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Abstract

J. Dixmier asked in 1950 whether every non-amenable group admits uniformly bounded representations
that cannot be unitarised. We provide such representations upon passing to extensions by abelian groups.
This gives a new characterisation of amenability. Furthermore, we deduce that certain Burnside groups are
non-unitarisable, answering a question raised by G. Pisier.
© 2009 Elsevier Inc. All rights reserved.
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1. Introduction

A group G is said to be unitarisable if every uniformly bounded representation π of G

on a Hilbert space H is unitarisable, i.e. there is an invertible operator S on H such that
Sπ(·)S−1 is a unitary representation. Dixmier [3] proved that all amenable groups are unitaris-
able and asked whether unitarisability characterises amenability. Since unitarisability passes to
subgroups and non-commutative free groups are not unitarisable, every group containing a non-
commutative free group is non-unitarisable. For these facts and more background, we refer to
Pisier [10,11].
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Recently, a criterion was discovered [4] that lead to examples without free subgroups (see
[4,9]). We shall improve a strategy proposed in [7] in order to apply ergodic methods to the
problem.

Now are our browes bound with Victorious Wreathes3

Let G and A be groups. Recall that the associated (restricted) wreath product, or lamplighter
group, is the group

A � G =
⊕

G
A � G,

wherein
⊕

G A is the restricted product indexed by G upon which G acts by permutation. We
shall be interested in the case where A and hence also

⊕
G A is abelian.

Theorem 1. For any group G, the following assertions are equivalent.

(i) The group G is amenable.
(ii) The wreath product A � G is unitarisable for all abelian groups A.

(iii) The wreath product A � G is unitarisable for some infinite abelian group A.

The above theorem leads to a partial answer to a question of G. Pisier, namely whether free
Burnside groups are unitarisable (see e.g. [11]).

Theorem 2. Let m,n,p be integers with m,n � 2, p � 665 and n,p odd. Then the free Burnside
group B(m,np) of exponent np with m generators is non-unitarisable.

2. Proofs

Let G be a group and (π,H ) be a unitary representation of G. We write L (H ) for the
algebra of bounded operators of H . A map D :G → L (H ) is called a derivation if it satisfies
the Leibniz rule D(gh) = D(g)π(h) + π(g)D(h), or equivalently if the map πD defined by

πD(g) =
(

π(g) D(g)

0 π(g)

)
∈ L (H ⊕ H )

is a group homomorphism. In that case, πD is a uniformly bounded representation if and only
if D is a bounded derivation. Moreover, πD is unitarisable if and only if D is inner, i.e. there
is T ∈ L (H ) such that D(g) = π(g)T − T π(g). (See Lemma 4.5 in [10] for a proof of this
fact.) To set up a cohomological framework for studying this problem, we will view L (H ) as
a coefficient G-module whose G-action is given by the conjugation g · T = π(g)T π(g)∗. Then,
the space of bounded derivations modulo inner derivations is canonically isomorphic to the first
bounded cohomology group H1

b(G,L (H )). Hence, to prove non-unitarisability of G, it suffices
to produce a unitary G-representation (π,H ) for which H1

b(G,L (H )) �= 0.

3 Shakespeare, Richard III, 1:1 (we quote from the 1623 First Folio).
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We now undertake the proof of Theorem 1. It suffices to show that if A is infinite abelian and
G is non-amenable, then the wreath product H = A � G is non-unitarisable.

We can and shall assume that A and G are countable. Indeed, since amenability is preserved
under direct limits, G contains some countable non-amenable group G0. Further, if A0 is a
countable subgroup of A, then A0 � G0 is a subgroup of A � G. Thus our claim follows since
unitarisability passes to subgroups.

Let F be a countable non-commutative free group. The proof relies on the following two
facts. (1) H1

b(F,L (�2F)) �= 0, see the proof of Theorem 2.7∗ in [10], or [2]. (2) Every non-
amenable countable group admits a free type II1 action whose orbits contain the orbits of a free
F-action [5], as described below. The strategy of the proof is to induce H1

b(F,L (�2F)) through
this “randembedding” in the sense of [7].

We henceforth consider a non-amenable countable group G and the corresponding Bernoulli
shift action on the compact metrisable product space X = [0,1]G endowed with the product of
the Lebesgue measures. Gaboriau and Lyons prove in [5] that the resulting equivalence relation
R ⊆ X ×X contains the equivalence relation of some free measure-preserving F-action upon X.
In particular, we have commuting G- and F-actions on R given by the action on the first, re-
spectively the second coordinate. These actions preserve the σ -finite measure on R provided by
integrating over X the counting measure on orbits. Each of these actions admits a fundamental
domain; let Y ⊆ R be a fundamental domain for F. We may now forget the orbit equivalence
relation and view R just as a standard measure space with a measure-preserving G × F-action
such that G admits a fundamental domain X of finite measure and F admits a fundamental do-
main Y . We identify R with Y × F in such a way that t−1y ∈ R corresponds to (y, t) ∈ Y × F.
Then, s ∈ F acts on Y × F by s(y, t) = (y, ts−1) and g ∈ G acts by g(y, t) = (g · y,α(g, y)t),
where g ·y ∈ Y is the (essentially) unique element in Fgy ∩Y ⊂ R and α(g, y) ∈ F is the (essen-
tially) unique element such that α(g, y)gy = g · y. It follows that α satisfies the cocycle relation
α(gh,y) = α(g,h · y)α(h, y).

We now consider any countable infinite abelian group A. We claim that A has a representa-
tion into the unitaries of the von Neumann algebra L∞(Y ) whose image generates L∞(Y ) as a
von Neumann algebra. By construction, Y is a standard Borel space with a σ -finite non-atomic
measure. Furthermore, as far as the present claim is concerned, we may temporarily assume this
measure finite since only its measure class is of relevance. Since A is countably infinite, its Pon-
tryagin dual Â (for A endowed with the discrete topology) is a non-discrete compact metrisable
group. In other words, we have reduced to the case where we may assume that Y is Â endowed
with a Haar measure. Fourier transform establishes an isomorphism between L∞(Â) and the
group von Neumann algebra L(A) ⊆ L (�2A), which is by definition generated by the unitary
regular representation of A; this proves the claim.

Returning to the main argument, we view A in the unitary group of L∞(Y ) ∼= L∞(Y )⊗C1F ⊂
L∞(R). Since A and gAg−1 ⊂ L∞(Y ) commute, this gives rise to a unitary representation of
H = A � G on L2(R). We will prove that H1

b(H,L (L2(R))) �= 0.
We write N = ⊕

G A. Since N is amenable and L (L2(R)) is a dual module, a weak-∗
averaging argument shows that there is a canonical isomorphism

H∗
b

(
H,L

(
L2(R)

)) ∼= H∗
b

(
G,L

(
L2(R)

)N )
(see Corollary 7.5.10 in [6]). With the identification R = Y × F, one has

L
(
L2(R)

)N = N ′ ∩ L
(
L2(R)

) = L∞(Y ) ⊗̄ L (�2F) ∼= L∞(
Y,L (�2F)

)
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(see Theorem IV.5.9 in [13]). Keeping track of the G-representation, one sees that g ∈ G acts
on L∞(Y,L (�2F)) by (g · f )(y) = τα(g,g−1·y)(f (g−1 · y)), where τ denotes the F-action on
L (�2F). For ease of notation, we denote the coefficient F-module L (�2F) by V . Then, one
further has a G-isomorphism

L∞(Y,V ) ∼= L∞(R,V )F,

where f ∈ L∞(Y,V ) corresponds to f̃ ∈ L∞(R,V )F defined by f̃ (y, t) = τ−1
t (f (y)). Now, F

acts on L∞(R,V ) by (s · F)(z) = τs(F (s−1z)) and G acts by (g · F)(z) = F(g−1z). Since both
the F-action and the G-action on R admit a fundamental domain, Proposition 4.6 in [8] implies
that

H∗
b

(
G,L∞(R,V )F) ∼= H∗

b

(
F,L∞(R,V )G

) ∼= H∗
b

(
F,L∞(X,V )

)
.

(See also Proposition 5.8 in [7].) Since X = R/G has a finite F-invariant measure, the inclusion
V ↪→ L∞(X,V ) has a G-equivariant left inverse. It follows that the corresponding morphism

H∗
b(F,V ) −→ H∗

b

(
F,L∞(X,V )

)
is an injection. Therefore, putting all identifications together, we conclude that there are injections

H∗
b

(
F,L (�2F)

) −→ H∗
b

(
H,L

(
L2(R)

))
in all degrees. Since H1

b(F,L (�2F)) �= 0, this completes the proof.

Analysing the proof at the level of derivations, one observes that the above injection maps
D : F → L (�2F) to D̃ :H → L (L2(Y, �2F)) defined by

(
D̃(ag)ξ

)
(y) = a(y)D

(
α
(
g,g−1 · y))

ξ
(
g−1 · y)

,

where a ∈ N is viewed as an element of L∞(Y ), g ∈ G and ξ ∈ L2(Y, �2F).

Proof of Theorem 2. By a theorem of Adyan [1], the free Burnside group G = B(2,p) is non-
amenable. Therefore, Theorem 1 implies that (

⊕
N Z/nZ) � G is non-unitarisable. Notice that

this wreath product is a countably generated group of exponent np. Therefore, by the univer-
sal property of free Burnside groups, it is a quotient of B(ℵ0, np). In particular, the latter is
non-unitarisable. It was shown by Širvanjan [12] that B(ℵ0, np) embeds into B(2, np) which is
therefore also non-unitarisable. Finally, each B(m,np) surjects onto B(2, np) as long as m � 2,
concluding the proof. �
Acknowledgments

The essential part of this work was done during the authors’ stay at the Institute of Mathemat-
ical Sciences in Chennai. The authors would like to thank Professor V.S. Sunder and IMSc for
their very kind hospitality.



N. Monod, N. Ozawa / Journal of Functional Analysis 258 (2010) 255–259 259
References

[1] S.I. Adyan, Random walks on free periodic groups, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982) 1139–1149, 1343.
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