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a b s t r a c t

Quantum annealing extends simulated annealing by introducing artificial quantum fluctu-
ations. The path-integral Monte Carlo version chosen is population-based and designed to
be implemented on a classical computer. Its first application to the graph coloring problem
is presented in this paper. It is shown by experiments that quantum annealing can outper-
form classical thermal simulated annealing for this particular problem.Moreover, quantum
annealing proved competitive when comparedwith the best algorithms onmost of the dif-
ficult instances from the DIMACS benchmarks. The quantum annealing algorithm has even
found that thewell-knownbenchmark graphdsjc1000.9 has a chromatic number of atmost
222. This is an improvement on its best upper-bound from a large body of literature.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In the Graph Coloring Problem (GCP), we are given an undirected graph G = (V , E) where V denotes the set of vertices
and E the set of edges. An edge consists of a pair of adjacent vertices. With the minimum number of colors possible, each
vertex should be assigned a color such that no vertices with a common edge have the same color. If K is a set of colors, then
a (proper) coloring of G is a mapping col : V → K such that col(u) ≠ col(v), for any cases where u and v are adjacent.
The minimum number of colors required to color G is known as the chromatic number χ(G) or χ . If Vj is the set of vertices
with color j, the problem can also be viewed as the partitioning of V into k color classes V 1, . . . , Vk where k = χ(G), such
that no two vertices in the same color class are adjacent. The GCP is an important combinatorial optimization problem
with applications in several areas including register allocation [1], timetabling [2] and scheduling [3]. It is known to be very
difficult and NP-hard in general. In practice, it is often sufficient to solve the relaxed problem of finding a coloring of Gwith
k colors (or a k-coloring), where χ(G) ≤ k ≤ |V |. One usually attempts to make k as close to χ(G) as possible, but achieving
this is still NP-hard [4]. Exact algorithms [5] usually become impractical when presented with problems consisting of more
than a hundred vertices, leading many researchers to concentrate on heuristic algorithms [6,7]. A number of heuristics have
been used to find k-coloringswith success. Some of these are based on simulated annealing [6,8], Tabu search [9], and hybrid
evolutionary algorithms with specialized crossovers [10–13]. The GCP can be approached by first finding a k-coloring for a
high estimate of χ(G), and then finding k-colorings for successively lower values of k, until this becomes impossible. This is
a common approach that is also taken in this paper.

Quantum Annealing (QA) [14] is a relatively new heuristic which has been shown to be more effective than thermal
Classical (simulated) Annealing (CA) [15] in solving some combinatorial optimization problems including the Traveling
Salesman Problem (TSP) [16] and the Ising SpinGlass Problem [17]. CA is based on an analogywith statisticalmechanics from
classical physics. It involves attempting to find a global minimum of a cost function by introducing an artificial temperature
parameter which is slowly lowered towards zero, during a Metropolis Monte Carlo simulation. This procedure aids in
thermally overcoming barriers, and preventing the search from getting trapped in poor local minima. QA extends CA with
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ideas fromquantummechanics. Artificial quantum fluctuations are appliedwith the aim of tunneling through barriers in the
search for a global minimum [18]. To the best of our knowledge this is the first application of QA to the GCP. In this paper,
we present a GCP solver based on QA (and called QA-col), and compare it with one based on CA (CA-col). In Section 2.1,
a transformation is applied to a quantum system, so that it can be simulated feasibly as a population based search on a
classical computer. The algorithms CA-col and QA-col are presented in Section 2.2, and efficiency concerns are addressed
in Section 2.3. Section 3 contains experimental results which show that QA-col outperforms CA-col. QA-col also matches
the quality of colorings found by the leading GCP algorithms for many graphs, and even finds a new result for one of them.
Further discussion can be found in Section 4, followed by the conclusions in Section 5.

2. Formulating the GCP for CA and QA

The GCP is a combinatorial optimization problem that can be reduced to a series of decision problems concerning the
existence of k-colorings, first for a value of k which is a high estimate of χ(G), and afterwards for decreasing values of k,
until k-colorings can no longer be found. To differentiate from a k-coloring which we always take to mean one without
any conflicts, we refer to an assignment of all vertices to colors as a configuration, denoted by ω. The set of all possible
configurations is the search space Ω to be explored by CA and QA. Many heuristics including stochastic QA and CA are
incomplete. This means that they are correct when their answer to a decision problem is ‘yes’, but may be wrong if their
answer is no. Therefore the lowest value of k for which such an algorithm can find a k-coloring is only an upper-bound on
the value of χ(G). We will concentrate on solving the k-coloring problem for a given k. A local search approach to finding a
k-coloring might start off by randomly assigning colors to each of the vertices of the given graph using k colors. This would
usually give rise to an initial configuration with a number of conflicting edges. For a k-coloring, the number of conflicting
edges has to be equal to zero. We could attempt to improve the initial configuration by looking for color changes of vertices
that result in a decrease in the total number of conflicts. A single color change is often termed a move, as this can be viewed
as the transfer of a vertex from its current color class to another.With this approach, every vertexmust be assigned to a color
at all times. When using a local search with simple descent, any move that results in an increase in conflicts is rejected. This
works in decreasing the number of conflicts, but only to a limited extent, because of the high likelihood of getting trapped
in local minima. CA is commonly used to alleviate this situation by accepting apparently bad moves with some probability
as a strategy for escaping local minima. In our formulation for CA, the cost function (or potential energy) to be minimized is
Hpot , and is given by the number of conflicting edges denoted by C(ω). The neighborhood of a configuration is the set of all
configurations that can be reached from the current one by making a single move. The described method of adapting CA to
the k-coloring problem was first suggested in [19] and has since been explored in [6,8].

In the case of QA, the cost function to be minimized is Hq = Hpot + Hkin. The energy Hq is a quantum Hamiltonian
composed of a classical potential energy Hpot and a kinetic one Hkin. While CA uses only Hpot as a cost function, QA requires
Hkin for the purpose of introducing artificial quantum fluctuations,which are used to try to escape localminima. Even though
the k-coloring problem can be viewed as a decision problem, we approach it by optimizing the cost function Hpot . In QA, we
seek to minimize Hpot as a side effect of minimizing Hq. A k-coloring is reached if and only if Hpot is zero. In order to define
Hkin and apply QA to any combinatorial optimization problem, it is first represented as the ground state search of an Ising
model [16,18]. For the k-coloring problem, this involves expressing a coloring configuration as a series of Boolean variables,
such that when they are assigned the right values, the original problem is solved.

2.1. The k-coloring problem, the Ising model, and the Suzuki–Trotter transformation

An Ising model consists of a set of spins (or spin variables), each of which can only be in one of two states. Most
combinatorial optimization problems can be expressed in terms of Boolean variables and hence spin variables [18]. Each of
these spin variables usually takes on the value of either +1 or −1, also known as an up-spin and a down-spin respectively.
Examples of how to express a combinatorial optimization problem as an Ising Model for QA can be found in [20] for
Boolean satisfiability and also in [16] for the TSP where it was mentioned that domain-specific knowledge should be taken
into consideration where possible. One could represent the k-coloring problem in terms of Boolean variables by having
one variable each for all possible propositions that some vertex is currently assigned to a given color. We term this the
absolute color mapping because it concentrates on the exact colors assigned to vertices. For reasons that will become
clear shortly, the absolute color mapping is not a very good Ising model for the k-coloring problem. An alternative and
more effective mapping is deferred till later in this section, after some relevant definitions have been given. For now, it
will suffice to note that a coloring configuration can be fully represented in terms of spin variables, and that the values of
these spin variables are dependent on the colors assigned to the vertices of the graph under consideration. The set of spin
variables S1, S2, . . . , Sn or {Si} corresponds to a coloring configuration ω. Hence {Si} can be considered as an alternative
representation of ω, interchangeable in many contexts. For example, the potential energy in CA can be expressed as
Hpot({Si}) := Hpot(ω) = C(ω).

Providing a deterministic solution to the minimization of Hq with quantum mechanics is possible, and has been done
for some basic problems [21]. However, it is very computationally expensive, and results in intractability for most practical
problems. For this reason, a Metropolis Monte Carlo scheme (as in CA) is used instead. This is implemented with stochas-
tic dynamics using a pseudo-random number generator. Path-Integral Monte Carlo for Quantum Annealing (PIMC-QA) is a
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stochastic implementation of QA that has proved to be successful on some combinatorial optimization problems [16,22].
In PIMC-QA, a quantum Hamiltonian is approximated by a classical one with the aid of a Suzuki–Trotter transformation
[14,23,24]. This is possible because of an analogy with a standard Ising model in a transverse field [14]. The transformation
maps the quantum Hamiltonian Hq to an effective classical Hamiltonian H similar to [20], and given by (1).

H =
1
P

P−
ρ=1

Hpot({Si,ρ}) − JΓ


P−1−
ρ=1

−
i

Si,ρSi,ρ+1 +

−
i

Si,1Si,P


. (1)

H can be viewed as consisting of P replicas {Si,ρ, ρ = 1, . . . , P} of the original classical Hamiltonian Hpot({Si}), with an
interaction of a combined kinetic energy between them [20]. Si,ρ denotes the ith spin of the ρth replica (or Si of ρ). Generally,
the bigger the value of P , the more the memory and computation needed [16]. In this paper we set P = 10 for all instances
considered in Section 3. This is in linewith hybrid evolutionary algorithmswhich also use a small population size [10].While
CA maintains a single configuration ω, QA requires a series of configurations ω1, ω2, . . . , ωP or {ωρ}. The slight difference
between (1) and the equivalent expression given in [20] is that we have added an extra term for the sum of products of
spins involving the first and the last replica. This creates a symmetry inwhich every replica directly interactswith the replica
behind and the one in front, with the connections between them resembling a cyclical structure. It will be seen in Section 2.3
that this allows for easier reasoning for efficient computations involving changes in H . We verified by limited experiments
with the more theoretically accurate Hamiltonian given in [20] that our extra term did not result in any noticeable negative
impact on QA. For convenience we will sometimes denote {ωρ} by ϖ . Since H in (1) depends on ϖ , it will be expressed as
H(ϖ) when this dependence needs to be emphasized. In Section 2.2, an algorithm is given which uses H at an effective
quantum temperature Tq = PT in a Monte Carlo simulation. The temperature at which each replica is simulated is given by
T , and this is fixed throughout the annealing schedule. The term JΓ is the coupling among the replicas given from [20] as:

JΓ = −
T
2
ln tanh


Γ

PT


> 0 (2)

where Γ is the tunneling field strength which is initially set to a high value and then slowly lowered at each Monte Carlo
Step. JΓ evolves inversely to Γ , so that as the strength of the quantum fluctuations decrease, the coupling term increases,
causing the replicas to become more alike.

Now that the kinetic energy is given as theΓ dependent term in (1), it is easier to determinewhatmakes a good choice of
Ising model representation for the k-coloring problem. From (1), it can be observed that each of the P replicas possesses its
own set of spin variables. The replicas interact with each other tomake up the kinetic energy of the system. By attempting to
minimizeH , the system is guided by a complex interaction between all replicas which produce an effect very different from
simply runningmultiple copies of CA in parallel. Evolutionary algorithms are awell known approach also consisting of a pop-
ulation of individuals with interactions between them. The current best graph coloring algorithms pursue a hybrid approach
with an evolutionary component and a local search one [10–13]. The idea that PIMC-QA can exhibit pseudo-evolutionary
behavior has been pointed out by some QA researchers. For instance, Battaglia et al. [20] noted that ‘‘The P replicas can be
seen as a population of individuals, the spin configuration of each replica as its genotype and the classical Hamiltonian as
a fitness function’’. Since hybrid evolutionary algorithms for graph coloring have been around for at least a decade now,
it is instructive to consider what domain-specific knowledge has been gathered that can help in making the best choice
for representing a coloring configuration in terms of Boolean variables. Hybrid evolutionary algorithms commonly involve
the maintenance of a population from which two or more individuals are repeatedly selected and passed on to a special-
ized crossover operator to produce an offspring. The offspring is then improved by a local search procedure, (usually Tabu
[7,9]) and put back into the population by a replacement rule. The specialized crossover operator is designedwith the aim of
transmitting large color classes that are possessed by the parents, onto their offspring [12,13]. The authors of [10] noted that
conventional genetic algorithm crossovers did not workwell especially because of the redundancy of color naming inherent
in these approaches which interfered with the transmission of useful properties from individuals to offspring. It is for this
same reason that the absolute color mapping is a poor choice. The domain-specific knowledge for graph coloring which has
been acquired after several years of research on hybrid evolutionary algorithms for graph coloring is that individuals in the
population need to transmit color class information, rather than the absolute colors that have been assigned to vertices.

It would be advantageous if spin variables could be defined such that they take this principle into consideration.
Fortunately this can be done. In order to represent the k-coloring problem as an Isingmodel, we define {Si} such that Si = +1
if a pair of vertices denoted by i := ⟨u, v⟩ currently consists of differently colored vertices, that is col(u) ≠ col(v), otherwise
Si = −1. The vertices in each pair need not be adjacent and each unique pair in the graph is mapped to a separate spin
variable. More precisely, if E ′ is the set of edges in G′ (the complement of graph G), then each i ∈ E ∪ E ′ is associated with
a variable Si. Therefore the total number of spin variables for any graph is given by (|V |(|V | − 1))/2. To emphasize that i
refers to a pair ⟨u, v⟩, we sometimes write Si,ρ := S⟨u,v⟩,ρ . This notation will be useful in Section 2.3.2, where we provide fast
schemes for computing changes in H . The set of spin variables in each replica encompasses information about how vertices
are being grouped into color classes relative to each other, without regard to the actual color given to the vertices. We term
this choice a relative color mapping. The Γ -dependent kinetic energy term is a sum of products of spins which quantifies
how similar the replica colorings are to each other. By incorporating this into the Hamiltonian to be minimized in PIMC-QA,
replicas are able to implicitly transmit coloring information to each other.
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2.2. The CA-col and QA-col algorithms for finding k-colorings

Algorithm 1 is an outline of CA-col. This algorithm is for the most part equivalent to an algorithm in [6].

Algorithm 1. CA-col: Graph coloring with CA
1: Input: Graph G, number of colors k, T0 and MaxSteps
2: Output: Best coloring configuration found
3: Initialize a random configuration ω for graph G, T = T0
4: repeat
5: repeat
6: Randomly select vertex v from the list of all vertices involved in conflicts
7: Move v to a new randomly selected color class to derive ω′

8: 1Hpot = Hpot(ω
′) − Hpot(ω)

9: if 1Hpot < 0 then
10: ω = ω′

11: else
12: With probability exp(−1Hpot/T ), set ω = ω′

13: until iterations = M.N
14: T = T − (T0/MaxSteps)
15: until termination condition.

Algorithm 2. QA-col: Graph coloring with QA
1: Input: Graph G, number of colors k, the number of replicas P , T0, Γ0 and MaxSteps
2: Output: Best coloring configuration found
3: Initialize T = T0, Γ = Γ0 and a set of P random coloring configurations {ωρ} := ϖ
4: repeat
5: randomly shuffle the order of replicas
6: for r = 1, . . . , P do
7: select replica ρ in position r
8: repeat
9: Randomly select vertex v from the list of vertices involved in conflicts in ωρ

10: Only in ωρ , move v to a new randomly selected color class, to derive ω′
ρ and hence ϖ ′

11: 1Hpot = Hpot(ω
′
ρ) − Hpot(ωρ)

12: 1H = H(ϖ ′) − H(ϖ)
13: if 1Hpot < 0 or 1H < 0 then
14: ϖ = ϖ ′

15: else
16: With probability exp(−1H/T ), set ϖ = ϖ ′

17: until iterations = M.N
18: end for
19: Γ = Γ − (Γ0/MaxSteps)
20: until termination condition.

It was one of the earliest stochastic algorithms for graph coloring, and was considered successful in its time. It has since
been surpassed by others, especially the hybrid evolutionary algorithms [10–13].

The outermost loop is controlled by the Temperature parameter T . We chose a linear annealing schedule consisting of the
initial temperature T0 and a maximum number of Monte Carlo steps (MaxSteps). The average neighborhood size can be
estimated by N = |V |.k as in [6]. Each Monte Carlo step for CA-col consists of a loop starting on line 5. WhereM is a tunable
multiplier, M.N moves are attempted at each step after which the control parameter is decreased. Algorithm 2 (QA-col) is
structurally similar to Algorithm 1, with a crucial difference of the presence of an additional loop for the replicas. Line 5
in Algorithm 2 requires some explanation. The replicas are always connected to each other in numerical order in the same
way throughout the search for the purpose of spin products. For example, replica 3 is only ever connected to 2 and 4. The
random shuffling specified is meant to only change the order in which replicas are selected for search. We found that this
promotes diversity in the population of configurations. On line 13 of QA-col, in addition to checking if 1H is less than
zero, we check if the conflicts in the current replica are reduced. This ensures that such opportunities are never missed.
QA-col continues tomake the next Monte Carlo Step each time line 19 is reached until the termination condition is satisfied.
The tunable multiplier to the average neighborhood size was fixed at M = 4 for both CA-col and QA-col for all problem
instances considered in the paper. The algorithms were made to terminate when a configuration without any conflicts was
found, when a given time limit was reached, or whenMaxStepswas exhausted, whichever occurred first.
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2.3. Efficient techniques and data-structures for computationally expensive portions of CA-col and QA-col

We now present procedures for the fast computation of energy changes in both algorithms.

2.3.1. Efficient computation of changes in potential energy
The most visited point in the execution of CA-col is the calculation of 1Hpot , which is the change in the number of

conflicts that would occur if a chosen vertex v were to change its color. 1Hpot is also a critical aspect of QA-col. From the
notation of Section 2, we can write 1Hpot = C(ω′) − C(ω). The vertices adjacent to v (which we denote by Adj(v)) present
the possibility of causing changes to the number of conflicts. Specifically, only the vertices in Adj(v) which possess either
the old or (the proposed) new color of v influence 1Hpot . If Vα and Vβ are the old and new color classes respectively, then
1Hpot = |Adj(v)∩Vβ |− |Adj(v)∩Vα|. This is because the conflicts with adjacent vertices having color α would be resolved
and new conflicts would be created with adjacent vertices having color β . Therefore 1Hpot can be computed by initializing
it to zero, iterating through Adj(v) while incrementing 1Hpot by one for each u ∈ Adj(v) ∩ Vβ , and decrementing it by one
for each u ∈ Adj(v) ∩ Vα . This procedure yields a complexity of O(|Adj(v)|). This idea was mentioned in [7] for checking the
quality of a move in the Tabucol algorithm, after which a much more efficient method was presented. Tabucol is a graph
coloring algorithm which uses the Tabu local search technique, and checking the quality of a move in Tabucol happens to
be equivalent to determining 1Hpot . We proceed to describe our version of the faster method from [7]. If a color frequency
array F of dimensions V × k is defined and maintained such that F(v, θ) = |Adj(v) ∩ Vθ | for vertex v and color θ , then
1Hpot = F(v, β) − F(v, α) can now be evaluated in constant time or O(1). The array F is initialized at the beginning of
the algorithm, and only needs to be updated any time a move is actually accepted. Updating F can be done in O(|Adj(v)|) by
taking each vertex u ∈ Adj(v), incrementing F(u, β) by one and decrementing F(u, α) by one. Since a lot more moves are
usually attempted than accepted (as is evident in Section 3), this strategy is very efficient.

2.3.2. Efficient computation of changes in H in QA-col
To compute the 1H in QA-col efficiently, (1) is first re-written as H = PEterm − KEterm such that PEterm refers

to the expression involving the potential energy and KEterm is the Γ dependent expression. It then follows that 1H =

1PEterm − 1KEterm. Also, whenever 1H is being calculated, the move being attempted is always for the current replica
only. Because the conflicts in all other replicas remain the same before and after the move, they cancel out in the calculation
of 1PEterm, leaving only the change in conflicts in the current replica. Therefore 1PEterm =

1
P 1Hpot and can therefore be

determined as efficiently as in CA-col.
1KEterm is much more difficult to compute efficiently than 1PEterm. The first idea that needs to be recognized is that

only the replicas directly next to the currently executing one can influence 1KEterm. Every replica ρ is involved in products
of spins with only two others which we label b and f . Furthermore, only the products of spins involving vertices in Vα and
Vβ (the old and new color classes) of the current replica ρ can change whenever a move is made in ρ. These considerations
mean that 1KEterm can be computed in O(|Vα| + |Vβ |). This can be achieved by defining I_KEterm as an integer such that
KEterm = JΓ I_KEterm, and then initializing 1I_KEterm to zero. From Section 2.1, S⟨u,v⟩,ρ is +1 if col(u) ≠ col(v) in replica
ρ, and −1 otherwise. Therefore, any time an attempt is made in ρ to change the color of v from α to β , then for each
u ∈ Vα − {v}, we increment 1I_KEterm by δ := 2(S⟨u,v⟩,b + S⟨u,v⟩,f ). Also, for each u ∈ Vβ we decrement 1I_KEterm by
δ. After these operations, 1I_KEterm contains the correct value from which 1KEterm can be calculated by multiplying JΓ .
The expression for δ was obtained by noting that if v moves from Vα to Vβ , then for all u ∈ Vα − {v}, the spin S⟨u,v⟩,ρ will
change from −1 to +1. The old spin products need to be replaced with the new ones. Therefore the expression to be added
to 1I_KEterm for each u is (+1)S⟨u,v⟩,b − (−1)S⟨u,v⟩,b + (+1)S⟨u,v⟩,f − (−1)S⟨u,v⟩,f , which simplifies to the δ given. A similar
reasoning for all u ∈ Vβ leads to the fact that the same δ should be subtracted from 1I_KEterm for each u.

I_KEterm can also be used as a measure of replica similarity for monitoring the progress of the search. We define
MaxI_KEterm as the maximum value of I_KEterm. This maximum occurs when the configurations in all P replicas are
identical, which is also when the set of spin variables in all replicas are identical. Therefore for a current configuration
{ωρ} in QA-col, replica similarity is defined as I_KEterm/MaxI_KEterm.

The data structure holding all color classes of a particular replica is a list of disjoint sets of vertices. Because all possible
contents of color classes have to be in the set of all vertices V , the addition, removal, membership checking and random
access operations of a color class can be performed in O(1). The constant time random access is particularly important
in ensuring fast iteration over the color classes. Keeping an array representation of the coloring where the element A(v)
contains the value of col(v), is also useful for storing configurations in a compact manner and for quickly checking the color
of a vertex. The spins themselves should definitely not be stored in any data structure, as this is not needed.

If QA-col is given an instance with |V | = 1000 and k = 222 to solve, then the average color class size will be |V |/k or in
this case, about 5, thus making the time complexity of evaluating 1KEterm particularly favorable. This typically happens
with dense graphs, as they usually need a large number of colors. However, if we consider the other extreme with an
instance involving a sparse graph with |V | = 1000 and k = 20, this results in a large average color class size of about
50. As the number of calculations of 1H could potentially run into billions, iterating over two color classes of average
size 50 each time can result in a considerable slowdown. Fortunately, a further improvement can be made. The expression
1H = 1PEterm − 1KEterm is to be used to evaluate the value of exp(−1H/T ) for comparison with a random number



O. Titiloye, A. Crispin / Discrete Optimization 8 (2011) 376–384 381

r ∈ [0, 1) to decidemove acceptance. Smaller values of1H increase the chance that amovewill be accepted. Themaximum
value that 1I_KEterm can have in the current configuration when changing the color of v from α to β is 4(|Vα| + |Vβ | − 1),
and therefore computable in constant time. This expression which we denote by UB1I_KEterm is an upper bound which
has been derived by following the procedure given earlier in this section for calculating 1I_KEterm, while setting spins such
that a maximum value is obtained. For a given 1PEterm and a given random number r , if UB1I_KEterm is used in place of
1I_KEterm to calculate 1H and a proposed move is rejected, then that move would still have been rejected had the actual
value of 1I_KEterm been used. If however the move is accepted, we can then calculate the actual 1I_KEterm and derive
the true 1H . The move can then be finally accepted or rejected based on the same r . This means that an initial ‘‘quick
evaluation’’ based on UB1I_KEterm is able to filter out many attempted moves for rejection. Usually as much as 70%–99% of
attempted moves can be eliminated this way depending on the instance. On average, this leads to a speed increase of about
100% or more in the overall algorithm, with instances involving the sparser graphs being the biggest beneficiaries. It must
be stressed that the use of UB1I_KEterm does not lead to approximations. Except for the difference in speed, the behavior
of QA-col is the same with or without it.

Another important issue impacting on the efficiency of QA-col is the repeated calculation of the expensive exponential
function exp. We tackle this situation by first expressing exp(−1H/T ) as exp(1KEterm/T )/ exp(1PEterm/T ). Because T
always remains constant in QA-col, we can pre-compute all possible values of exp(1PEterm/T ) by noting that if vmax is a
vertex with maximum degree, then 1Hpot can only ever take on integer values ranging from −|Adj(vmax)| to +|Adj(vmax)|.
Therefore an array of size 2|Adj(vmax)| + 1 is sufficient to hold a look-up table for all possible values of exp(1PEterm/T ).
A similar idea for pre-computing values of exp(1KEterm/T ) can be derived by noting the maximum and minimum values
of1I_KEterm from anymove in any configuration. By substituting into UB1I_KEterm, |Vα| = |V | and |Vβ | = 0 we derive the
fact that all possible values of 1I_KEterm are integers ranging from −4(|V | − 1) to +4(|V | − 1), and the size of the array
needed for the look-up table is 8(|V | − 1) + 1. Because the values of exp(1KEterm/T ) involve Γ , this second look-up table
has to be re-calculated every time Γ is decremented. This turns out to be relatively inexpensive as the size of the look-up
table is small compared to the number of moves attempted during each cycle. On average, a further 40% speed increase is
realized in the overall QA-col algorithm when look-up tables are used for the potential and kinetic energy terms.

3. Experimental results

Both algorithms were implemented in MinGW C++ and run on a PC with a 3 GHz Intel processor and 3 GB of RAM with
Windows XP. In order tomeasure their performances, we chose well known benchmarks from the second DIMACS competi-
tion [25]. Leighton graphs are namedwith the format leX_χY , where X is the number of vertices, χ is the chromatic number
and Y distinguishes between different graphs. Random graphs dsjcX .Y have X vertices, and each possible edge is connected
with a probability of Y/10. Also included are two types of geometric random graphs with names of the form dsjrX .Y and
rX .Y where X is the number of vertices and Y is a construction parameter. A ‘‘c ’’ is added as a suffix when the complement
of a graph is meant. Flat graphs have a name of the form flat X_χ_0. Once again X is the number of vertices and χ is the
chromatic number. The ‘‘0’’ at the end refers to the fact that all vertices are incident to the same number of vertices. Finally
there is a Latin square graph named latin_sqr_10. Graphs from DIMACS [25] have been used extensively in the literature
for testing many GCP algorithms [10–13,26–29]. We chose the first basis of comparison between the QA-col and CA-col
algorithms to be the relative speed. To estimate this, we recorded the average number of attempted moves (att-moves), the
average number of moves, and the average time that each algorithm needed to find a solution. The second basis estimated
robustness by noting the number of successful runs. The quality of colorings or lowest k reached was the third and final one.
The lowest k reached is also our criterion for comparing QA-col to other algorithms in the literature. This is customary due
to the widely varying experimental conditions.

The first three columns in both Tables 1 and 2 are for the names of the graphs and the best coloring found by any algorithm
in the literature (k∗), the number of colors used by our algorithm, and the initial temperature, respectively. The rest of the
columns are forMaxsteps, the average number of attemptedmoves, average number of moves, average time in seconds, and
the frequency of success out of 10 runs. Each run used a different seed for the random number generator. For Table 2 only,
there are also columns forΓ0 and percentage of attemptedmoveswith a quick evaluation hit (QE from Section 2.3.2). The pa-
rameters that needed to be set for each problem instance were T0 andMaxSteps in CA-col, and Tq, Γ0 andMaxSteps in QA-col.
For a first application of QA to graph coloring, we decided to hand-tune the parameters. This allowed us to explore the rela-
tionship between the parameters for awide variety of graphs. For all theDIMACS instanceswe tested, good choices for Tq and
Γ0 were found in the ranges Tq ∈ (0, 1] and Γ0 ∈ (0, 3Tq] respectively. This assumes that we can always setMaxSteps to be
large enough. Because the graphs used in our tests havewidely varying structures, we conjecture that the optimal ranges for
any arbitrary graph are very close to those we have derived empirically. Nevertheless, even if a k-coloring exists and QA-col
is capable of finding it, simply choosing just any values within these ranges can cause a failure. Therefore extra information
is needed in order to narrow down these intervals for particular instances. Ideally wewant to operate withmove acceptance
ratios that are as low as possible, as this helps the efficiency of QA-col as seen from Section 2.3. It was observed that Tq was
the major determinant of the initial acceptance ratio, and that the higher the edge density of the graph was, the smaller the
optimal values of T q and initial acceptance ratio needed to be. Initial acceptance ratios ranged from about 0.5%–10% on the
instanceswe tested.Γ0 is responsible for controlling replica similarity as described in Section 2.3.2, and larger values ofΓ0 are
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Table 1
Results for CA-col with a 5 h time limit.

Graph (k∗) k T0 MaxSteps Att-moves Moves T (s) Success

dsjc250.5 (28) 28 0.35 1.0 × 105 5.0 × 108 1.6 × 107 45 7/10
dsjc500.1 (12) 12 0.45 1.0 × 107 4.8 × 109 4.1 × 108 489 10/10
dsjc500.5 (48) 49 0.35 1.0 × 106 2.1 × 1010 3.8 × 108 2117 8/10

48 0.35 1.0 × 106 – – – 0/10
dsjc500.9 (126) 127 0.2 1.0 × 106 2.4 × 1010 2.6 × 108 2330 10/10

126 0.2 1.0 × 107 – – – 0/10
le450_15c (15) 15 0.6 1.0 × 106 6.3 × 108 6.3 × 107 73 10/10
le450_15d (15) 15 0.6 1.0 × 106 3.7 × 108 4.2 × 107 41 4/10
flat300_28_0 (28) 31 0.35 1.0 × 106 3.9 × 109 1.1 × 108 375 10/10

Table 2
Results for QA-col with a 5 h time limit.

Graph (k∗) k Tq Γ0 MaxSteps Att-moves Moves QE (%) T (s) Success

dsjc250.5 (28) 28 0.35 0.75 1.0 × 104 6.1 × 107 2.1 × 106 95 8 10/10
dsjc500.1 (12) 12 0.45 1.3 1.0 × 106 4.5 × 108 3.8 × 107 88 82 10/10
dsjc500.5 (48) 49 0.35 0.65 1.0 × 105 4.3 × 108 9.3 × 106 96 63 10/10

48 0.35 0.75 1.0 × 105 3.4 × 109 7.0 × 107 97 494 10/10
dsjc500.9 (126) 127 0.2 0.35 1.0 × 105 7.9 × 108 8.8 × 106 99 103 10/10

126 0.2 0.38 1.0 × 106 9.9 × 109 1.1 × 108 99 1198 10/10
dsjc1000.1 (20) 20 0.44 1.1 1.0 × 106 9.1 × 109 3.8 × 108 85 1951 9/10
dsjc1000.5 (83) 84 0.36 0.68 2.0 × 107 1.8 × 1010 2.8 × 108 97 2842 10/10

83 0.36 0.72 5.0 × 107 8.2 × 1010 1.0 × 109 98 12,773 9/10
dsjc1000.9 (223) 223 0.23 0.38 1.0 × 108 2.6 × 1010 2.2 × 108 99 4100 8/10

222 0.19 0.375 2.0 × 109 1.1 × 1011 5.6 × 108 99 13,740 2/10
le450_15c (15) 15 0.6 1.6 1.0 × 105 1.9 × 107 1.9 × 106 83 4 10/10
le450_15d (15) 15 0.6 1.8 1.0 × 105 1.5 × 108 1.3 × 107 86 26 10/10
le450_25c (25) 26 0.3 0.48 1.0 × 105 5.5 × 107 2.2 × 106 74 9 10/10

25 0.3 0.58 2.0 × 109 3.7 × 1010 1.6 × 109 86 5592 2/10
le450_25d (25) 26 0.3 0.48 1.0 × 105 8.7 × 107 2.8 × 106 74 13 10/10

25 0.3 0.59 1.0 × 107 6.7 × 1010 3.2 × 109 87 10,069 1/10
flat300_28_0 (28) 31 0.35 0.75 1.0 × 105 1.5 × 108 4.7 × 106 95 19 10/10
flat1000_76_0 (82) 83 0.36 0.67 5.0 × 107 1.4 × 1010 1.9 × 108 97 2250 10/10

82 0.36 0.71 5.0 × 107 6.4 × 1010 7.9 × 108 97 9802 7/10
r1000.5 (234) 239 0.11 0.07 1.0 × 105 2.3 × 1010 5.7 × 108 85 5879 10/10

238 0.11 0.07 1.0 × 108 3.7 × 1010 8.9 × 108 86 9511 3/10
dsjr500.5 (122) 123 0.14 0.1 1.0 × 108 2.4 × 109 8.1 × 107 78 483 10/10

122 0.15 0.1 1.0 × 108 1.8 × 109 5.6 × 107 73 370 2/10
dsjr500.1c (85) 85 0.25 0.55 1.0 × 106 3.4 × 109 6.1 × 107 97 525 10/10
r250.5 (65) 65 0.1 0.1 1.0 × 106 1.1 × 109 5.8 × 107 92 168 9/10
r1000.1c (98) 98 0.5 1.5 1.0 × 106 1.6 × 109 1.8 × 107 98 287 10/10
latin_sqr_10 (98) 98 0.45 0.9 1.0 × 107 9.0 × 109 9.9 × 107 98 1449 10/10

Colorings and log files from QA-col experiments are available at http://sites.google.com/site/olawaletitiloye/graphcoloring/qacol.

usually necessary for lower values of k for the same graph. A goodΓ0 for k can be incremented slightly and reused for k−1 as
Table 2 shows. Thismeans that quicker tuning can be performed by first looking for Tq andΓ0 that solve larger values of k.We
were also able to confirm the observation in [16] that a good value of Tq in QAwas usually suitable for T0 in CA and vice-versa.

In successful runs of either algorithm, only a fraction of MaxSteps usually gets used up before a solution is found. It is
set to be very large for some difficult instances to create a slow annealing schedule. We also set MaxSteps in QA-col to be
smaller than in CA-col by a factor of P = 10 to compensate for the difference in the rate of decrease of control parameters.
Each run used a different seed of the pseudo-random number generator and if a solution was not found within 5 h then
that particular run was terminated. By comparing Tables 1 and 2, it can be seen that for all solved instances, CA-col required
more moves and more time in order to find a solution.

For graphs dsjc500.5 and dsjc500.9, CA-col failed to match QA-col in finding the best known results of 48 and 126
respectively. We checked that varying the parameters does not improve the quality of colorings that CA-col can obtain on
these graphs. The results from CA-col were to be expected as one of the algorithms tested extensively in [6] was very similar
and mainly differed in the annealing schedule used. The results obtained in [6] were comparable to that of CA-col as can be
seen from Table 3. The algorithm in [26] is a variant of CA combined with some other heuristics. Its results are also listed in
Table 3. After it was clear that QA-col was superior to CA-col on seven graphs, we decided to concentrate on testing QA-col
alone on the other more difficult instances. The high values in the column for QE show how useful the quick evaluation is
in preventing many attempted moves from being evaluated in the more expensive way. In Table 3, we compare QA-COL to
nine of the most important algorithms in the literature, some of which are very recent. The 19 graphs considered include

http://sites.google.com/site/olawaletitiloye/graphcoloring/qacol
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Table 3
Comparison between QA-col and some other algorithms.

Graph (k∗) QA CA [6] [26] [10] [27] [28] [11] [29] [12] [13]
-col -col 1991 1996 1999 2000 2008 2008 2008 2010 2010

dsjc250.5 (28) 28 28 29 28 28 28 28 28 – 28 28
dsjc500.1 (12) 12 12 13 12 – 12 12 12 12 12 12
dsjc500.5 (48) 48 49 49 49 48 49 48 48 48 48 48
dsjc500.9 (126) 126 127 128 126 – 127 126 127 126 126 126
dsjc1000.1 (20) 20 – 21 21 20 21 20 20 20 20 20
dsjc1000.5 (83) 83 – 86 88 83 88 84 83 89 83 83
dsjc1000.9 (223) 222 – 226 226 224 228 224 224 225 223 223
le450_15c (15) 15 15 – 15 15 15 15 15 15 15 15
le450_15d (15) 15 15 – 15 – 15 15 15 15 15 15
le450_25c (25) 25 – – 25 26 26 26 25 25 25 25
le450_25d (25) 25 – – 25 – 26 26 25 25 25 25
flat300_28_0 (28) 31 31 – 31 31 31 31 31 28 29 29
flat1000_76_0 (82) 82 – – 89 83 87 84 82 87 82 82
r1000.5 (234) 238 – – 241 – 237 – 234 247 245 237
dsjr500.5 (122) 122 – 124 123 – 122 125 122 125 122 122
dsjr500.1c (85) 85 – 85 85 – 85 86 85 85 85 85
r250.5 (65) 65 – – 65 – 65 – 65 66 65 65
r1000.1c (98) 98 – – – – 98 – 98 98 98 98
latin_sqr_10 (98) 98 – – 98 – 99 104 101 – 99 98

some of themost difficult graphs from the DIMACS benchmarks. QA-col was able to obtain the best results ever found for all
but two graphs. Moreover, we reach 222-colorings for the graph dsjc1000.9. This result had not previously been reported
by any other algorithm in the literature.

4. Discussion

In addition to its pseudo-evolutionary behavior explained in Section 2.1, PIMC-QA does approximate a quantum-
mechanical system. This means that another valid reason for QA-col’s better performance over CA-col is the tunneling
of QA through barriers, rather than having to thermally overcome them. This phenomenon has been known to guide QA
into parts of the search space that would not usually be explored by CA [16,17]. Nevertheless PIMC-QA like any other
population-based heuristic will be ineffective without an appropriate neighborhood function and a suitable definition of
the interaction between individuals. Therefore, reasons for the effectiveness of QA-col naturally share a common ground
with those of the powerful hybrid-evolutionary graph coloring algorithms recently described in [12,13] named MACOL and
Evo-Div, respectively. In both of these, neighboring coloring configurations are obtained the same way as in QA-col, and
the interaction between the individuals is also based on the principle from [10] of transmitting color class information.
MACOL and Evo-Div both use Tabu as the underlying local search, and a way has been found to fix its parameters and still
obtain acceptable performance for a wide variety of graphs. Therefore, standard versions of these algorithms which do not
require any further tuning by the user are available. In this respect, MACOL and Evo-Div are superior to QA-col. It is likely
that a future version of QA-col will include a procedure for automatically deriving good initial parameters by inspecting the
invariants of the graphs such as edge density and average degree, and adaptively tuning the parameters during the search
process if necessary. The results of the hand-tuning of QA-col suggest a strong link between graph invariants and the optimal
parameters.

MACOL and Evo-Div define their own different multi-parent crossovers to improve on [10]. Also, each of them uses
the standard set-theoretic partition distance information in their own way to encourage diversity in the population of
individuals. The tunneling strength Γ controls diversity in QA-col but a future version is also likely to feature extra
diversity measures based on the standard partition distance found in [12,13]. There is empirical evidence that the dynamics
produced by all three algorithms MACOL, Evo-Div and QA-col are different. This follows from the fact that each algorithm
finds particular graphs difficult which another finds easy. Comparisons between the three algorithms are facilitated by a
common 5 hour time limit for most instances, and the usage of similar hardware. MACOL is the most effective of the three
for flat300_28_0, reaching 29-colorings relatively easily. QA-col and the standard Evo-Div only reach 31-colorings, but a
specially tuned Evo-Div can reach 29-colorings. QA-col has difficulties in consistently coloring Leighton graphs le450_25c
and le450_25d optimally while this problem does not occur with MACOL and Evo-Div. QA-col performs better than MACOL
on r1000.5, but Evo-Div is more effective than QA-col. Only QA-col reaches 222-colorings for dsjc1000.9, while MACOL
reaches 223-colorings more easily than Evo-Div. Finally in the case of the latin_sq_10, MACOL only finds 99-colorings while
the standard version of Evo-Div only reaches 100-colorings, but is able to reach 98-coloringswhen specially tuned and given
7.5 hours. In contrast QA-col takes an average of 30min to find 98-coloringswith a 100% success rate. Evo-div and QA-col are
the only algorithms that replicate the 98-colorings first reported in [26]. When the overall results in Table 3 are considered,
QA-col compares favorably with the best algorithms.
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5. Conclusion

We have described QA-col, a first graph coloring algorithm based on PIMC-QA which is a population-based extension to
simulated annealing inspired by quantummechanics. With the aid of domain-specific knowledge, a meaningful interaction
between individual replicas was defined in the form of a kinetic energy. QA-col is able to outperform classical simulated
annealing and even find colorings of comparable quality to the best algorithms for many DIMACS graphs. QA is very likely
to have a wider applicability to other combinatorial optimization problems and this paper shows that this could be a worth-
while investigation.
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