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SUMMARY

NOD2 is an intracellular sensor that contributes to
immune defense and inflammation. Here we investi-
gated whether NOD2 mediates its effects through
control of microRNAs (miRNAs). miR-29 expression
was upregulated in human dendritic cells (DCs) in
response to NOD2 signals, and miR-29 regulated
the expression of multiple immune mediators. In
particular, miR-29 downregulated interleukin-23
(IL-23) by targeting IL-12p40 directly and IL-23p19
indirectly, likely via reduction of ATF2. DSS-induced
colitis was worse in miR-29-deficient mice and
was associated with elevated IL-23 and T helper
17 signature cytokines in the intestinal mucosa.
Crohn’s disease (CD) patient DCs expressing
NOD2 polymorphisms failed to induce miR-29
upon pattern recognition receptor stimulation and
showed enhanced release of IL-12p40 on exposure
to adherent invasive E. coli. Therefore, we suggest
that loss of miR-29-mediated immunoregulation in
CD DCs might contribute to elevated IL-23 in this
disease.

INTRODUCTION

NOD2 is a cytosolic pattern recognition receptor (PRR) that con-

trols immunity against intracellular bacteria and inflammatory

responses. NOD2 recognizes muramyl dipeptide (MDP), an

integral component of bacterial cell walls, and is expressed in

monocyte lineage cells, intestinal epithelial cells, and Paneth

cells. Three polymorphisms in this gene are present in 40% of

Western Crohn’s disease (CD) patients (Cuthbert et al., 2002),

causing amino-acid substitutions Arg702Trp and Gly908Arg

and the frameshift FS1007insC, all found within a leucine-rich
Im
repeat region that is responsible for MDP recognition (Inohara

et al., 2003).

The molecular mechanism by which NOD2 functions is not

completely defined; in particular, the mechanism by which it sig-

nals in dendritic cells (DCs). Like other PRRs, it can induceNF-kB

activation (Ogura et al., 2001), but in comparison with PRRs,

such as the Toll-like receptors (TLRs), this effect is rather weak

(Uehara et al., 2005). Large-scale gene-expression studies

have shown that NOD2 can synergize with other PRRs in differ-

ential gene regulation and that this synergy is lost in cells ex-

pressing Crohn’s variant NOD2 (Uehara et al., 2005; van Heel

et al., 2005; Yang et al., 2001). NOD2 plays a key role in ampli-

fying release of certain proinflammatory cytokines in this

context, particularly interleukin-1b (IL-1b), IL-6, and IL-23, from

DCs and macrophages (van Beelen et al., 2007; Kobayashi

et al., 2005). IL-6 and IL-23 are required for induction of T helper

17 (Th17) CD4+ T cells, a response important for antimicrobial

immunity atmucosal surfaces and a hallmark of the inflammatory

response in Crohn’s. The significance of the IL-23 and Th17 cell

pathway for Crohn’s pathogenesis is highlighted by genetic

studies, with polymorphisms in IL23R, IL12B (encoding IL-

12p40), STAT3, JAK2, and TYK2 all contributing to disease pre-

disposition (Franke et al., 2010). A key role for IL-23 in intestinal

inflammation has been demonstrated in both innate and T cell-

dependent experimental models of colitis (Yen et al., 2006; Uhlig

et al., 2006). IL-23R signaling in T cells leads to enhanced Th17

accumulation, reduced differentiation of FoxP3+ T cells, and

reduced T cell IL-10 production (Ahern et al., 2010). In innate

colitis, IL-23 directs expression of IL-17 and induction of pathol-

ogy via innate lymphoid cells (ILCs) (Buonocore et al., 2010). IL-

23 is increased in mucosa of IBD patients (Liu et al., 2011) and

increased ILCs are present (Geremia et al., 2011), emphasizing

the importance of this axis in controlling inflammation in colitis.

IL-23 is produced by dendritic cells and macrophages and its

release is mediated by NOD2 in combination with TLRs (Lyakh

et al., 2008). It is important that PRR signaling pathways inducing

effector cytokines such as IL-23 are tightly regulated so that

homeostasis can be restored at the termination of an immune
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response. One way in which that might be achieved is via

microRNAs (miRNAs), key regulators of gene expression whose

main function is to repress target messenger RNA (mRNA) levels

in mammalian cells. Studies of miRNA expression induced

through TLR stimulation have demonstrated that they function

as negative regulators of innate immune responses by targeting

key signaling proteins and cytokines (Ceppi et al., 2009; Taganov

et al., 2006; Bazzoni et al., 2009; Sheedy et al., 2010; Tili et al.,

2007). We hypothesized that NOD2 might modulate miRNA

expression to downregulate inflammatory responses induced

after receptor stimulation and that NOD2 variants associated

with Crohn’s might be deficient in this process, leading to inad-

equate arrest of antimicrobial effectors at the end of an immune

response.

We find that NOD2 can regulate miRNA expression in DCs. Of

particular interest, NOD2 is required for induction of the miRNA

family 29a, 29b, and 29c and induces this family alone or addi-

tively with TLR2 or TLR5. By expressing miR-29 mimic and

undertaking large-scale gene-expression profiling, we find that

miR-29 downregulates IL-12p40/IL-23 and attenuates Th17

CD4+ T cell responses in vitro. We examined Crohn’s disease

DCs expressing associated NOD2 variants and found they

were incapable of inducing miR-29 following NOD2 triggering.

This effect was associated with enhanced release of IL-12p40

in response to adherent invasive E.coli, bacteria found in

increased numbers in the mucosa of CD patients (Martinez-

Medina et al., 2009; Darfeuille-Michaud et al., 2004). miR-29a

knockout (KO) mice show worsened colitis on DSS challenge,

together with raised IL-23 levels and Th17 signature genes in

the intestinal mucosa. We have therefore identified expression

of the miR-29 family as a new immunoregulatory function of

NOD2 in human DCs, and a loss of miR-29 induction in Crohn’s

DCs might contribute to the abnormal elevation of IL-23

observed in inflamed lesions during this disease.

RESULTS

NOD2 Affects miRNA Expression in DCs and Induces
miRNA Family 29a, 29b, and 29c
To explore whether NOD2 triggering byMDP could induce differ-

ential miRNA expression in DCs, we stimulated immature mono-
Figure 1. NOD2 Regulates miR-29 Family Expression in Human DCs

(A) Representation of differential regulation ofmiRNA expression observed bymiR

Pam3CSK4 1 mg/ml (middle panel), and MDP + Pam3CSK4 combined (right pa

conditions, compared with unstimulated DCs.

(B) Quantitative real-time PCR (qPCR) analysis of miR-155 expression in DCs st

compared with unstimulated cells (control) and relative to noncoding small RNA

(E) qPCR analysis of miR-155 expression following stimulation with combination

(F) Sequence comparison of miR-29a, -29b, and -29c, which form part of two

sequences.

(G) qPCR analysis of miR-29a, 29b, and 29c in DCs stimulated for 24 hr with MD

(H) qPCR analysis of miR-29a, 29b, and 29c in MDP + Pam3CSK4 1 mg/ml stimu

(I and J) qPCR of miR-29a expression in DCs stimulated by a panel of PRR ligan

MDP, Pam3CSK4, LPS, Flagellin, ssRNA, FSL-1 at 1 mg/ml; Poly I:C 10 mg/ml; C

(K) Immunoblot analysis of RIPK-2 and MyD88 expression following transfection

siRNAs.

(L) DCs treated as in (K) were left unstimulated or stimulated for 24 hr with MDP

Statistical analysis by one-way ANOVA with Bonferroni post-test, *p = 0.01 to 0

biological replicates for (A), and three or more independent experiments for (B)–

Im
cyte-derived DCs expressing wild-type (WT) NOD2 with MDP

and subjected them to miRNA microarray analysis at 24 hr.

Only miR-29 was induced upon NOD2 triggering alone (Fig-

ure 1A; see Table S1 available online). By comparison, stimula-

tion of TLR2 with Pam3CSK4 led to robust differential regulation

of miRNAs with strong induction of miR-155 and miR-146, previ-

ously described as being induced upon TLR triggering (Taganov

et al., 2006; O’Connell et al., 2007) and DC maturation (Lyakh

et al., 2008) (Figure 1A; Table S1). NOD2 cross talks with

TLR2, and because both these PRRs recognize different compo-

nents of peptidoglycan, it is likely they would normally be cotrig-

gered upon bacterial recognition. Dual stimulation with MDP and

Pam3CSK4 led to synergistic differential regulation of a number

of miRNAs regulated by TLR2 alone, and in addition greatly

increased induction of miR-29 induced by NOD2 (Table S1).

Furthermore, we observed differential expression of a number

of new miRNAs not observed with single TLR2 or NOD2 activa-

tion (Table S1), emphasizing the ability of NOD2 to crosstalk with

other PRRs.

To confirm accuracy of the microarray data, we analyzed the

miRNAs most strongly induced by NOD2 +TLR2 cotriggering

by quantitative PCR (qPCR). NOD2 had a synergistic effect on

TLR2 upregulation of miR-155 (Figure 1B), but not miR-146a

(for which NOD2 stimulation contributed little to overall induction

via TLR2) (Figure 1C) or miR-Let-7e (where little induction

occurred across all stimuli used) (Figure 1D). miR-155 is induced

by PRR signaling, and the effect of NOD2 on miR-155 induction

was examined in comparison with a panel of other PRRs. Activa-

tion of TLR4 by lipopolysaccharide (LPS) dwarfed the effect of

NOD2 + TLR2 triggering on miR-155 expression, suggesting

that NOD2 does not play a major role in miR-155 regulation

when DCs encounter microbes (Figure 1E).

miR-29 forms part of amiRNA family expressed from two clus-

ters on chromosomes 1 and 7, and possessing identical seed

sequences, therefore targeting the same endogenous mRNAs

(Figure 1F). The ability of NOD2 to regulate expression of miR-

29 family members after exposure of DCs to MDP, Pam3CSK4,

or a combination of these two ligands was examined. miR-29a,

miR-29b and miR-29c induction after NOD2 + TLR2 stimulation

was first detected at 12 hr after stimulation and peaked at around

day 3 (Figures 1G and 1H). In contrast to the effect of NOD2 on
NAmicroarray analysis in DCs stimulated for 24 hr withMDP 1 mg/ml (left panel),

nel). Plots show miRNAs more than 2-fold upregulated by these stimulation

imulated for 24 hr with MDP, Pam3CSK4, or MDP + Pam3CSK4 all at 1 mg/ml,

control RNU44. qPCR analysis as for (B) for miR-146a (C) and miR-Let-7e (D).

s of PRR ligands alone or in combination as indicated.

clusters expressed from chromosomes 7 and 1 showing their identical seed

P and/ or Pam3CSK4 (1 mg/ml).

lated DCs over time.

ds alone or in combination as indicated. Ligand concentrations are as follows:

pG type A ODN2216 1 mM.

of DCs with control non-sense siRNA (NS siRNA) or either RIPK-2 or MyD88

+ Pam3CSK4 1 mg/ml, and miR-29 expression determined by qPCR analysis.

.05, **p = 0.001 to 0.01, ***p < 0.001 and ****p < 0.0001. Data are from four

(L). Error bars show SEM. See also Table S1.
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Figure 2. miR-29 Regulates Immune and Inflammatory Mediator Expression in DCs

(A) The ratio of live to dead cells assessed with trypan blue staining, in DCs transfected with miR-29 premiR or antimiR or controls for 24 hr before stimulation with

MDP + Pam3CSK4 1 mg/ml for 24 hr.

(B) DCs transfected with miR-29 premiR or PM control for 16 hr were then stimulated with MDP + Pam3CSK4 1 mg/ml for 8 hr prior to Agilent whole human-gene-

expression microarray analysis. Shown are representation of differential gene expression within immune response and inflammatory response genes, Crohn’s

polymorphisms, protein folding and endoplasmic reticulum (ER) stress response, and membrane proteins.

(legend continued on next page)
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miR-155 expression, NOD2 played a dominant role in the induc-

tion of miR-29, where greatest upregulation was observed with

either NOD2 + TLR2 triggering or NOD2 + TLR5 triggering (Fig-

ure 1I). NOD2 was absolutely required for this effect because

combined TLR2 + TLR5 triggering did not result in miR-29 upre-

gulation (Figure 1J).

NOD2 signaling requires RIPK-2, but not the TLR adaptor

MyD88. To test whether miR-29 expression required either of

these signaling mediators for its upregulation upon MDP +

Pam3CSK4, we knocked downMyD88 or RIPK-2 in DCs by using

siRNAs (Figure 1K). We then undertook qPCR analysis of miR-29

expression following MDP + Pam3CSK4 exposure and demon-

strated a requirement for RIPK-2, but not MyD88, in miR-29

induction (Figure 1L). These data show that NOD2 induces

expression of the miR-29 family members 29a, 29b, and 29c

over time after MDP treatment of DCs, and requires RIPK-2 to

exert this effect.

miR-29 Regulates the Expression of Multiple
Inflammatory Genes in DCs Including IL12B

miRNAs act by translational inhibition, followed by deadenylation

and decay of their target mRNA (Djuranovic et al., 2012; Bazzini

et al., 2012). NOD2 + TLR2-stimulated DCs, transfected with

miR-29 premiR to artificially increase miR-29 expression, were

examined by gene-expression microarray analysis to identify

potential target genes among mRNAs that were differentially

regulated. miR-29 affects expression of genes controlling cell

death, such as MCL-1 (Mott et al., 2007). However, the miR-29

premiR, or an antimiR (antagomir) blocking miR-29 activity, did

not significantly alter rate of cell death, as identified by Trypan

blue staining (Figure 2A). Large-scale gene-expression profiling

was undertaken of NOD2 + TLR2-stimulated DCs transfected

with either miR-29 premiR or control. We determined differential

gene regulation as significant if there were a 2-fold change in

expression in biological replicates in comparison with controls.

The differentially regulated mRNAs included clusters of genes

previously described as functioning in immune or inflammatory

pathways, protein folding and unfolded protein response, mem-

brane proteins, and as IBD susceptibility genes (Figure 2B). We

confirmed a number of these putative targets as being differen-

tially regulated by miR-29 by qPCR (Figure 2C). These include

CCL8, Bradykinin receptor 2 (BDKR2), Claudin-1 (CLDN-1),

Indoleamine 2,3-dioxygenase (IDO), and IL-2 receptor alpha

chain (IL-2RA). miR-29 upregulates Aldehyde oxidase 1 (AOX1)

and CARD9. One of the most strongly downregulated genes

identified by this methodology was IL-12p40. Thus miR-29 ex-

erts broad control over a number of inflammatory and immune

pathway genes, including the known IBD susceptibility gene,

IL-12p40.

miR-29 Targets and Downregulates IL-12p40
IL-12p40 was the most strongly downregulated gene after

expression of miR-29, and it is a predicted to be a direct target
(C) qPCR analysis of genes identified as differentially expressed by Agilent micr

(DDCT) method. DCs were transfected for 24 hr with miR-29 premiR or PM contro

one-way ANOVAwith Bonferroni post-test (*p = 0.01 to 0.05, **p = 0.001 to 0.01, **

from three biological replicates for array (B), and four independent experiments

Im
of miR-29 by computation algorithms. We therefore further

investigated the role ofmiR-29 in control of IL-12p40. Expression

of miR-29 in DCs led tomarked downregulation of both IL-12p40

mRNA and cytokine release (Figures 3A and 3B), and this was

irrespective of the PRR stimulus used to induce IL-12p40 (Fig-

ure 3C). Moreover, blocking the effect of miR-29 with an antimiR

inMDP+ Pam3CSK4 treated DCs increased IL-12p40 expression

(Figure 3A). We transfected varying doses of miR-29 premiR into

DCs to ensure the reduction of lL-12p40 observed in the pres-

ence of miR-29 occurred with amounts of miR-29 that are phys-

iologically relevant to that induced by NOD2 triggering normally.

IL-12p40 was also downregulated after expression of miR-29

premiR at levels of miR-29 similar to that detectable during in-

duction of all three miR-29 family members upon NOD2 and

TLR2 stimulation (Figure S1).

miR-155 enhances inflammatory T cell development and

Th17-relevant cytokines in mice (O’Connell et al., 2010). We

investigated whether miR-155, which is induced strongly on

PRR triggering in either murine or human DCs, might affect IL-

12p40 expression in human DCs and thus negate the effect of

miR-29 on IL-12p40 repression. We observed no effect of miR-

155 premiR or antimiR on IL-12p40 mRNA or protein expression

in MDP + Pam3CSK4-stimulated DCs, indicative of different tar-

geting pathways operative betweenmice and human cells in this

instance (Figure 3D). Neither miR-29 nor miR-155 premiR or

antimiR had any effect on IL-12p40 mRNA or protein in unstimu-

lated DCs (Figure 3D). We confirmed that miR-155 premiR and

antimiRs were biologically active after DC transfection by exam-

ining their effect on a known miR-155 target in human DCs,

SOCS-1 (Lu et al., 2011). Figure 3E shows the effect of miR-

155 mimic and antimiR on SOCS-1 expression in DCs, as ex-

pected from previous reports (Lu et al., 2011).

miR-29 is predicted to directly target the IL-12p40 30 UTR (Fig-

ure 3F). We cloned the 30 UTR (1.3 kb) of IL-12p40 mRNA into a

vector downstream of a reporter gene encoding luciferase. We

transfected HEK293 cells with this vector, or control empty

vector, along with miR-29 premiR for 48 hr. Reporter gene

expression was suppressed by 25% in cells carrying the vector

containing the predicted binding site for the miR-29 family (Fig-

ure 3G). We confirmed these results by mutating the IL-12p40

30 UTR seed sequence (Figure S2) and found that suppression

of reporter gene expression was reversed in the presence of

the mutant 30 UTR. To compliment this assay, we transfected

an IL-12p40 30UTR seed protector into DCs prior to NOD2 +

TLR2 triggering. A miScript Target Protector (QIAGEN) was de-

signed for miR-29 binding sites in IL-12p40 30 UTR mRNA. Cells

were transfected with IL-12p40 miR-29 seed-target protector or

negative-control target protector and subsequently stimulated

for 24 hr with MDP and Pam3CSK4 1 mg/ml. Cells transfected

with IL-12p40 seed-target protector induced IL-12p40 expres-

sion to a greater extent than cells without the lL-12p40 30UTR
seed-sequence target protector present (Figure 3H) These ex-

periments identify IL-12p40 as a target of miR-29 in human DCs.
oarray analysis versus GAPDH control, calculated by the change in threshold

l, prior to MDP + Pam3CSK4 1 mg/ml stimulation for 24 hr. Significant results, by

*p < 0.001 and ****p < 0.0001). Data are from four independent experiments (A),

for qPCR (C). Error bars show SEM.
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miR-29 Downregulates IL-23
IL-12p40 is a subunit of both IL-12 and IL-23, the other subunits

being IL-12p35 and IL-23p19, respectively. We investigated

whether miR-29 controlled expression of either of these other

two subunits that act in concert with IL-12p40. miR-29 premiR

downregulated expression of IL-12p40 and IL-23p19, but not

IL-12p35 (Figure 4A). miR-29 also downregulated IL-23p19 pro-

tein released fromDCs uponNOD2+ TLR2 triggering (Figure 4B).

We tested the specificity of our results by analyzing whether

miR-29 overexpression affected the expression of other cyto-

kines involved in Th17 cell or immunoregulatory responses.

miR-29 did not affect expression of IL-6, TGF-b, or IL-10

mRNA (Figure 4C) or of IL-10 and IL-6 secretion (Figures 4D

and 4E). In contrast to observations in murine DCs (O’Connell

et al., 2010), we observed no effect ofmiR-155 premiR or antimiR

on IL-23p19 expression (Figure 4F). As for IL-12p40, miR-29 only

affected expression of IL-23p19 mRNA and protein after DCs

had been stimulated to induce IL-23 by PRR ligands (Figure 4F).

We then investigated the mechanism by which miR-29 down-

regulates IL-23p19 expression in DCs. miR-29 is predicted to

directly target the IL-23p19 30 UTR (MicroCosm), although only

via a weak seed-sequence pairing (Figure 4G). We used an IL-

23p19 30 UTR luciferase reporter assay to assess the effect of

miR-29 on IL-23p19 30UTR. However, there was no demon-

strable effect on luciferase expression (Figure 4H) suggesting

that miR-29 targets IL-23p19 indirectly. We next examined the

microarray data obtained when miR-29 was expressed in DCs

to find potential mechanisms for indirect targeting of IL-23p19

by miR-29. ATF2 and SMAD3 mRNAs were both downregulated

after overexpression of miR-29 premiR in DCs, and both act

as transcriptional activators of IL-23p19 in macrophages (Al-

Salleeh and Petro, 2008). We therefore determined whether

downregulation of ATF2 or SMAD3 affected expression of IL-

23p19 mRNA in NOD2 + TLR2 stimulated DCs. We used

siRNAs to reduce expression of ATF2 (Figure 4I) or SMAD3.

ATF2 knockdown reduced IL-23p19 expression in stimulated

DCs (Figure 4J), whereas SMAD3 knockdown had no effect

(data not shown). We then transfected DCs with miR-29 premiR

or control and found that miR-29 expression resulted in effective

downregulation of ATF2 protein expression (Figure 4K). miR-29

expression in HEK293 cells did not target ATF2 in a 30UTR lucif-
Figure 3. miR-29 Regulates IL-12p40 by Directly Targeting the 30UTR
(A) qPCR analysis of IL-12p40 expression in DCs following miR-29 premiR or

expressed as relative fold change to control. Statistical analysis by one-way ANO

(B) DCs were transfected with miR-29 premiR or control and stimulated with MD

(C) IL-12p40 ELISA of DCs treated as in (B) but stimulated with TLR2, TLR4, or TL

to 0.01).

(D) qPCR of IL-12p40 expression in DCs transfected with control, miR-29 premiR

Pam3CSK4 1 mg/ml for a further 24 hr (left panel); IL-12p40 ELISA in the sameDCs

155 antimiR for 24 hr and stimulated with MDP + Pam3CSK4 1 mg/ml for 24 hr (ri

(E) DCs were transfected with control or miR-155 premiR (top panels) or control

performed.

(F) IL-12p40 30UTR contains a potential target site for miR-29 (TargetScan).

(G) IL-12p40 30UTR was cloned into pmiR-Glo dual luciferase vector. The vector w

was quantified at 48 hr (normalized to renilla luciferase activity). The same experim

mutated miR-29 target sequence (IL-12p40 D seed).

(H) DCs were transfected with a negative control target protector or IL-12p40

Pam3CSK4 1 mg/ml for 24 hr prior to IL-12p40 qPCR. Statistical analysis by one-

dependent experiments (A), 13 independent experiments (B), 2 independent exp

8 independent experiments (G), and 3 independent experiments (H). Error bars s

Im
erase assay, suggesting the effect of miR-29 on ATF2 is indirect

(Figure S3). These results indicate that miR-29 downregulates

IL-23p19 indirectly, at least in part via downregulation of its

transcriptional activator ATF2.

Repression of IL-23 by miR-29 Decreases IL-17
Production in DC and T Cell Cocultures
The functional relevance of miR-29 repression of IL-12p40 and

IL-23p19 on the magnitude of Th17 responses was then

explored. DCs were transfected with miR-29 premiR or control

before DC coculture with CD4+ T cells. IL-17 production by

T cells was then assessed at 72 hr. This revealed significant

reduction in IL-17 production from cocultures where DCs ex-

pressed miR-29 (Figure 5A). The effect on IL-17 production

mediated by miR-29 was comparable to that observed with

anti-IL-23 blocking antibodies (Figure 5B) and could be reversed

by addition of recombinant IL-23 to DC T cell cocultures (Fig-

ure 5C). In contrast to its ability to downregulate IL-17 release

from DC T cell cocultures, DC-expressed miR-29 had no effect

on interferon-g (IFN-g) expression (Figure 5D).

Exacerbated, Th17-Associated Intestinal Inflammation
in miR-29-Deficient Mice
Because IL-23 drives colitis in animal models (Yen et al., 2006;

Uhlig et al., 2006), we investigatedwhether lack ofmiR-29 lowers

the threshold for development of intestinal inflammation in vivo.

Unlike in human cells, we found that the expression of miR-29

family members was not substantially regulated after stimulation

with NOD2 or TLR2 ligands. This was evident with both in vitro-

derived BMDCs and splenic CD11c+ cDCs isolated after NOD2

and TLR2 triggering in vivo (Figures S4A and S4B).

To explore the role of miR-29 in control of IL-12p40 in vivo, we

used mice with a targeted deletion of the miR-29a/b-1 locus

(hereafter called ‘‘miR-29 KO mice’’) (Papadopoulou et al.,

2012) or WT littermate controls with intact miR-29. We found

that transcription of the miR-29 target gene, Il12b, was substan-

tially enhanced in BMDCs lacking miR-29 after 24 and 48 hr of

stimulation, compared to WT controls, with this dysregulation

leading to enhanced IL-12p40 protein production by miR-29

KO BMDCs at 72 hr after stimulation (Figures S4C and S4D).

To establish whether miR-29 is capable of repressing IL-12p40
antimiR or control transfection, and MDP + Pam3CSK4 1 mg/ml stimulation,

VA with Bonferroni post-test **p = 0.001 to 0.01, and ***p < 0.001.

P + Pam3CSK4 1 mg/ml for 24 hr prior to IL-12p40 ELISA.

R5 ligands at 1 mg/ml for 24 hr (analysis by two-tailed paired t test **p = 0.001

, or miR-155 premiR for 24 hr and left unstimulated or stimulated with MDP +

(middle panel); IL-12p40 ELISA in DCs transfectedwith control, miR-29, or miR-

ght panel).

and miR-155 antimiR (bottom panels) and immunoblot for SOCS-1 and actin

as cotransfected with miR-29 premiR into HEK293 cells, and firefly luciferase

ent was performed with the empty vector (pmiR-Glo), or a vector expressing a

seed-protector sequences and left unstimulated or stimulated with MDP +

way ANOVA with Bonferroni post-test **p = 0.001 to 0.01. Data are from 4 in-

eriments (C), 3 independent experiments (D), 7 independent experiments (F),

how SEM. See also Figures S1 and S2.
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Figure 5. Control of IL-17 Production from T Cells via miR-29

(A)We cocultured 13 106CD4+ T cells with 13 105 DCs, with 100 pg/ml SEB. DCswere transfected withmiR-29 premiR or PMcontrol for 8 hr and stimulatedwith

MDP + Pam3CSK4 1 mg/ml for 16 hr, before coculture. IL-17 production after 72 hr coculture was measured by ELISA (left panel) and qPCR (right panel).

Significant differences by two-tailed paired t test **p = 0.001 to 0.01 and ***p < 0.001.

(B) Anti-IL-23 antibody was added to cocultures at 1 mg/ml or 5 mg/ml and IL-17 production assessed at 72 hr.

(C) DCs were transfected with miR-29 premiR or control prior to CD4+ T cell coculture as before. rIL-23 was added at 0.75 ng/ml to cocultures with DCs

expressing the miR-29 premiR.

(D) IFN-g production from DC + T cell coculture, experimental conditions as for (B). Data are from more than three independent experiments (A and D) and two

independent experiments (B and C). Error bars show SEM.
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in murine DCs, miR-29 premiR or control were transfected into

BMDCs pre- and post-NOD2 + TLR2 simulation and IL-12p40

mRNA was measured. miR-29 suppressed IL-12p40 expression

in murine DCs to a similar extent as observed in human DCs (Fig-

ure S4E). We therefore sought to determine the contributions of

miR-29 in an experimental model of mucosal pathology.

miR-29 KO mice or WT littermate controls were challenged

with DSS. miR-29 KO mice showed an enhanced propensity to

develop colitis (1.7-fold higher colitis incidence compared to

WT mice, Figure 6A) and exhibited an enhanced pathological

score and weight loss (Figures 6B and 6C). The enhanced

severity of colitis was associated with a marked ‘‘Th17-type’’

transcriptional signature in distal colonic tissue. This included

elevated expression of the miR-29-target genes Il23a and Il12b

(Figures 6D and 6E), as well as mRNA encoding the key Th17 cy-

tokines IL-17A and GM-CSF (Figures 6F and 6G); both of which

are associated with Th17-mediated immunopathology (Griseri

et al., 2012; Codarri et al., 2011). In addition, mRNA encoding

the Th17 subset-determining transcription factor, RORgt, was
Figure 4. miR-29 Preferentially Regulates IL-23 via Attenuation of IL-2

(A) DCs were transfected with miR-29 premiR or control and stimulated with M

IL-23p19, and IL-12p35.

(B) IL-23p19 ELISA from DCs treated as in (A). Significant differences by two-tai

(C) DCs transfected with miR-29 premiR or control and MDP + Pam3CSK4 1 mg/m

and (E) IL-6 by ELISA.

(F) ELISA of IL-23p19 expression from DCs transfected with control, miR-29 prem

Pam3CSK4 1 mg/ml for a further 24 hr (left panel). IL-23p19 ELISA in DCs transfecte

Pam3CSK4 1 mg/ml for 24 hr (right panel).

(G) IL-23p19 30UTR contains a potential miR-29 target site (MicroCosm).

(H) IL-23p19 30UTR was cloned into pmiR-Glo dual luciferase vector. The vector w

quantified at 48 hr (normalized to renilla luciferase activity).

(I) DCs were transfected with siRNAs to ATF2 for 24 hr and left unstimulated or sti

(J) qPCR for IL-23p19 expression in DCs treated as in (I).

(K) DCs were transfected with miR-29 premiR (29a PM) or control and subsequ

Immunoblot for ATF2 shown. Statistical analysis by one-way ANOVA and Bonfe

iments from (A)–(F) and from (H)–(K). Error bars show SEM. See also Figure S3.
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elevated in distal colonic tissue of colitic miR-29-deficient mice

compared to DSS-treated WT mice (Figure 6H), whereas

GATA-3 and T-bet mRNA were either lower or unchanged, and

Foxp3 mRNA was only slightly enhanced (Figure S5A–S5C).

The enhanced colitis in miR-29-deficient mice was not associ-

ated with a general increase in inflammatory mediators. Il1b,

Tnfa, and Il6 mRNAs were elevated in colonic tissue to a similar

degree in WT and miR-29 KOmice (Figure 6I), and a lack of miR-

29 did not impact colonic expression of IL-10 (Figure S5D). miR-

29 targets IFN-g and influences Th1 bias in other murine models

ofmiR-29 function (Ma et al., 2011; Steiner et al., 2011); however,

we found no difference in Th1 cell numbers or IFN-g in colonic

tissue between control and miR-29-deficient mice (Figure 6) In

addition, miR-29-deficient mice also demonstrated increased

IL-23p19 protein production from intestinal mucosal tissue

explants over controls after DSS challenge (Figure 6J). Genes

that were modulated by the miR-29 premiR in human DCs,

including Cxcl9, Cxcl10, Clec7a, Cxcl11, IL1f9, and Ifitm1, also

showed changes in expression in the intestinal mucosa of colitic
3p19

DP + Pam3CSK4 1 mg/ml for 24 hr. Graphs show qPCR analysis of IL-12p40,

led paired t test **p = 0.001 to 0.01 and ***p < 0.001.

l were stimulated. IL-6, IL-10, and TGFbwere assessed by qPCR and (D) IL-10

iR, or miR-155 premiR for 24 hr and left unstimulated or stimulated with MDP +

dwith control, miR-29, or miR-155 antimiR for 24 hr and stimulated withMDP +

as cotransfected with miR-29 premiR into HEK293 cells, and firefly luciferase

mulated with MDP + Pam3CSK4 1 mg/ml for 24 hr prior to immunoblot for ATF2.

ently left unstimulated (US) or stimulated with MDP + Pam3CSK4 1 mg/ml (S).

rroni post-test (***p < 0.001). Data are from three or more independent exper-
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Figure 6. miR-29 Deficient Mice Develop Exacerbated Intestinal Inflammation Associated with an Enhanced Th17 Transcriptional Signature

in Colonic Tissue

(A–H) miR-29 KO mice and WT littermates received low-dose DSS in drinking water for 7 days. Weight loss was monitored, and on day 7 mice were sacrificed,

colitis scored, and distal colonic tissue assessed for mRNA abundance of indicated genes. (A) and (B) show colitis incidence and severity of DSS-treated WT or

miR-29-deficient mice, and (C) shows weight loss curves. Expression of IL-23p19 (D), IL-12p40 (E), IL-17a (F), GM-CSF (G), and RORgt (H) mRNA in distal colonic

tissue was determined as the fold change in transcript abundance in colitic mice relative to mice of each genotype receiving H20.

(I) Shows expression of the indicated mRNA in distal colonic tissue determined as the fold change in transcript abundance in colitic mice relative to mice of each

genotype receiving H20.

(J) Shows IL-23p19 protein in distal colonic explant cultures from mice of each genotype, expressed as the fold change in expression in from colitic

mice compared to those receiving H20. Data are pooled from two independent experiments with n = 3–12 mice per group; data in (H) is from one experiment with

n = 3–5 mice per group. Data are represented as mean ± SEM. See also Figures S4–S7.
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miR-29 KOmice, providing further parallels between miR-29 tar-

geting in the murine model and human DCs (Figure S7).

Defective miR-29 Expression and Increased IL-12p40
Release in Human DCs Expressing NOD2 Variants
We next investigated whether Crohn’s patient DCs expressing

variants of NOD2 associated with the disease exhibited defects

in miR-29 upregulation on either NOD2 or NOD2 + TLR trig-

gering. Patient DCs either homozygous for 1007fsinsC NOD2

expression or compound heterozygous for any of the Crohn’s-

associated NOD2 polymorphisms fail to induce miR-29 on

stimulation of NOD2, NOD2 + TLR2, or NOD2 + TLR5 combined

stimulation (Figures 7A and 7B). In contrast, these Crohn’s donor

DCs induced miR-155 similarly to WT NOD2 expressing DCs

following PRR triggering (Figure 7C). Restoring miR-29 expres-

sion in Crohn’s donor DCs expressing associated NOD2 poly-

morphisms effectively downregulated IL-12p40 (Figure 7D) as

previously observed in healthy donors. We explored whether

loss of miR-29 induction by CD DCs expressing NOD2 polymor-

phisms might contribute to dysregulated IL-12p40 release from

these cells on exposure to intestinal bacteria. We challenged

healthy or CD DCs with adherent invasive E. coli (AIEC) and

measured release of IL-12p40 at day 3, day 5, and day 7 after

exposure. We found enhanced release of IL-12p40 in CD donor

cells at days 5 and 7 after challenge (Figure 7E). AIEC treatment

of healthy donor or CD donor DCs showed no change in expres-

sion of miR-29 in the CD donor cells over a week after exposure

to these bacteria (Figure 7F). Finally we assessed whether intro-

duction of miR-29 premiR into CD donor DCs could also reduce

the amount of IL-12p40 release after bacterial exposure and

again found efficient reduction of IL-2p40 after transfection of

miR-29 mimic, but not premiR control, into either healthy donor

or CD donor cells exposed to AIEC (Figure 7G). In contrast, intro-

duction of miR-29 antimiR exaggerated IL-12p40 release from

healthy donor cells but had no effect on IL-12p40 levels ex-

pressed in CD donor cells. These observations demonstrate

that Crohn’s donor DCs show defects in induction of miR-29

that correlate with enhanced IL-12p40 release following DC

exposure to AIEC, suggesting that this might contribute to

increased IL-23 production observed in the intestinal mucosa

during this disease.

DISCUSSION

In this work, we demonstrate that NOD2 can control miRNA

expression in human cells. Similar to its effects onmRNA expres-

sion, NOD2 plays a role in synergizing with other PRRs in

inducing key miRNAs, such as miR-155 in DCs. In addition to

this effect, NOD2 plays an exclusive role in directing expression

of the miR-29 family, in contrast to other PRRs expressed in

these cells. This ability of NOD2 requires the NOD2 signal trans-

ducer RIPK-2, but not the TLR signal transducer MyD88, indi-

cating that RIPK-2 plays a key role in mediating NOD2 crosstalk

with other PRRs to induce miR-29 expression. By using both

computational and biological approaches, we define a series

of new genes regulated by miR-29 in human DCs including

CCL8, involved in neuroinflammation (Banisor et al., 2005), Bra-

dykinin receptor 2 (BDKR2), implicated in IL-12 induction from

dendritic cells (Aliberti et al., 2003), Claudin-1 a tight junction
Im
protein required for DCs to penetrate gut epithelial monolayers

to sample bacteria (Rescigno et al., 2001), Indoleamine 2,3-

dioxygenase (IDO), a rate-limiting enzyme of tryptophan catabo-

lism through the kynurenine pathway that is involved in innate

immune responses (Matteoli et al., 2010), and IL-2 receptor

alpha chain (IL2RA), an immune regulatory molecule expressed

on myeloid DCs (Driesen et al., 2008). mir-29 also upregulates

Aldehyde oxidase 1 (AOX1), induced as a stress response in

plants (Polidoros et al., 2009) and CARD9 that is important for

innate responses against yeast (Vautier et al., 2010).

The gene most strongly regulated by miR-29 was IL-12p40.

30UTR luciferase assays and seed-protector experiments pro-

vide evidence for miR-29 directly targeting IL-12p40. In contrast,

miR-29 appears to indirectly target IL-23p19, at least in part by

suppressing its transcriptional activator ATF2, to control IL-23

released from DCs. NOD2 and TLRs are key regulators of

IL-23 production by cells of the innate immune system such

as DCs and macrophages (Napolitani et al., 2005), so induction

of miR-29 controlled by NOD2 represents a key intrinsic homeo-

static mechanism to switch off this critical driver of Th17

responses.

IL-23 plays a key role in driving colitis, andwe find thatmiR-29-

deficient mice develop worsened colitis on DSS challenge asso-

ciated with increased expression of Th17-associated genes and

IL-23, as opposed to general inflammatory signature genes, in

the intestinal mucosa, consistent with a physiological role for

miR-29 in controlling Th17-mediated intestinal inflammation

in vivo. We found that Crohn’s patient DCs homozygous or

compound heterozygous for NOD2 variants associated with

the disease failed to induce miR-29 to any great degree upon

NOD2 or NOD2 + TLR triggering. This was associated with

increased release of IL-12p40 at later time points after infection

with AIEC compared to controls. Loss of this immunoregulatory

pathway in small bowel intestinal DCs responsible for producing

copious amounts of IL-23 in response to microbes might

contribute to the increased IL-23 observed in the intestinal

mucosa in Crohn’s patients. Increased basal IL-23 production

could be important in driving inflammation in combination with

other defects in NOD2 function observed in Crohn’s, such as

defects in autophagy induction (Cooney et al., 2010; Travassos

et al., 2010) where bacterial persistence could provide an

ongoing trigger for IL-23 production in the absence of intrinsic

control mediated by miR-29. Indeed, increased inflammatory

cytokine release from human antigen-presenting cells with de-

fects in autophagy, including Crohn’s donor cells, after exposure

to bacteria has been observed (Lapaquette et al., 2012;

Plantinga et al., 2011). It is also possible these effects would

be increased in patients with coexisting IL23R polymorphisms

that might require lower amounts of IL-23 to result in proin-

flammatory signaling. Furthermore, these effects could be

compounded via Crohn’s-associated NOD2 variants’ active

suppression of immunoregulatory IL-10 production via inhibition

of hnRNP-A1 activity (Noguchi et al., 2009).

In the murine immune system, miR-29 exerts a number of

immunoregulatory roles. miR-29 expressed in NK cells, CD4+

T cells, and CD8+ T cells downregulates IFN-g expression, and

suppression of miR-29 expression by transgenic expression

of a sponge target reduces bacterial burden in mice exposed

to Listeria monocytogenes or Mycobacterium bovis bacillus
munity 39, 521–536, September 19, 2013 ª2013 Elsevier Inc. 531
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Calmette-Guerin (BCG) (Ma et al., 2011). Furthermore, miR-29

represses T-bet and Eomes in T cells to regulate helper T cell

differentiation (Steiner et al., 2011). In addition, miR-29 targets

IFN-a expression by thymic epithelium to increase the threshold

for infection-associated thymic involution (Papadopoulou et al.,

2012). Our work adds an immunoregulatory function for miR-

29 to this repertoire in human antigen-presenting cells mediated

by NOD2.

miR-29 is a keymiRNA in a number of other cellular processes,

and it is possible that NOD2may function via modulation of miR-

29 in other settings. For example, miR-29 regulates methylation

of target genes by controlling expression of DNMT3A (Fabbri

et al., 2007), which is also a recently described Crohn’s-suscep-

tibility gene (Franke et al., 2010). Altered DNAmethylation via this

pathway could modulate epigenetic pathways, maturation of

DCs, and thus influence the nature of the adaptive immune

response. miR-29 also associates with fibrosis via control of

collagen expression (Maurer et al., 2010; Roderburg et al.,

2011). NOD2 polymorphisms in Crohn’s are associated with a

subphenotype of the disease—stricturing disease (Seiderer

et al., 2006)—where fibrosis occurs in the small bowel causing

obstructive symptoms and requiring surgical intervention. It is

possible that the inability of Crohn’s NOD2 to induce miR-29

might contribute to this phenotype. NOD2 mutations are also

strongly associated with disease of the terminal ileum (Cuthbert

et al., 2002), and our data is compatible with this phenotype as

IL-12p40 and IL-23p19 are most highly constitutively expressed

in the terminal ileum (Becker et al., 2003), increasing the need for

effective regulatory mechanisms in this mucosa.

NOD2 also influences the composition of the microbiome

(Rehman et al., 2011). Although some of this effect might be

explained by reduced expression of Paneth cell defensins

(Wehkamp et al., 2004) observed in the presence of Crohn’s

variant NOD2, it is possible that increased basal IL-23 in the

mucosa mediated by loss of miR-29 might facilitate this effect.

It will be interesting to see the effect of NOD2 expression on

miRNAs in epithelial cells and Paneth cells, in which expression

of factors affecting barrier function might be controlled.

In summary, we have shown that NOD2 is critical for induction

of miR-29 in DCs and defined a number of newmiR-29 regulated

genes in these cells, including those affecting IL-23 expression.

Simultaneous expression by NOD2 of the key immune effector

IL-23 and a molecular switch to arrest its induction illustrates

the elegant ability of innate immune receptors to activate timely
Figure 7. Crohn’s Patients DCs Fail to Both Upregulate miR-29 and Co

DCswere derived fromCDpatients homozygous for FS1007insCNOD2 (10 patien

have terminal ileal disease, were in clinical remission, and were off all immunom

(A and B) qPCR analysis of miR-29 expression in DCs expressingWTNOD2 or Cro

LPS stimulation (1 mg/ml). Statistical analysis was performed by by one-way ANO

(C) qPCR of miR-155 expression in DCs from healthy WT NOD2 expressing DCs

with panels of PRR ligands as above.

(D) IL-12p40 ELISA following MDP + Pam3CSK4 1 mg/ml stimulation in FS1007

differences by two-tailed paired t test, *p = 0.01 to 0.05.

(E) IL-12p40 release in response to adherent invasive E. coli from healthy donor

(F) miR-29 expression in healthy donor DCs or CD donor DCs at day 0, 3, 5, and

(G) IL-12p40 release from healthy donor DCs or CD donor DCs transfected wit

exposure to adherent invasive E. coli. Statistical analysis was performed by one-w

are from 8 independent experiments (A), 14 independent experiments (B), 3 ind

show SEM.
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defense mechanisms while shutting off harmful immune re-

sponses. It is likely that other PRRs will operate such paradigms

and that these may be disrupted in inflammatory diseases, an

important area for future study.

EXPERIMENTAL PROCEDURES

Preparation of Human Monocyte-Derived Dendritic Cells and NOD2

Genotyping

CD14+ monocytes were positively selected (anti-CD14 microbeads; Miltenyi

Biotech) from peripheral blood mononuclear cells (PBMCs), from either WT

NOD2 donors or homozygous mutant NOD2 Crohn’s patients (Research

Ethics Committee Reference: 07/H0603/43). For details of Crohn’s patients,

see Supplemental Information. Monocytes were cultured together with IL-4

and GM-CSF (Peprotech). Immature dendritic cells were harvested on day 5

of culture. For NOD2 genotyping, PCR of NOD2 polymorphisms (R702W,

G908R, FS1007insC) was performed prior to sequencing. For details of oligo-

nucleotides used, see Supplemental Information.

Cell Stimulations, miRNA Microarrays, and qPCR of miRNAs

We left 5 3 106 DCs unstimulated, stimulated with 1 mg/ml MDP or 1 mg/ml

Pam3CSK4 (Invivogen), or both for 24 hr. In some experiments, a PRR ligand

panel was used and consisted of lipopolysaccharide (LPS) 1 mg/ml, Poly I:C

10 mg/ml, ssRNA 1 mg/ml, CpG type A ODN2216 1 mM, HKLM 108 cells/ ml,

FSL-1 1 mg/ml, and flagellin 1 mg/ml (Invivogen). For miRNA microarrays,

four biological replicates were used. RNA was extracted (miRNeasy;

QIAGEN), and RNA quality checked with RNA 6000 Nano Assay on Agilent

bioanalyzer 2100. Total RNA was hybridized to Agilent human single color

miRNA arrays. miRNAmicroarrays represented 866 human and 89 human viral

miRNAs sourced from Sanger miRBase (release 12.0). Results were analyzed

with Genespring. Rawmicroarray data for this experiment has been submitted

to GEO (NCBI) (GSE numbers GSE44784 and GSE44785). For qPCR of

miRNAs, RNA was prepared as before. Reverse transcription to cDNA was

achieved with miRNA-specific primers (Applied Biosystems) prior to qPCR

(TaqMan; Applied Biosystems). Noncoding small RNA control RNU44 (Applied

Biosystems) served as an endogenous reference gene, with changes in

expression calculated by the change in threshold (DDCT) method. For miRNA

knockdown or overexpression and miRNA Target Identification, see Supple-

mental Information.

Immunoblots, Antibodies, ELISAs

We transfected 3 3 106 DCs with siRNAs, final concentration 5 nM (RIPK-2

SI02758833; MyD88 SI00300909; QIAGEN) or non-sense control (AllStar

Negative Control, QIAGEN) by nucleofection (Lonza). Immunoblot was used

to confirm knockdown with anti-human antibodies: anti-RIPK-2, 1:1000

(4982; Cell Signaling); anti-MyD88, 1:1000 (4283; Cell Signaling). For miRNA

target confirmation, 3 3 106 DCs were transfected with miR-29 premiR or

negative control, as described, and where indicated were stimulated with

NOD2 ± TLR ligands. Anti-ATF2, 1:1000 (20F1; Cell Signaling); anti-SOCS-1

(A156), 1:1000 (3950; Cell Signaling) antibodies were used. For ELISAs, DCs
ntrol IL-12p40

ts) or R702W+G908RNOD2 compound heterozygotes (5 patients). All patients

odulators.

hn’s variant NOD2, after MDP and/or Pam3CSK4, or MDP + Flagellin, or MDP +

VA and Bonferroni post-test (*p = 0.01 to 0.05, ***p < 0.001, and ****p < 0.0001).

versus CD donors expressing NOD2 polymorphisms pre- and poststimulation

insC NOD2 DCs, after transfection of miR-29 premiR or control. Significant

DCs versus CD DCs at days 0, 3, 5, and 7 after bacterial exposure.

7 following exposure to adherent invasive E. coli.

h premiR control, miR-29 premiR, or miR-29 antimiR for 24 hr at day 5 after

ay ANOVA and Bonferroni post-test, **p = 0.001 to 0.01, and ***p < 0.001. Data

ependent experiments (C–E) 2 independent experiments (F and G); error bars
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were stimulated with NOD2 ± TLR ligands as indicated, ±transfection of

miRNA premiRs or antimiRs with appropriate negative controls, before super-

natants were harvested after 48 hr unless otherwise indicated, and stored

at �80�C. Human IL-12/IL-23p40, IL-6, IL-10, IL-12p70, IL-17 and IFN-g

Duosets, and Human IL-23 Quantikine ELISA Kit, (R&D) were used following

standard protocols. For 30 UTR luciferase reporter assays, see Supplemental

Information.

DC + T Cell Coculture, Bacterial Infections, Colitis Challenge

DCswere prepared as described above. CD4+ T cells were negatively selected

from the remaining PBMCs with CD4+ T Cell Isolation Kit II (Miltenyi Biotec).

DCs were transfected with miRNA premiR or negative control for 8 hr before

16 hr stimulation with 1 mg/ml MDP and Pam3CSK4. We cocultured 1 3 105

DCs with 1 3 106 CD4+ T cells in 12 well plates, with 100 pg/ml SEB. Recom-

binant IL-23 (1290-IL/CF; R&D, at 0.75 ng/ml or 5 ng/ml) or anti-IL23 antibody

(AF1716; R&D, at 1 mg/ml or 5 mg/ml) was added to selected wells. Culture

media and cells were collected for ELISA and qPCR. AIEC-GFP was a kind

gift from Dr. Barry Campbell (Liverpool). For DC bacterial infections, we

exposed 13 105 DCs to E. coli at an MOI of 25 for 1 hr and then in gentamicin

(50 mgml�1)-containingmedium for the remaining time periods. For miR-29 KO

mice, DSS challenge, colitis scoring, and murine qPCRs, see Supplemental

Information.

Statistical Analyses

We used Prism software (GraphPad) to determine the statistical significance in

the means of experimental groups. When making multiple comparisons on a

data set, analysis was by one-way ANOVA with Bonferroni post-test. For ex-

periments with two sample groups (one condition, one control) and a single

comparison, analysis was by paired, two-tailed Student’s t test.

ACCESSION NUMBERS

Raw microarray data have been submitted to GEO (NCBI) under the GSE

accession numbers GSE44784 and GSE44785.

SUPPLEMENTAL INFORMATION

Supplemental Information includes seven figures and Supplemental Experi-

mental Procedures and can be found with this article online at http://dx.doi.

org/10.1016/j.immuni.2013.08.035.
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