f induces an operator x* + x * f  j?om X*  into L1(u) 
which is compact. 

The function f induces an operator x* + x * f  j?om X*  into L1(u) 
which is L-weak-compact. 

For any pair (x*, y * )  EX* X Y*,  the function x * f  is integrable 
with respect to ly*ul and the corresponding vector measure induced by f is 
countably additive. 

For any pair (x*, y * )  EX* X Y*,  the function x * f  is integrable 
with respect to ly*ul and the corresponding vector measure induced by f takes 
values into x iie Y. 

The function f is Bartle integrable with respect to u and the bilinear 
map $€: x x Y + x iiE Y. 

Pro05 It is clear since every compact operator is L-weak- 
compact. 

The first part of condition (3) follows from the definition 
of L1(u). Let a be a control measure for u. Observe that 

1. 

2. 

3. 

4. 

5. 

(1) * (2): 

(2) * (3): 

thus as the operator induced by f is L-weak-compact it follows that 
Ill,fdull + 0 when a (A)  + 0, so the measure / f d u  is countably additive. 
This was proved in [2]. 

Consider the measurable sets A ,  = { s  E S: Ilf(s>ll I nS. 
The functions f x,, are strongly measurable and essentially bounded, 
hence by [l,  Theorem 31, they are integrable in the sense of Bartle. It is 
clear that (fx, ) converges to f almost everywhere. 

(3) * (5): 
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On the other hand, if A is any measurable set then by Lemma 1 
we have that jA  $€( f xA,, d u )  = jA  f X A ,  d u = jA  A ,  f d u ,  and the sequence 
( jA  A ,  f d u )  converges to j A  f d u ,  being ( A  n A,)  non-decreasing and 
j f d u  countably additive by hypothesis. As the measures jfxA, d u  are 
countably additive and for every A they converge to jA  f d u ,  it follows by 
[l] and Vitali-Hahn-Saks theorem that f is integrable in the sense of 
Bartle. 

As f is integrable Bartle we can get a sequence of 
X-valued simple functions (f,) converging almost everywhere to f and 
such that the sequence of indefinite integrals f, d u )  converges to 
j A $ € ( f ,  d u )  in X Y (even uniformly for A E 2). By Lemma 1 we have 
for x* E X* that x* f E L1( u).  Let us denote by uf the operator from X* 
into L 1 ( u )  associated to f and uf, the operators associated to f, in the 
same way. We have 

(5) * (1): 

IlUf - Uf*ll = sup{ 11 x* ( f  - f,) Il&): x* E B,*} 

I 4 sup( lLx*(  f - f,) dy* U I  : x E B,* , y* 

As we know that jf, d u converges in the semivariation norm to jf d u we 
get that uf is limit of the finite rank operators uf,, in particular it is 
compact. Observe that (u,) is a sequence of weak*-to-weak continuous 
operators. 

(5) * (4): 

(4) * (3): 

This follows by Lemma 1. 
On the basis of Orlicz-Pettis theorem [4] and according 

to [ lo ,  Lemma 1.11 it is enough to show that for every x EX* and 
y* E Y* the scalar measure ( j f d u ) ( x * ,  y * )  is countably additive, which 
is plain because for any measurable set A ,  ( jA  f d u ) ( x * ,  y * )  = jAx* f dy* u.  

Let us recall that a strongly measurable function f :  S + X 
is said to be Dunford integrable with respect to a positive measure a if 
x* f E L1( a )  for all x* E X* . The Dunford indefinite integral jf d a is the 
X**-valued finitely additive vector measure given by ( j A  f d a ) ( x * )  = 

j A x * f  d a  for every measurable A and every x* E X*. 
Conditions 3 and 4 in Theorem 2 point out the strong analogy that exists 

between Pettis integrability and Bartle integrability with respect to the 
injective tensor product. Indeed, it is well known that the function f is 
Pettis integrable if and only if its Dunford indefinite integral is countably 
additive if and only if it takes values into X. 

I 
Remark 1. 
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Remark 2.  In the proof of Theorem 2 we have shown that if f is Bartle 
integrable with respect to the injective tensor product, then the operator 
u f :  x* E X* + x* f E L1( v )  induced by f is in fact the limit of a sequence 
of weak*-to-weak continuous finite rank operators, therefore it belongs to 
X GE L1(v) .  We shall see in Section 5 that the corresponding condition fails 
for the projective tensor product. 

Let us denote by P1( v ,  X )  the space of (classes of) strongly measurable 
functions with values in X which are Bartle integrable with respect to v 
and $ e ,  endowed with the norm l l f l l  = IIufll. Observe that the operator 
determines the class of the function f ,  because it is strongly measurable. 
In view of Remark 2, P,(v,  X )  can be seen as a non-necessarily closed 
subspace of X GE L1(v) .  In fact, as the operators induced by X-valued 
simple functions are dense in X GE L1(v) ,  this space can be seen as the 
completion of P,(v,  X).  

3. CARLEMAN OPERATORS 

Theorem 2 shows that every f E P 1 ( v ,  X )  is the kernel of the weak*- 
to-weak continuous compact Carleman operator u f :  X* + L1( v). Now we 
shall prove that, conversely, the kernel of such a Carleman operator is in 

Let us recall that if f :  S + X* is strongly measurable and for every 
x E X, xf E L1(a) ,  the weak*-integral of f over A E C is defined by 
(W* - /AfdU>(X> = /AxfdU. 

Let a be a positive finite measure. Let f :  S + X** be strongly 
measurable such that for every x* E X*, x* f E L1(a).  Assume that for every 
A E 2, the weak*-integral w* - / , fda  EX. Then f ( s >  E X  almost every- 
where. 

Let A, = { s  E S: I l f(s)l l I n}. Then f X A ,  is Bochner integrable 
with values in X**. As for every A E C, I A f X A ,  d a  = w* - l A f X A ,  d a  = 

w* - jAn A ,  f d a  EX, it follows that f ( s )  E X almost everywhere in A,. 
I 

P , ( v , X )  can be identifed with the space of compact 
Carleman operators from X* into L 1 ( v )  which are weak*-to-weak continu- 

Let u :  X* + L 1 ( v )  be a weak*-to-weak continuous compact 
Carleman operator. Let us denote by f :  S + X** its strongly measurable 
kernel. By Theorem 2 it suffices to show that f takes values essentially in 
X. Let a be a Rybakov control measure for v and i the inclusion from 
L 1 ( v )  into L 1 ( a ) .  As x * f  = u(x*) E L 1 ( a )  and / , x * f d a  = 

P y v ,  X).  

LEMMA 3. 

Pro05 

THEOREM 4. 

ous. 

Pro05 
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( i  0 u)*( x A ) ( x * ) ,  it follows from the weak*-to-weak continuity of i 0 u that 
w* - / A  f d a  = ( i  0 u)*( xA) E X ,  and we can apply Lemma 3 to get f ( s )  
E X almost everywhere. I 

In order to establish the connection between Carleman operators from 
X into L 1 ( u )  we need the following version of Theorem 2 for Bartle 
integrable functions with values in a dual space, whose proof is omitted 
due to its similarity to that of Theorem 2. We just remark that the vector 
measure we need takes its values in Bil(X X Y*> and that we do not know 
that the corresponding condition (4) remains valid in this situation. We 
also observe that in this case, as in the proof of (5) * (1) in Theorem 2, it 
can be shown that the operator x + xf induced by the strongly measurable 
integrable function is the limit in the uniform norm of operators of a 
sequence of finite rank operators. 

THEOREM 5. Let f :  S + X *  be a strongly measurable function. The 
following conditions are equivalent. 

The function f induces an operatorx + xfj?om X i n t o  L 1 ( u )  which is 

The function f induces an operatorx + xfj?omXinto L 1 ( u )  which is 

The function f is Bartle integrable with respect to u and the bilinear 

P l ( u , X * )  can be identifed with the space of compact 

1. 

2 .  

3. 

compact. 

L-weak-compact. 

map + e :  X* x Y +x* iiE Y. 

Carleman operators j?om x into L' ( u ) .  

COROLLARY 6. 

As a consequence of Theorem 5, we obtain the following Proposition. 

PROPOSITION 7. Let L be an order continuous Kothe function space on a 
finite measure space (S, 2, a) .  Let u :  X + L be a Carleman operator. Then 
u is compact if and only if u is L-weak-compact if and only if u is limit of 
finite rank operators. 

According to [ 2 ] ,  there exists a countably additive vector mea- 
sure u :  C + L such that L = L1(u) .  The Proposition then follows from 
Theorem 5. I 

The concept of Carleman operator can be defined for opera- 
tors u :  X + L when L is an abstract order continuous Banach lattice with 
weak unit, in such a way that for every representation of L as a Kothe 
function space, the definition is consistent with that given at  the beginning 
of this section. Indeed, we say that u is Carleman if there exists a sequence 
(e,) in L of positive and pairwise disjoint elements such that Eke, is a 
weak unit in L and for each k we have P,,o u :  X + I(e,) is a compact 

Pro05 

Remark. 
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operator, where Pek is the natural band projection and I ( e k )  is the ideal 
generated by ek endowed with the norm llzll = inf{c > 0: IzI I cllekllplekS 
(see [ll]). In this context it is also true that every L-weak-compact 
Carleman operator is compact. 

4. UNCOMPLETENESS OF P1( u ,  X )  

Let us recall that a countably additive vector measure u is said to be 
non-purely atomic whenever any control measure for u is not purely 
atomic. This is equivalent to the lattice L1(u) is not purely atomic. 

Let u :  C + Y be a non-purely atomic vector measure and X 
an infinite dimensional Banach space. Then P,(u,  X )  is not complete. 

Let cr be a Rybakov control measure for u. For each n E N we 
use Dvoretsky-Rogers lemma to find vectors x l , .  . . , x, in X satisfying 
c;z"=lllxkll = 1 and such that sup{c;z"=1Ix*(xk)l: x* E B,,} I l/n. 

Without loss of generality we can suppose that S has measure 1 and 
such that cr has no atoms in it. Then we choose a partition (Al ,  A , ,  . . . , 
A,)  of S such that a (Ak)  = llxkll for any k = 1, .  . . , m. Consider the 
function 

THEOREM 8. 

Pro05 

It is plain that Ilf,(s)ll = 1 for each s E S. Now, we are going to prove 
that the sequence f, tends to 0 in P , ( u , X ) ,  that is, the sequence of 
associated operators uf, tends to 0 in X L1(u). Let E > 0. Then for any 
x* E X *  we have 

IIx*f,ll I IIx*fn X[ln*f*l> €111 + IIx*fn X[ln*f*l< €111' 

where the norms are taken in L1(u) and [Ix*f,l 2 E ]  stands for the set 

The second summand is less than or equal to € 1 1  xSll = € 1 1  ull(S). To find 
{ s  E S: Ix*f,(s)I 2 €1. 

a bound for the first summand just observe that 

As u is countably additive, given E > 0 we can find 6 > 0 such that if 
a ( B )  I 6 then llull(B) I E. We choose no such that l/noE I 6; then for 
each n 2 no as Ix*(f,(t))l I Ilf,(t)ll = 1, we have that 

Ilx*f,X[~.*f*~> t ] l l  I I I  X[ln*f*l> €111 I Il~ll([lx*fnl 2 €1) I E. 
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This shows that the sequence (f,) tends to 0 in P,(v,  XI, although it 
does not tend to 0 in measure. 

Let Lo( a , X )  be the F-space of classes of strongly measurable X-valued 
functions endowed with the topology of the convergence in measure. If 
P,(v,  X )  were complete, then the natural inclusion P,(v,  X )  + Lo(a ,  X )  
would be continuous because it has a closed graph. This would contradict 
the existence of the sequence f, built above. I 

5. THE PROJECTIVE TENSOR PRODUCT CASE 

We recall that in Remark 2 following Theorem 2 we obtained that a 
necessary condition for a strongly measurable function f :  S + X is Bartle 
integrable with respect to v and $e:  X X Y + X GE Y is that the operator 
u f :  x* + x* f induced by f belongs to X GE L1( v). In this section we shall 
see that the corresponding result for the projective tensor product fails. 

Let us denote by X GT Y the completed projective tensor product of X 
and Y ,  which is the completed space of X 8 Y ,  this time with the norm 

I I ~ I I ~  = inf t I I ~ ~ I I  I I ~ J :  u = 5 x k  8 y k ) ,  

for u 8 X E Y. We denote by $T the bilinear map that associates a pair 
(x, y )  to the tensor x 8 y in X GT Y. 

If u :  X + L is a bounded linear map and L is an order continuous 
Banach lattice then it is said that u is order bounded if u(B,) is an order 
bounded set in L ,  that is, there exists g E L ,  g 2 0 ,  such that lu(x)l I llxllg 
for every x E X. The infimum of llgll where g E L satisfies lu(x)l I Ilxllg, 
is known as the order bounded norm of u and is denoted by Ilullm. The 
space of order bounded operators will be denoted by g ( X ,  L). The 
completion of X 8 L in 9 ( X ,  L )  under the norm 1 1 .  I l m  be denoted by 
X Gm L. If L is an order continuous Kothe function space on a finite 
measure space (S, 2, a )  then it is known that X Gm L can be isometrically 
identified with L ( X ) ,  the space of strongly measurable functions f :  S + X 
such that pf = 1 1  f ( . ) l l  E L. See [7, Theorem 221. We shall use the following 
lemmas. 

Let X be an infinite dimensional Banach space and L a 
Banach lattice whose dual is order continuous, one of them with the approxi- 
mation property. Then there exists an operator u E X  Gm L that does not 
belong to X GT L.  

Suppose that every operator in X Gm L belongs to X GV L. As 
the projective norm is finer than the order bounded norm the open 

(i-1 k =  1 

LEMMA 9. 

Pro05 
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mapping theorem would imply that both norms are equivalent. Then their 
dual spaces would coincide. It is known [7] that the dual of X Gm L is the 
Banach space 9 ( X ,  L*). So we would obtain that 2(X, L*) = 9 ( X ,  L*). 
This would contradict a result by Robert [13]. 

Let L be a reflexive order continuous Banach lattice and let Y 
be an Tl-space ([ 121). The following conditions hold. 

For every u :  /, + L order bounded and every u :  L + Y ,  the 
composition u 0 u :  /, + Y is nuclear. 

For every u :  L + Y there exists a constant C such that for every 
order bounded operator u :  /, + L we have IIu 0 uII, I Cllullm. 

To prove (l) ,  let u :  /, + L order bounded and let u :  L + Y. 
The operator u factorizes through a C(K)-space (the ideal generated by 
some bound) by means of two operators S,: /, + C ( K )  and S,: C ( K )  + L 
such that u = S, 0 S,. Observe that the adjoint operator ( u  0 u)* admits 
the factorization ( u  0 u)* = ST 0 S; 0 u*,  hence ( u  0 u)* is nuclear being 
u* 0 S; and ST are absolutely 2-summing operators [4, p. 2541. Therefore 
u 0 u = ( u  0 u)** is nuclear. 

Let us observe that the space of nuclear operators from /, into Y 
coincides with the projective tensor product /: 6, Y. Statement 1 allows 
us to define the operator u E 9(/,, L )  + u 0 u E/: 6, L ,  which is 
bounded because of the closed graph theorem, and this proves state- 
ment 2. 

There exists a countably additive vector measure u :  C + 

L1([O, TI), and a strongly measurable function f :  S +/, such that f is 
integrable with respect to u and 4, but the operator u :  (/,)* + L 1 ( u )  
associated to f does not belong to /, 6, L 1 ( u ) ,  i.e., is not nuclear. 

Let C be the Bore1 a-field in [0, TI .  Let us consider the vector 
measure u defined on C with values in /,, given by 

I 
LEMMA 10. 

1. 

2. 

Pro05 

THEOREM 11. 

Pro05 

u ( A )  = [F! sin(kt) d t ) .  
T A  

This measure is well defined and countably additive because of the 
orthogonality of the sequence sin(kt). 

The Banach space of integrable functions with respect to u turns out to 
be L2([0 ,  TI): as /, does not contain any copy of co then L 1 ( u )  is the set 
of those measurable functions cp such that cp E L1(lx*ul) for every x* E /: 
[9]; moreover, since (J2/.rr sin(kt)) is a complete orthonormal system in 
L2([0 ,  TI) the set {Ix*ul: x* EL,”} is the positive cone in L2([0,  TI). 
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As L1([O, n-1) contains a subspace isomorphic to /, we can consider v 
as a measure with values in L1([O, n-I), obtaining this time that L1(v) is the 
lattice L2([0, n-1) with an equivalent norm. 

Let us observe that the Lebesgue measure cr is a control measure for v ;  
in fact, there exists constants c l ,  c, > 0 such that ~ , c r ( A ) ~ / ~  I IIv(A)II I 
llvll(A) I ~ , c r ( A ) ~ / ~ .  As the dual of L1(v) is order continuous, by Lemma 
9 there exists u in /, Grn L1(v) which is not in /, Gv L1(v) .  The operator 
u has associated a strongly measurable kernel, let us say f :  [0, n-] +/,, 
such that u(x*) = x * f  for every x* E/:. 

Next, we are going to see that f is Bartle integrable with respect to v 
and $71: /, X L1([O, n-1) +/, Gv L1([O, TI>. 

First we show that the Bartle semivariation of v is dominated. Given a 
finite partition (A , )  of A ,  (x,) in B / z ,  and w E~(L'([O,  n-I), /,"), we have 

since w is absolutely summing, where K ,  is Grothendieck's constant [12]. 
It follows that IICk$v(xk, v(A,>>ll, I K,llvll(A> and therefore llvll4JA) 
I K,llvll(A) I C , K , ~ ( A ) ~ / ~ .  Conversely, given x E/, with llxll = 1, we 
have llvll+JA> 2 Ilx @ v(A>ll, = llv(A>ll1 2 clcr_(A)1/2. 

On the basis of the identification between /, grn L1( v) and the space of 
strongly measurable functions L1( v)(/,), as the scalar simple functions are 
dense in L it is possible to find a sequence of simple functions (f,) 
converging to f in the 1 1 .  I lrn norm. Then Ilf,(.> - f(.)llfz + 0 in L1(v>, and 
so in L1([O, TI). Therefore, by passing to a subsequence if necessary, we 
can assume as well that f, + f  almost everywhere f .  Note that the 
sequence of associated operators uf, converges in the order bounded 
norm. 

To finish the proof, we only need to show that for any measurable set A ,  
the sequence of integrals j,$v(f,, d v )  EL, @ L1([O, n-1) converges in the 
projective norm. 

Let I,: L 1 ( v )  + L1([O, n-1) the integration operator given by I,(cp) = 

jAp dv. By Lemma 10 we have 

I Cllu, - Uf,llrn> 

which tends to zero. I 
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6. FUBINI'S THEOREM FOR THE INJECTIVE 
PRODUCT O F  VECTOR MEASURES 

Let C and 2' two a-algebras of subsets of the sets S and T ,  respectively. 
If p: C + X ,  u :  C' + Y are countably additive vector measures then we 
can define a finitely additive measure on the algebra C X C' generated by 
the measurable rectangles, taking A X B into p X u(A X B )  = p ( A )  8 
u ( B )  E X GE Y. It is known [14] that this measure has a countably additive 
extension to the a-algebra C 8 C' generated by C X 2'. We shall denote 
this extension by p 8 u and we call it the injective tensor product of p 
and u. 

It has been seen in [15] that the classical Fubini theorem does not hold 
in this setting. Solving a problem posed in [ 151 we will see that the sections 
f ( s ,  . ) may not be even scalarly integrable with respect to u. We denote 
Lebesgue measure on [0,1] by A. 

For every infinite dimensional Banach space Xthere exist a 
vector measure u with values in X and a function f in L1(h 8 u )  such that for 
every s E [0,1) the section f ( s , .  ) is not scalarly integrable with respect to u. 

We apply the Dvoretsky-Rogers theorem to find a sequence 
(x,) in X such that C;=,x, is an unconditionally convergent series and 
Ilx,ll = (h log n1-l. We define the countably additive measure u :  9(N) 
+ X by setting u({n}) = x, for all n E N, where P(N) denotes the power 
set of N. Consider the injective tensor product measure h 8 u.  Observe 
that R 8E X and X are canonically isometric and that for every x* E X* 
the measure x* o(h 8 u )  is in fact the product h 8 (x* 0 u )  and Ih 8 

Let {A, }  be the sequence of dyadic subintervals of [0,1], A ,  = [0,1], 
A ,  = [0,1/2), A ,  = [1/2, l), A ,  = [0,1/4), . . . . We consider the function 
f :  [0,1] X N + R given by f ( s ,  n )  = ( l / h ( A , ) ) ~ ~ $ s ) .  

First we see that f is scalarly integrable with respect to h 8 u. For, if 
x* E X *  then 

THEOREM 12. 

Pro05 

(x* 0 u)l = h 8 Ix* 0 UI.  

In fact f is integrable with respect to h 8 u. For, if M is in the product 
a-algebra and M, = {s E [0,1): (s, n)  E M } ,  then 
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To finish the proof, we fix s E [0,1) and let (n,) be the strictly increas- 
ing sequence in N such that s E A,] .  It is easy to see that 2 J -  I nJ < 2J .  
We have 

which tends to infinity. Thus the series 

- " 1  
L- 

j =  A( A , , )  " I  

is not weakly unconditionally Cauchy, hence 

for some x* E X * .  This allows to conclude that the section f ( s , .  ) is not 
scalarly integrable with respect to v because 

I 
Regarding Theorem 12, in order to state a general Fubini theorem for 

the injective product of two vector measures, we have to start with a 
function f such that almost all the sections f ( s ,  . ) are in L1(v), thus 
defining a function S + L1(v) .  As a consequence of our Theorem 2, we 
obtain that it is enough to impose this condition. 

belongs to 
L 1 ( v )  for almost every s E S ,  then 

1. The function F :  s E S + j T f ( s ,  t )  d v ( t )  E Y i s  strongly measurable 
and Bartle integrable with respect to p and $e .  

2. js$E(F(s) ,  dp*.(s)) = j s N T f d p  8 v. 
Pro05 

THEOREM 13. I f f :  S X T + R is in L1( p 8 v) and f h , .  

Observe that, given a measurable M c S X T ,  the function 
jTxM(., t )  d v ( t )  is strongly measurable from S into L1(v) ,  since [9, Theo- 
rem 2.21 and xM is the pointwise limit on S X T of a sequence of 
characteristic functions of unions of rectangles. 

Let f, be a sequence of measurable simple functions on S X T ,  
pointwise convergent to f and such that If,(s, t)l I 2lf(s, t)l. By [9, Theo- 
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rem 2.21 again, we have f,(s, . ) + f ( s ,  . ) in L1( u )  for almost every s. The 
strong measurability of F follows from the fact that l T f n ( s ,  t )  d u ( t )  goes to 
I T f ( s ,  t )  d u ( t )  and the previous observation. 

Given x* EX* and y* E Y*, we have 

I y* O F ( $ )  Idlx* 0 PI( 3) I / i /  I f (  3, t )  Idly* 0 v l ( t ) )  dlx* 0 p l ( t )  
S T  

= /  I f ( S , t ) l d l x * o p 8 y y " * o v l ( s , t )  < +m. 
SX T 

Let A c S be measurable. We also have 

L F d u =  f d p 8  u E X & Y c B i l ( X *  X Y " ) ,  
L X T  

because they coincide on X* 8 Y*. As f E L1( p 8 u),  statement 1 fol- 
lows from Theorem 2. Statement 2 follows taking A = S in the previous 
equality and Lemma 1. I 

From Theorem 13, Fubini's theorems for bounded functions 
[3] or for functions in L1(l pi 8 Iul) (in the case of vector measures with 
bounded variation) [8] follow. 

Finally we shall see that in the case that one of the vector measures is 
purely atomic, the iterated integration can be done, if one integrates first 
with respect to the other measure. In the proof we make use of the 
characterization of Bartle bilinear integrability obtained in Section 2 for 
the case $ = $€. 

Let p be a purely atomic countably additive vector 
measure with values in X and let u be an arbitrary countably additive vector 
measure with values in Y. Let f ( s ,  t )  be a real function, integrable with respect 
to the injectiveproduct p 8 u. Then 

For almost every s, the section f ( s ;  ) is integrable with respect to u ;  

The function F :  s + / T f ( S ,  t )  dub) E Y is strongly measurable and 

Remark. 

PROPOSITION 14. 

1. 

2. 
Bartle integrable with respect to p and $€; 

3. / s $ ~ ( F ,  d p )  = /SxTfd( p 8 v). 

Pro05 We can assume that p is defined on P(N) and that p({n}) # 0 

As f E L1( p 8 u )  we know that for any pair x* E X*, y* E Y* we 
for every n. 

have 

/( / I f ( . ,  t )  Idly* 0 LJ dlx* 0 pl(n) < 00. 
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If we consider any Rybakov control measure for p, then for all n the 
sections f ( n ,  . ) are scalarly integrable by the classical Fubini theorem. 

Next, we show that for every n,  f ( n , .  ) E L1( v). This follows from [9, 
Theorem 2.21 and the fact that p({n}) 8 jAf(n,  t )  d v ( t )  = j ( n ) X A f d (  p 8 v) 
for every measurable A.  

Now, given a sequence &(n, s) of simple functions, converging pointwise 
to f with l & l  I 2lf1, it follows from [9, Theorem 2.21 that the simple 
functions js&(., s) d v ( s )  converge to jsf(. ,  s) d v ( s ) .  

Statements 2 and 3 follow from Theorem 2 and the fact that j A F d p  = 

j A N T f d (  p 8 v) E X GE Y for every measurable A.  I 
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