Purpose or Objective: For NSCLC patients treated with SBRT, we investigated if dose to the heart and its substructures is associated with non-cancer death.

Material and Methods: From 2006-2013 801 patients with early stage NSCLC were treated with CBCT guided SBRT (median 54 Gy in 3 fractions) in 5 institutes for whom treatment plans were available. 565 patients were analyzed after exclusion of synchronous or metachronous tumors (n=80), follow-up<1y (n=63), or death from cancer (93). An average anatomy was constructed based on 109 patients of the 5 institutes using deformable image registration. Subsequently, all patients were registered to this average anatomy and the corresponding dose distribution was deformed accordingly [1]. The heart and substructures right atrium, left atrium, right ventricle, left ventricle, superior vena cava, descending aorta and left pulmonary artery were contoured on the average anatomy. For each (sub)structure the parameter with the lowest Akaike information criterion was selected and used in subsequent analyses. Correlations between all (sub)structures were assessed prior to inclusion in a multivariate Cox regression. Finally, the (sub)structure(s) that remained significant in the first multivariate analysis were included in a second multivariate analysis, also including: performance status, age, gender, biological dose, distance to bronchus, comorbidity index, lung-function, tumor diameter, T-stage, institute and pack years smoking.

Results: With a median follow-up of 28 months, 58% of patients were alive. 3% had a central tumor. Univariate analysis showed significant associations between the (sub)structures and death. The most predictive parameters per (sub)structure are shown in table 1. Correlations between the heart and its substructures were strong (average 0.7). As dose to the heart was also represented by dose to the heart substructures, heart_D0 was not included in the multivariate analysis. Maximum dose to the left atrium and dose to 2 cc of the superior vena cava were significant in the multivariate analysis. Maximum dose to the heart was also represented by dose to the heart substructures, heart_D0 was not included in the multivariate analysis. Association between survival and these parameters remained significantly associated with death, as well as age (p=0.001, HR=1.034), performance status (p=0.004, HR=1.138), comorbidity index (p=0.032, HR=1.125), lung-function (p=0.001, HR=0.984) and pack years smoking (p=0.004, HR=1.011).

Conclusion: For these NSCLC patients treated with SBRT we found significant associations between non-cancer death and the maximum dose on the left atrium, and to the D2cc of the superior vena cava. Consequently, heart sparing potentially improves outcome.

1. Admire, Elekta AB, Stockholm, Sweden

OC-0400
Risk estimation of cardiac toxicity following craniospinal irradiation of pediatric patients.

G. Engeseth1, C. Stokkevåg1, L. Muren1
1. Haukeland University Hospital, Department of Medical Physics and Oncology, Bergen, Norway
2. University of Bergen, Department of Physics and Technology, Bergen, Norway
3. Aarhus University Hospital, Department of Medical Physics, Aarhus, Denmark

Purpose or Objective: Craniospinal irradiation (CSI) plays an important role in the treatment of medulloblastoma and improvement in treatment during the last decades has resulted in good prognosis. CSI is most commonly delivered with photons or a combination of photons/electrons. However, proton therapy is generally indicated as it lowers the dose to normal tissues and potentially reduces the risk of late effect. The aim of this study was therefore to compare the estimated risk of cardiac toxicity following CSI using photons, electrons and protons.

Material and Methods: CSI treatment plans including conformal photons, electrons/photons combined, double scattering protons (DS) and intensity modulated proton therapy (IMPT) were created in the Eclipse treatment planning system [Varian Medical Systems, Palo Alto, CA, USA] for six pediatric patients. The CTV included the brain and the spinal canal, for the protons the CTV was expanded to also include the entire vertebral body to prevent asymmetric growth of the skeleton. During treatment planning a setup uncertainty of 5 mm was taken into account, as well as an uncertainty in the proton range of 3.5 %. The prescribed dose for all techniques was 23.4 Gy(RBE). Dose-risk models derived from two independent pediatric patient cohorts were used to estimate the risk of cardiac toxicity. The excess Relative Risk (ERR - relative to general population) for cardiac mortality was estimated using a linear model [1], while ERR for cardiac failure and disorder were estimated using both a linear and a linear-quadratic (LQ) model. Input parameters were the mean heart dose, and the parameters (with 95 % Confidence Interval (CI)) displayed in Table I. The Relative Risk (RR) was
defined as the ratio between ERR for photon/electron, photon/DS and photon/IMPT.

Results: Regardless of dose-risk model applied, the conformal photons were ranked with the highest ERR for all cardiac toxicities, whereas IMPT was ranked with the lowest (Figure 1a). For cardiac mortality the ERR for photon was 8.1 (95% CI: 3.4 to 30.5), while ERR for IMPT were 1.3 (95% CI: 0.8 to 4.6), respectively (Linear model). The corresponding results for IMPT were 1.2 (95% CI: 1.0 to 1.7) and 1.1 (95% CI: 1.0 to 1.2). Similar trends were found using the LQ model. Relative to IMPT, photons lead to a risk of cardiac mortality that was a factor of 6.1 higher (range 5.7 to 7.0), cardiac disorder a factor of 4.3 higher (range 4.1 to 4.9) and cardiac failure a factor of 2.0 higher (range 1.9 to 2.1) (Figure 1b).

Conclusion: Across different cardiac morbidity endpoints, and despite different dose-risk models used, the results of our modelling study were consistently in favour of protons.

References:

Symposium: Emerging biomarkers

SP-0401
Circulating tumour cells as biomarkers in lung radiotherapy
K. Haslett1
1The University of Manchester, Institute of Population Health, Manchester, United Kingdom

It has long been hypothesized that the propagation of circulating tumour cells (CTCs) is a pre-requisite for the development of metastases. However, robust technology to reliably isolate CTCs and characterise them at the molecular level has only become available in recent years. Thus repeated blood sampling for CTCs could provide a non-invasive method of serially reassessing tumour status and evolving tumour biology.

Patients with stage I-III NSCLC are at high risk of developing distant metastases after radiotherapy (RT) or chemoradiotherapy treatment. With the advent of new technologies to enumerate CTCs, the clinical significance of CTCs before, during and after RT has become of great interest. In the current era of targeted therapy and the development of personalised medicine the question still remains as to whether CTCs could be used to identify patients most likely to benefit from radical RT and prevent the delivery of futile cancer treatments and their associated toxicity. Prospective clinical trials have shown the prognostic value of CTC enumeration in patients with non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) (1, 2). Although CTCs have been used as a surrogate biomarker in hundreds of clinical trials, as yet none have been incorporated into standard clinical practice. To date there are few published studies evaluating CTC’s in patients undergoing radical thoracic RT.

In my talk I will discuss the following:
• novel platforms available for isolation of CTCs
• current data on the evaluation of CTCs as a biomarker in NSCLC and SCLC patients treated with RT
• advantages and limitations of CTCs as a biomarker
• future directions and the prospect of using CTCs to stratify patients in clinical trials

References

SP-0402
The fall and raise of predictive radiotherapy biomarkers
M. Baumann1,2,3,4
1OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus- Technische Universität Dresden, Dresden, Germany
2Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology, Dresden, Germany
3German Cancer Consortium DKTK Dresden, and German Cancer Research Center DKFZ, Heidelberg, Germany
4Department of Radiation Oncology, Institute Faculty of Medicine and University Hospital Carl Gustav Carus-Technische Universität Dresden, Radiooncology, Dresden, Germany

Radiotherapy is a mainstay of cancer treatment. Due to it high efficacy to inactivate cancer stem cells in the primary tumor and regional metastases as well as its increasing ability to spare normal tissues, it has a proven curative potential in...