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ABSTRACT

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is an environmental contaminant that produces myriad toxicities in
most mammals. In rodents alone, there is a huge divergence in the toxicological response across species, as well
as among different strains within a species. But there are also significant differences between males and females
animals of a single strain. These differences are inconsistent across model systems: the severity of toxicity is
greater in female rats than males, while male mice and guinea pigs are more sensitive than females. Because
the specific events that underlie this difference remain unclear, we characterized the hepatic transcriptional
response of adult male and female C57BL/6 mice to 500 pg/kg TCDD at multiple time-points.

The transcriptional profile diverged significantly between the sexes. Female mice demonstrated a large number
of altered transcripts as early as 6 h following treatment, suggesting a large primary response. Conversely, male
animals showed the greatest TCDD-mediated response 144 h following exposure, potentially implicating signif-
icant secondary responses. Nr1i3 was statistically significantly induced at all time-points in the sensitive male
animals. This mRNA encodes the constitutive androstane receptor (CAR), a transcription factor involved in the
regulation of xenobiotic metabolism, lipid metabolism, cell cycle and apoptosis. Surprisingly though, changes
at the protein level (aside from the positive control, CYP1A1) were modest, with only FMO3 showing clear induc-
tion, and no genes with sex-differences. Thus, while male and female mice show transcriptional differences in
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their response to TCDD, their association with TCDD-induced toxicities remains unclear.
© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

Introduction

Chlorinated dioxins are a class of chemically-similar compounds pro-
duced as byproducts of industrial processes such as low temperature in-
cineration and electronics recycling (Shen et al., 2009), as well as
historically through the manufacture of herbicides and pesticides
(Schecter et al., 2006). 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is
the most potent dioxin, eliciting a range of toxic and biochemical
responses including chloracne, thymic atrophy, hepatotoxicity, wasting
syndrome and cancer (Pohjanvirta and Tuomisto, 1994). In addition, ges-
tational exposure results in various reproductive abnormalities in mice,
such as reduced sperm count and decreased uterine weight (Theobald
and Peterson, 1997), and rats, including abnormal lung morphology

Abbreviations: AHRE, Aryl hydrocarbon response element; ARI, Adjusted Rand Index;
FDR, False discovery rate; GEO, Gene Expression Omnibus; H/W, Han/Wistar rats; L-E,
Long-Evans rats; TCDD, 2,3,7,8-Tetrachlorodibenzo-p-dioxin.
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(Kransler et al., 2009) and an altered transcriptome of the developing
sex organs (Magre et al., 2012). After a single exposure, TCDD accumu-
lates within the liver and adipose tissues of rats and mice (Pohjanvirta
et al,, 1990; Diliberto et al., 1995) and causes dose-dependent toxicities,
such as increased liver weight (Boverhof et al., 2005).

Essentially all of the TCDD-associated toxic effects are mediated
through its interaction with the aryl hydrocarbon receptor (AHR).
Activation of this receptor results in nuclear translocation and
heterodimerization with the AHR nuclear translocator (ARNT). This
complex then recognizes and binds to aryl hydrocarbon response
elements (AHREs) and regulates transcription. Evidence that TCDD
toxicities occur via the AHR come from studies examining the signifi-
cantly diminished toxic outcomes observed in both AHR knockout mice
(Fernandez-Salguero et al., 1996; Mimura et al., 1997) and mice with
mutant AHREs (Bunger et al., 2003). In addition, studies of hepatocyte-
specific ARNT-null mice observed reduced hepatotoxicity following
exposure to TCDD (Nukaya et al., 2010).

There is a wide disparity in the toxic effects of TCDD among different
animal models. For example acute lethality, as measured by the LDsy, is
highly variable for different species: ~1 and 5100 pg/kg for guinea pigs

0041-008X/© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Table 1

Candidate genes summary.

Table shows if the candidate gene was significantly altered in a given comparison (q < 0.01).
Candidate genes were identified as those targets significantly differentially expressed be-
tween TCDD-treated and corn-oil control groups at 3 or more time-points in either male
or female mice. A total of 20 candidate genes were identified.
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and hamsters respectively (Schwetz et al., 1973; Henck et al., 1981).
Similarly, toxicity varies among different strains within a species: the
LDs for Long-Evans (L-E) rats is ~10 pg/kg while Han/Wistar (H/W)
rats can tolerate upwards of 9600 pg/kg with minimal effects
(Pohjanvirta et al., 1999). In many of these cases, the difference in sen-
sitivities is a result of variations within the Ahr gene. A point mutation
leads to splicing-generated alteration of the transactivation domain of
the H/W rat AHR rendering it refractory to TCDD toxicities while the
wild-type L-E rat is one of the most sensitive responders (Pohjanvirta
et al., 1998). These differing sensitivities have allowed researchers to
compare and contrast the transcriptomic responses to TCDD across
species (Boverhof et al., 2006; Boutros et al., 2008; Dere et al., 2011;
Forgacs et al., 2013; Nault et al., 2013) and between strains/lines within
a species (Franc et al., 2008; Pohjanvirta, 2009; Yao et al., 2012).

But differences in sensitivities have also been identified within a sin-
gle strain, between male and female animals (Pohjanvirta et al., 1993;
Enan et al., 1996; Silkworth et al., 2008). In L-E rats, female animals
are more sensitive to the acute lethality of TCDD (LDsq = 9.8 pg/kg)
while males are more resistant (LDso = 17.7 pg/kg) (Pohjanvirta et al,
1993). Alternatively in guinea pigs, male animals are more susceptible
than females (Enan et al., 1996). Recently, it was discovered that, unlike
in rats and similar to guinea pigs, female mice are less sensitive than
males and develop fewer toxicities (Pohjanvirta, 2009). The pattern in
mice did not extend to all other sub-strains examined (Pohjanvirta,
2009), however was later confirmed through extensive analyses of the
physiological effects of TCDD on these mice (Pohjanvirta et al., 2012).
Furthermore, this differential response is caused, at least in part, by
the sex hormones; ovariectomized mice proved more sensitive while
castrated mice are more resistant to TCDD-induced lethality than intact
mice (Pohjanvirta et al., 2012). Here we attempt to identify the specific
TCDD-mediated transcriptional events in the liver responsible for the
divergent sensitivity phenotypes between male and female mice.

Results
Experimental design

We have characterized the specific hepatic transcriptional modifica-
tions associated with the differential TCDD-toxicity phenotypes
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Fig. 1. Experimental design. Outline of the experimental design: 65 adult male and female
C57BL/6 mice were treated with either 500 pug/kg TCDD or corn oil and euthanized 6, 24, 72
or 144 h post-treatment. Liver tissue was harvested and RNA isolated. Samples were hy-
bridized onto Affymetrix MouseGene1.1ST arrays. Data were pre-processed using RMA
normalization. Quality control identified outliers which were removed; data were then
re-normalized. Probe-level filtering was performed based on intensity levels of chromo-
some Y probes in female animals. Data underwent statistical analyses, results were visual-
ized and validation of potential toxicity-related targets performed by western blot.

observed in male and female C57BL/6 mice. Adult male and female
mice were treated with either TCDD in corn oil vehicle or corn oil
alone, and transcriptional profiling was performed on hepatic tissue
collected 6, 24, 72 or 144 h after treatment. Animals were followed
along this time-course to evaluate the progressive transcriptomic
changes. In this way we sought to identify both the primary and second-
ary TCDD:AHR-mediated responses. The experimental approach is
outlined in Fig. 1 and sample information, including identification of
outliers, is in Supplementary Table 1.

Overview of transcriptomic responses

We first assessed the overall transcriptomic responses of the liver by
examining those transcripts with highest variance across our samples
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(Fig. 2A). Adjusted Rand Index (ARI) indicated essentially random
partitioning of samples, based on these transcripts alone (ARlsex =
0.06; ARlItreatment = 0.06; ARltime = 0.01). Following linear modeling
(see Methods), a p-value sensitivity analysis was conducted to deter-
mine the optimal threshold for downstream analyses (Fig. 2B, Supple-
mentary Fig. 5). Venn diagrams were used to visualize overlap of
significantly altered transcripts across the time-course. Comparison of
male and female vehicle-treated animals indicated only 28 genes differ-
entially abundant at all time-points, and 47 genes altered at two or more
(Fig. 2C). An evaluation of the TCDD-dependent changes revealed 18
genes differentially abundant in male liver (Fig. 2D) and 7 genes altered
in female liver (Fig. 2D) at all four time-points. These analyses also
showed that, in females, the largest number of dysregulated transcripts
occurred at the earliest time-point, suggesting a strong primary hepatic
response, while in males, the largest number of dysregulated transcripts
occurred at the latest time-point indicating considerable secondary
responses within the liver. A comparison between male and female
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TCDD-dependent responses at each time-point revealed statistically
significantly more overlap than expected by chance alone (Fig. 2F). For
example, overlap between male and female mice at the 144 hour
time-point (n = 150) is significantly higher than expected by chance
(n=17; p<0.01).

TCDD-mediated transcriptional changes

As there are clear differences in the phenotypic sensitivity between
male and female mice as early as 1 day after exposure, such as weight
loss and the emergence of discrete necrotic foci on the liver in males
(Pohjanvirta et al., 2012), we examined transcripts differentially-
abundant at multiple time-points. Importantly, transcripts significantly
altered following exposure to TCDD in both male and female mice are
not of interest here. We focused on transcripts significantly altered
(Pagj < 0.01) at 3+ time-points in either male or female mice. In total,
20 genes met this criterion, all of which were altered in male livers
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Fig. 2. Overview of transcriptional profiles. A) After normalization, samples were clustered based on transcriptomic profiles of the most variable transcripts across the study; the color key
along the x-axis indicates the scaled normalized abundance values (see Methods for details). Clear patterns can be observed, differentiating between male and female mice, as well as
TCDD-treated and control samples. B) P-value sensitivity analysis was performed following linear modeling; the number of genes showing differential transcription was calculated at var-
ious pagjustea Cutoffs, regardless of direction of change. Points labeled ‘Male’ and ‘Female’ indicate the comparisons between TCDD and corn-oil treated groups, while ‘Sex’ indicates differ-
ences between male and female corn-oil treated groups. At the 144 hour time-point, there are significantly more altered transcripts in males, relative to females, regardless of p,qj-value
threshold. Venn diagrams were generated across the time-course to visualize each comparison: C) sex-dependent, TCDD-independent differences, D) TCDD-dependent in male and E) in
female mice. For each comparison, genes were identified as differentially expressed (paq; < 0.01 and log,|FC| > 1). F) Overlap of transcripts altered by TCDD (p,q; < 0.01 and log,|FC|> 1) in

male and female mice across the study.



S.D. Prokopec et al. / Toxicology and Applied Pharmacology 284 (2015) 188-196 191

) Sex
Time
Sex
Smep . B I‘[\:/Iale |
Dclk3 ° 5 emale
. Time
Fmo2 s . 6 hours
Nup155 ° ° 24 hours
- e
Atoh8 ° °
Nr1i3 . .
Sec61a2 o °
Serpinaé e o @ +8
Prhoxnb o . Q@
+
Ugt1a9 ° ° ® E
Cesib o o = ° +2
Tir5 - ° ° ° . 0
Aigl - B ° o ° -2
Cesda ° . . e -4
Klhdc7a . ° ° @ -6
Gpd2 ° ° °
P T T T . ‘8
Ahrr ] &)
Aldh3a1 | o | TFBS
Cypiail Present
Cyp1a2 ‘ Absent
Cypib1 | N/A
Cyp2si . L
Fmo1 - - AHR-binding
Inmt Yes
Nfe2i2 - . [ o [N : No
Ngo1 . C N/A
Tiparp [ o [0
Ugt1aéb . o
T T T T T T T T T
T =5 &
$z2uz
[ i E TTSS— 53 Z %
7 P ! o x
10° 107" 1072 107 s10“g§ =
u
>
I
<

Fig. 3. Response to TCDD by candidate genes. Coefficients and significance level of A) the top 20 candidate genes, as determined by differential expression in male mice at multiple time-
points with only minimal changes in female mice, and B) the AHR-core genes. Dot size represents magnitude of change (between TCDD treated and control groups) in log,-space, while
background shading represents significance (FDR-adjusted p-values). Covariates indicate whether the gene contains each given transcription factor binding site (AHREI-extended, ARHEI-
full or AHREII) or whether differential binding of AHR occurred between TCDD treated and control groups (as determined using ChIP-chip data Sartor et al., 2009).

only (Table 1, Fig. 3A). To determine whether these changes could be at-
tributed to the AHR, both the occurrences of transcription factor binding
sites and presence of AHR-binding for these candidates were assessed
(Fig. 3A, covariate bars at the right). Despite the occurrence of local
AHRE motifs for most candidates (16/20), ChIP-chip analysis indicated
that only one candidate displayed direct AHR-binding. Interestingly,
there was no overlap between the presence of AHRE motifs and AHR-
binding, suggesting the involvement of additional transcription factors
or regulatory mechanisms. Finally, to verify that the observed
transcriptomic differences between sexes are in fact TCDD-dependent,
we examined those candidates identified above, including Fmo2,
Fmo3, Nr1i3 and Ces4a, within the sex-dependent/TCDD-independent
comparison (Supplementary Fig. 6A). In this comparison, coefficients
represent differences between livers of male and female vehicle control
mice at each time-point, with a positive value indicating increased
abundance in the hepatic tissue of males relative to females. We do in
fact observe statistically significant differences between sexes in certain
candidate targets, specifically Fmo2 and Fmo3. However, the abundance
of these targets is significantly lower in males relative to females in the
vehicle control group, while being higher in the male TCDD-treated
mice, relative to females. This further implicates TCDD in the induction
of these candidates in only males, the more TCDD-sensitive sex — a

result which had been previously observed (Celius et al., 2008). Nr1i3
shows a similar pattern; however, with a more modest, though statisti-
cally significant, induction following exposure to TCDD in males. Alter-
natively, Ces4a shows increased basal abundance in the hepatic tissue
of males relative to females. Following TCDD exposure however, it is
significantly repressed in male liver while remaining unchanged in
females.

Response of classic ‘AHR-core’ genes

As the differential sensitivity of male and female C57BL/6 mice to
TCDD has previously been shown (Pohjanvirta et al., 2012), we exam-
ined classic AHR-responsive genes (termed “AHR-core” genes) within
our study. A set of 12 genes previously shown to respond to TCDD across
multiple tissues in mice and/or rats (Ahrr, Aldh3al, Cyplal, Cypla2,
Cyp1b1, Cyp2si1, Fmol, Inmt, Nfe2I2, Nqo1, Tiparp, Ugtla6) (Nebert
et al,, 1993; Korkalainen et al., 2004; Boutros et al., 2008; Yeager et al.,
2009; Deb and Bandiera, 2010; Moffat et al., 2010; Watson et al,,
2014) were examined (Fig. 3B). In general, these genes are similarly al-
tered in both male and female hepatic tissue following TCDD-treatment
across the experiment. There was little difference in the sex-dependent/
TCDD-independent levels of these genes (Supplementary Fig. 6B).
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Pathway analysis

In order to better understand the functional roles of those genes
altered by TCDD exposure in the liver, identification of enriched
pathways was performed using GoMiner software (Zeeberg et al.,
2005). In females, one pathway, toxin metabolic process, was signifi-
cantly enriched in hepatic tissue at all time-points following exposure
to TCDD (Supplementary Fig. 7A). Interestingly, enrichment and signif-
icance of this process increased from 6 to 24 h before steadily decreasing
towards the end of the study. In male liver, four pathways were altered
at all time-points following treatment, (Supplementary Fig. 7B). Of
these, enrichment of altered genes within the hydrogen peroxide bio-
synthetic process pathway may indicate a mechanism by which TCDD
toxicity occurs. Pathways which were found to be significantly altered
at 3 or more time-points in either sex are shown in Supplementary
Fig. 7C.

Candidate gene validation by Western blot

To assess the functional consequences of differential transcriptomic
dysregulation, we examined protein abundance of our candidates by
Western blot. Of the top 20 candidates, antibodies for 12 were available.
However following initial testing, only 5 were sufficiently specific, with
minimal non-specific binding and/or detection of protein at the expect-
ed size (Fig. 4, Supplementary Fig. 8). Two additional targets were
assessed: CYP1A1 was deemed a suitable positive control to identify
treated and control samples and CES1 was chosen as numerous
carboxylesterase species have been identified as being altered by
TCDD, both in the current and previous studies (Matsubara et al.,
2012). CYP1A1, CES1 and FMO3 all showed the similar responses at
the mRNA and protein levels. ATOH8, which increased in mRNA abun-
dance following TCDD exposure in the livers of both sexes, actually
decreased in protein abundance. Nr1i3 mRNA was significantly altered
in males at all time-points; however, differences in protein abundance
were not deemed statistically significant.

Discussion

As sensitivity to TCDD-induced toxicities is highly variable among
animal models, characterization of transcriptomic alterations occurring
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Fig. 4. Western blot validation of candidate targets. Six candidates as well as CYP1A1 and
CES1 were carried forward for further evaluation of protein abundance, as measured by
western blot. Dot size represents magnitude of change by TCDD treated relative to control
animals while background shading refers to significance level (FDR-adjusted p-values).
Fields marked with an X indicate protein abundance could not be measured.

in either sensitive or resistant animals would improve our understand-
ing of how these toxicities arise. The identification of specific genes, and
proteins, altered in target tissues following TCDD exposure would
potentially allow for the development of treatment options for the
toxic effects of TCDD and other dioxins. To this end, we have sought to
identify TCDD-mediated transcriptional changes in C57BL/6 mice in
which males are the more sensitive sex to TCDD-induced toxicities.
Additionally, as changes in the transcriptional activity of these genes
may not be themselves causative of toxicities, we have examined the
protein abundance of candidate genes.

Time-course analyses were performed to assess the transcriptional
effects of TCDD in hepatic tissue of male and female C57BL/6 mice. Anal-
ysis of the expression of AHR-core genes confirmed treatment; however
it also highlighted differences in Cyplal expression between the sexes
occurring basally (Supplementary Fig. 6). Interestingly, we observed
increased (though of modest magnitude) expression of this gene in
females relative to males, at two time-points (significantly at 24 h) de-
spite previous suggestions that Cyp1al is repressed by ERa (Marques
et al., 2013). The differences observed across the time-course may be
explained as circadian effects as Cyplal has been shown to exhibit
differences in expression that vary across a circadian cycle in both
sexes (Lu et al,, 2013); however, as samples for the various sexes were
not time-matched (i.e., collected at different times of day), more work
is required to confirm this. Additionally, a similar evaluation of the
candidate genes revealed significant sex-dependent differences hepatic
abundance of Fmo3, Fmo2, Nr1i3 and Ces4a. Of these, differences in the
flavin containing monooxygenase species have been previously identi-
fied as being unrelated to diurnal variation (Celius et al., 2008).
Additionally, Fmo3 has been shown to be negatively regulated by testos-
terone, with nearly absent levels in normal male liver. Upon castration,
hepatic levels of Fmo3 rise to mimic those detected in normal female
liver, independent of the availability of estrogen (Falls et al., 1997).
Similarly, Nr1i3, also known as CAR (constitutive androstane receptor)
is known to be normally inhibited by some androstane derivatives
(Forman et al., 1998) and has been shown to follow circadian rhythm
in rats (Kanno et al., 2004). To date, Ces4a has been poorly studied
and further studies are required to reveal the underlying cause of
these sex-dependent differences.

With regard to TCDD-dependent transcriptional regulation in the
liver, we identified clear differences in the transcriptomic response
between the sexes, the most obvious of which is the time-point at
which each sex shows the maximal number of altered genes
(Figs. 2D-E). Transcript abundance was greatly affected immediately
following treatment in female liver while the greatest response in
male liver was observed at the latest time-point, possibly implicating
a primary, defensive response in females and significant secondary re-
sponses in males that may be causative of TCDD toxicity. While the
sex hormones are known to play a key role in mediating this toxicity
in mice (Pohjanvirta et al., 2012), additional factors must be at play in
order to explain the contrary sensitivities between sexes across species.

Numerous genes were observed to be significantly altered at multi-
ple time-points in a TCDD-dependent manner in the liver of male mice,
with only minimal changes in females. Fmo2 and Fmo3 have been previ-
ously shown to be significantly induced by TCDD as early as 2 h after
exposure in only male C57BL/6 mice (Celius et al., 2008). Previous
studies of Ahr-null mice have shown that this induction is a direct result
of TCDD-activation of the AHR (Tijet et al., 2006). Two species of
carboxylesterases, Ces1b and Ces4a, showed statistically significant
variation along the time-course; however, with differing directions of
change: Ces1b showed significantly increased hepatic expression
while Ces4a decreased in expression in TCDD-treated males relative to
control animals (Fig. 3). There has been little or no documentation to
date on the contribution of either Ces1b or Ces4a on toxic outcomes.
However a related species, Ces1d (CES3), has been previously shown
to decrease in expression following treatment with TCDD. This reduc-
tion has been attributed to secondary signaling events, and was
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associated with steatohepatitis (Matsubara et al., 2012). Also of particu-
lar interest is Nr1i3, which encodes CAR, a nuclear receptor that aids in
transcriptional regulation of genes associated with xenobiotic metabo-
lism (including Cyp1al and Cypla2), cell cycle, apoptosis and lipid
metabolism (Tojima et al., 2012). Activated CAR has been shown to
mediate the induction of c-Myc (Blanco-Bose et al., 2008), with chronic
activation leading to hepatocarcinoma and liver injury (Huang et al.,
2005; Yamazaki et al., 2011). Interestingly, CAR has been also been
shown to induce expression of another of our candidate genes,
Gadd45b (Yamamoto et al., 2010; Tojima et al., 2012) and this induction
has been previously implicated in liver growth (Tian et al., 2011) and
hepatic tumor promotion (Yamamoto et al., 2010). Furthermore,
GADD45p has been shown to be an inducible coactivator of CAR (Tian
et al, 2011). Finally, CAR has also been suggested to play a role in tran-
scriptional regulation of carboxylesterases (Staudinger et al., 2010).
Complicating the role of CAR in TCDD-induced hepatotoxicity is the
lack of significant induction of Cyp2b10 as it is known to be induced
following activation of CAR (Honkakoski et al., 1998). However, as
CAR is also known to regulate genes involved in lipid metabolism and
energy homeostasis, particularly during times of metabolic stress
(Maglich et al., 2004, 2009), these results may be confounded by the
use of corn oil as a vehicle control. Further studies are required to better
understand this relationship.

Here we have shown a significant divergence in the hepatic
transcriptional profiles of TCDD-treated male and female mice that
may correspond to the phenotypic difference of TCDD-toxicity. The nu-
clear receptor Nr1i3, in connection with Gadd45b and carboxylesterase
species, may have a role in the development of toxic effects in the
more TCDD-sensitive males. Further studies in additional species,
particularly in male and female rats in which the sensitivity profiles
are reversed, could shed light on their complex relationships and roles
in TCDD-mediated toxicity. Specifically, studies examining the tran-
scriptional role of Nr1i3, through binding site analysis and/or ChIP-
chip targeting of CAR, as well as CAR-knockouts could be especially
beneficial.

Methods

Animal handling. Male and female wild-type C57BL/6] mice were obtain-
ed from the National Public Health Institute, Division of Environmental
Health, Kuopio, Finland. The current substrain (C57BL/6Kuo) was gener-
ated through multiple years of inbreeding. While male mice reach
maturity at 34-38 days, female mice do not reach maturity until 6-
8 weeks of age. Therefore, to maintain similarity between groups, mice
were 12-15 weeks old at the time of this experiment. Animals were
housed in Macrolon cages with pelleted Altromin 1314 feed (Altromin
Spezialfutter GmbH & Co. KG, Lage, Germany) and tap water available
ab libitum. The housing environment was maintained at 21 °C with
50 4 10% relative humidity and artificial illumination on a 12/12 hour
light/dark cycle. Animals were housed individually to avoid aggressive
behavior. No attempt was made to verify the stage of the estrus cycle
in female mice at termination. All study plans were approved by the
Finnish National Animal Experiment Board (Eldinkoelautakunta, ELLA;
permit code: ESLH-2008-07223/Ym-23).

Experimental design. A total of 65 animals (34 female and 31 male) were
employed in this study. Animals were divided into experimental and
control groups and treated by oral gavage with a single bolus of either
TCDD dissolved in corn oil vehicle or corn oil alone (10 mL/kg). Mice
in the experimental group received a 500 yg/kg dose of TCDD. This
dose was selected as it discriminates the sexes with respect to fatality:
the approximate LDs, for male C57BL/6 mice is 305 pg/kg while females
can tolerate over 5000 pg/kg TCDD (Pohjanvirta et al.,, 2012). Animals
were euthanized at 6, 24, 72 or 144 h post-treatment with carbon
dioxide, followed immediately by cardiac exsanguination. Livers were
excised and frozen in liquid nitrogen. Tissue was shipped on dry ice to

the analytical laboratory and stored at —80 °C or colder. Liver was
selected as the tissue of interest as it exhibits numerous TCDD-
induced toxicities and is the site of xenobiotic metabolism. All animal
handling and reporting comply with ARRIVE guidelines (Kilkenny
et al., 2010). Each experimental group (sex, treatment, time-point)
contained between 3 and 5 animals (Supplementary Table 1). The over-
all experimental design is outlined in Fig. 1.

Microarray hybridization. RNA was isolated as described previously
(Prokopec et al., 2013). Briefly, tissue samples were ground to a
fine powder in liquid nitrogen using a mortar and pestle, followed
by addition of lysis buffer and rapid homogenization using a
Brinkmann Polytron (Polytron PT1600E with a PT-DA 1607
generator). RNA was isolated using an RNeasy Mini Kit (Qiagen,
Mississauga, Canada) following the manufacturer's instructions and
quantification was performed using a NanoDrop UV spectrophotom-
eter (Thermo Scientific, Mississauga, ON). RNA integrity was verified
using RNA 6000 Nano kits on an Agilent 2100 Bioanalyzer (Agilent
Technologies, Mississauga, Canada); all samples had an RNA integri-
ty number above 8.5 and were used for downstream analyses. RNA
was assayed on Affymetrix MouseGene1.1ST arrays by The Centre
for Applied Genomics (TCAG) at The Hospital for Sick Children
(Toronto, Canada).

Microarray pre-processing. Raw array data (CEL files) were loaded into
the R statistical environment (v3.0.1) using the affy package (v1.38.1)
of the BioConductor library (Gentleman et al., 2004). Gene annotation
was performed using mogene11stmmentrezgcdf (v17.1.0), a custom
EntrezGene ID map (Dai et al., 2005). Data for all samples were pre-
processed and normalized together using the RMA algorithm (Irizarry
et al.,, 2003). Data were assessed for distributional homogeneity and
visualized using the lattice (v0.20-23) and latticeExtra (v0.6-26)
packages (Supplementary Fig. 1); variability was observed and further
analyses performed to identify outliers. Expression levels of various
sex specific genes (Conforto and Waxman, 2012), as well as genes
found on chromosome Y, were used to verify sex of the animals.
DIANA hierarchical clustering using Pearson's correlation as a similarity
metric was used to classify animal sex; seven arrays documented to be
female were classified as male (Supplementary Fig. 2A). Similarly,
expression of Cyplal was used to verify sample treatment; three of
the above arrays (untreated) also displayed Cyp1lal levels equivalent
to TCDD-treated animals (Supplementary Fig. 2B). To identify the
point at which sample mix-ups may have occurred, qPCR was
performed to compare Cyplal levels in cDNA prepared in house to
that prepared and returned by TCAG for all samples. In all cases, samples
prepared in house displayed the expected results, while those from
TCAG did not (data not shown). In addition, gDNA was isolated from
stored tissue for samples identified above, as well as a subsample of
the remaining samples for comparison purposes, and Sry detection
performed by PCR to validate the sample sex. Again, all samples as the
expected sex (data not shown), indicating a sample mix-up error
immediately prior to analysis. In total, seven arrays (1 treated, 6 control,
all female) were excluded from the analysis. Remaining arrays were re-
normalized as above and quality re-assessed; no outliers were detected
(Supplementary Fig. 3). Probe-level filtering was performed to remove
probes with intensity levels below background intensity, identified by
evaluation of chromosome Y probes in female animals (Supplementary
Fig. 4). Probes with greatest variance (variance > 2.0) were visualized
using a heatmap; normalized intensity values were scaled (mean-cen-
tered with standard deviation-scaling) and both probes and samples
were clustered using DIANA, as described above. Sample and array
information are provided in Supplementary Table 1. Raw and pre-
processed microarray data are available in the GEO repository under
accession GSE61037.
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Statistical analysis and visualization. Statistical analyses were performed
to identify differentially expressed genes using the limma package
(v3.16.7) for R (v3.0.1). Specifically, linear modeling was performed
separately for each time-point using a nested interaction design [Y =
Sex + Sex: TCDD] to identify genes with differential expression, such
that Sex evaluates genes in a sex-dependent/TCDD-independent
manner and Sex:TCDD identifies differentially expressed genes in a
sex- and TCDD-dependent manner. Standard errors of the coefficients
were adjusted using an empirical Bayes moderation of the standard
error (Smyth, 2004) and model-based t-tests were applied to the
coefficients, followed by false-discovery rate adjustment for multiple
testing (Storey and Tibshirani, 2003). A full list of annotated genes
with coefficients representing magnitude of differential expression
and FDR-corrected p-values (p,qj-values) is provided in Supplementary
Table 2. For downstream analyses, a threshold of p,q; < 0.01 and
absolute log,-foldchange > 1 was used to define statistically significant
genes. Venn diagrams were generated using the VennDiagram package
(v1.6.7) to visualize overlap between groups (Chen and Boutros, 2011),
and hypergeometric testing used to determine significance of overlap
(data not shown). Coefficients and significance of candidate genes
were visualized using lattice (v0.20-29) and latticeExtra (v0.6-26)
packages for R.

Analysis of AHR-binding. In order to determine whether TCDD alters
binding of the AHR to candidate genes, we performed an analysis of
AHR-DNA interactions using publicly available chromatin immunopre-
cipitation DNA microarray (ChIP-chip) data. Raw CEL files for TCDD-
treated (GSM299310, GSM299311) and control (DMSO-treated;
GSM299306, GSM299307) mouse liver cells were downloaded from
the GEO repository (Series GSE11850) (Sartor et al., 2009). Data were
RMA normalized using the oligo package (v1.28.2) in R (v3.1.0) and
probes were annotated to genomic locations using the binary probe
map (NCBI build 35) provided by Affymetrix. Probes were further
mapped to specific gene symbols (TSS + 1000 bp) using cisGenome
(Ji et al,, 2008) and refFlat tables (mm?7, downloaded on June 2, 2014)
(Karolchik et al., 2003). Student's t-tests were used to identify AHR
enrichment between TCDD treated and control samples. For each
gene, the probe with the lowest p-value was reported (Supplementary
Table 3).

Transcription factor binding site analysis. To further verify the role of the
AHR in TCDD-mediated transcriptional regulation, we performed a
transcription-factor binding site analysis by searching for typical AHR-
binding motif sequences. Specifically, we examined 4 motifs: AHRE-I
(core), AHRE-I (extended), AHRE-I (full) (Denison and Whitlock,
1995), and AHRE-II (Sogawa et al., 2004), with sequences: GCGTG,
TNGCGTG, [T|G]NGCGTG[A|C][G|C]A, and CATG{N6}C[T|A]TG respec-
tively. Transcription start sites for each gene (TSS + 3000 bp) were
identified using refLink and refFlat tables (mm9; obtained from the
UCSC genome browser on July 15,2014), and sequences were examined
for the above motifs. Counts for each motif in each gene are provided in
Supplementary Table 4.

Pathway analysis. Pathway analysis was performed using GoMiner
software (Zeeberg et al., 2005). Specifically, the web interface tool for
High-Throughput GOMiner analysis (application build 454, database
build 2011-01) was used to associate those genes significantly altered
by TCDD exposure (thresholds described above) in each experiment
with known gene ontologies. Genes of interest were checked against a
random sample of the dataset using a FDR threshold of 0.1 and 1000
randomizations. All mouse databases and look-up options were used,
as were all GO evidence codes and ontologies. A minimum of five
genes was required to identify enrichment. Results were visualized
using the VennDiagram (v1.6.9), lattice (v0.20-29), and latticeExtra
(v0.6-26) packages for R.

Protein analysis. Western blot analyses were performed as described
previously (Prokopec et al., 2014). Briefly, total protein was isolated
using Tissue Extraction Reagent I (Life Technologies, Burlington, ON)
supplemented with cOmplete protease inhibitor cocktail (Roche,
Laval, QC). Bradford reagent (Sigma-Aldrich, Oakville, Canada) was
used for quantification, and protein was diluted with additional extrac-
tion reagent to a final concentration of 10 pg/pL. Protein was loaded into
each well of a Novex 4-12% Bis-Tris midi-gel system (65 pg/sample)
and electrophoresed for 40 min at 200 V with MES running buffer
(Life Technologies). Protein was subsequently transferred to PVDF
membrane using the iBlot system (program PO for 7 minutes, Life
Technologies). Blots were blocked using 5% non-fat milk or LI-COR
blocking buffer (Mandel Scientific, Guelph, ON) for 60 min at room
temperature. Primary antibodies were purchased from Abcam (Abcam
Inc., Toronto, ON). Antibodies were diluted to the specified concentra-
tions in 5% non-fat milk or LI-COR blocking buffer supplemented with
0.1% Tween-20 and blots were incubated overnight at 4 °C or for 2 h
at room temperature. Blots were washed three times with PBS
supplemented with 0.1% Tween-20 at room temperature for 5 min
each, followed by incubation with secondary antibody (LI-COR IRDye-
labeled secondary antibody) at a 1:10,000 dilution in the same buffer
as for the primary incubation with 0.01% SDS, for4 hat 4 °Cor 1 h at
room temperature. Blots were washed as above and scanned using the
Odyssey quantitative western blot near-infrared system (LI-COR
Biosciences, Lincoln, NE, USA) using default settings. Average band
intensities were first adjusted for background levels, followed by
normalization with HPRT and ACTIN (Prokopec et al., 2014). Order-
ing information and specific incubation conditions for each antibody
(as determined through extensive optimization) are provided in
Supplementary Table 5. Unlike for the transcriptomic analyses, all
65 animals were used for proteomic validation as tissue samples val-
idated as expected.
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