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A B S T R A C T

Biased estimators can outperform unbiased ones in terms of the mean square error (MSE). The best linear
unbiased estimator (BLUE) fulfills the so called global conditional unbiased constraint when treated in the
Bayesian framework. Recently, the component-wise conditionally unbiased linear minimum mean square error
(CWCU LMMSE) estimator has been introduced. This estimator preserves a quite strong (namely the CWCU)
unbiased condition which in effect sufficiently represents the intuitive view of unbiasedness. Generally, it is
global conditionally biased and outperforms the BLUE in a Bayesian MSE sense. In this work we briefly
recapitulate CWCU LMMSE estimation under linear model assumptions, and additionally derive the CWCU
LMMSE estimator under the (only) assumption of jointly Gaussian parameters and measurements. The main
intent of this work, however, is the extension of the theory of CWCU estimation to CWCU widely linear
estimators. We derive the CWCU WLMMSE estimator for different model assumptions and address the
analytical relationships between CWCU WLMMSE and WLMMSE estimators. The properties of the CWCU
WLMMSE estimator are deduced analytically, and compared by simulation to global conditionally unbiased as
well as WLMMSE counterparts with the help of a parameter estimation example and a data estimation/channel
equalization application.

1. Introduction

Usually, when we talk about unbiased estimation of a parameter
vector x ∈ n out of a measurement vector y ∈ m , then the estimation
problem is treated in the classical framework, where x is treated as
deterministic but unknown [1–4]. Letting x g y= ( ) be an estimator of x,
then the classical unbiased constraint asserts that

∫E px g y y x y x x[ ] = ( ) ( ; )d = for all possible ,y (1)

where p y x( ; ) is the probability density function (PDF) of vector y
parameterized by the unknown parameter vector x. The index of the
expectation operator shall indicate the PDF over which the averaging is
performed. In the Bayesian approach on the other hand x is treated as a
random vector. The Bayesian unbiased constraint is

∬E px x g y x x y x y 0[ − ] = ( ( )− ) ( , )d d = ,y x, (2)

where the integration is performed over the joint PDF of x and y.
Compared to the classical unbiased constraint in (1), (2) is a much
softer requirement, which will be particularly discussed in Section 6.
However, Bayesian estimators in general allow to incorporate prior
knowledge about the statistics of x.

Eq. (1) can also be formulated in the Bayesian framework. Here, the
corresponding problem arises by demanding global conditional un-
biasedness, i.e.

∫E px x g y y x y x x[ | ] = ( ) ( | )d = for all possible .y x| (3)

The attribute global indicates that the condition is made on the whole
parameter vector x. However, the constricting requirement in (3)
prevents the exploitation of prior knowledge about the parameters,
and hence leads to a significant reduction in the benefits brought about
by the Bayesian framework.

In component-wise conditionally unbiased (CWCU) Bayesian para-
meter estimation [5–10], instead of constraining the estimator to be
globally unbiased, we aim for achieving conditional unbiasedness on
one parameter component at a time. Let xi be the ith element of x, and
x g y= ( )i i be an estimator of xi. Then the CWCU constraints are

∫E x x g p x xy y y[ | ] = ( ) ( | )d = ,x i i i i iy| i (4)

for all possible xi (and all i n= 1, 2, …, ). The CWCU constraints are
less stringent than the global conditional unbiased condition in (3), and
it will turn out that a CWCU estimator in many cases allows the
incorporation of prior knowledge about the statistical properties of the
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parameter vector. In the following we denote the linear estimator
fulfilling the CWCU constraints and minimizing the Bayesian mean
square error (BMSE) the CWCU linear minimum mean square error
(CWCU LMMSE) estimator. The CWCU LMMSE estimator cannot
outperform the LMMSE estimator in a BMSE sense since it minimizes
the BMSE under the additional constraints in (4), while the LMMSE
estimator's only restriction is the linearity constraint. However, the
CWCU estimators feature their inherent conditional unbiased property,
which is visualized for a particular example in Fig. 1 (taken from [10]).
In this example channel distorted and noisy received quadrature
amplitude modulated (QAM) data symbols are estimated by the best
linear unbiased estimator (BLUE), which fulfills (1)–(4), the CWCU
LMMSE estimator which fulfills (2) and (4), and the LMMSE estimator
which only fulfills the weakest constraint (2). Fig. 1 shows the relative
frequencies of the corresponding estimates in the complex plane. The
BLUE and the CWCU LMMSE estimator have their estimates centered
around the true constellation points since these estimators fulfill the
CWCU constraints. Note that in Fig. 1 the BMSE of the CWCU LMMSE
estimator is clearly below the one of the BLUE. The LMMSE estimator
is conditionally biased towards the prior mean which is 0. The CWCU
constraints prevent this bias introduced by the LMMSE estimator,
while still allowing the incorporation of prior knowledge about the data
in this example that reduces the BMSE compared to the BLUE. Hence,
Fig. 1 nicely demonstrates the effects of the CWCU constraints as a
trade-off between classical and Bayesian unbiasedness. For details on
that example we refer the reader to [10]. Although the BMSEs of the
CWCU LMMSE estimator and the LMMSE estimator differ, is has been
shown in [8] that the corresponding log-likelihood ratios (LLRs) and
consequently the bit error ratios (BERs) coincide for this digital
communication example. Possible applications of CWCU estimators
include scenarios where a conditional bias as for the LMMSE estimator
in Fig. 1 is disadvantageous. Another possible scenario where CWCU
estimators may be employed is where they allow for simplifying follow-
up processing steps. Such an example is discussed in Section 5.2 where
the CWCU WLMMSE estimator allows for simplifying the LLR
evaluation compared to the WLMMSE estimator. Examples and
applications of the CWCU LMMSE estimator can also be found in
[5–7].

The theory of the CWCU LMMSE estimator under linear model
assumptions has been discussed in [9,10]. The estimator is of the form
x Ey b= + with appropriate sized matrix E and vector b, and it is
mainly designed for proper measurement vectors. For the definition of
propriety we refer to Section 2 and [11]. We briefly recapitulate these
results on CWCU LMMSE estimation in this paper, and additionally
derive the CWCU LMMSE estimator under the assumption of jointly
Gaussian x and y (with no additional model assumptions). The main
intent of this work, however, is the extension of the theoretical
framework of CWCU linear estimation to CWCU widely linear estima-
tors of the form

x Ey Fy b= + * + , (5)

with E and F as the estimator matrices. In general, when the

measurement vector y turns improper [11], widely linear estimators
are preferable over linear estimators [12]. We anticipate some results
to be derived in this paper: The CWCU widely linear MMSE (CWCU
WLMMSE) estimator always exists under linear model assumptions,
and in the worst case it coincides with the best widely linear unbiased
estimator (BWLUE). An example where the CWCU WLMMSE estima-
tor and the BWLUE coincide is when there is only one parameter to be
estimated. In that case, the CWCU constraints in (4) correspond to (3).
However, in a number of practically interesting situations, the CWCU
WLMMSE estimator is able to outperform the BWLUE. For the
LMMSE estimator and the WLMMSE estimator the particular form
of the joint PDF p x y( , ) does not play a role, the estimators are
unambiguously defined by their first and second order statistics. The
situation is different for CWCU estimators, as will be seen is this work.
We investigate model assumptions that allow to find a linear or widely
linear CWCU estimator that is able to outperform the BLUE or the
BWLUE, respectively. In particular, we will derive the CWCU
WLMMSE estimator under the following prerequisites, namely

a. under the assumption of jointly generalized complex Gaussian x and
y,

b. under the linear model assumption with generalized complex
Gaussian x and zero mean noise with known second order statistics,

c. under the linear model assumption with mutually independent
complex (and otherwise arbitrarily distributed) parameters and zero
mean noise with known second order statistics,

d. under the assumption of real x, complex y, and jointly Gaussian x,
yRe{ }, and yIm{ }, (Re{·} and Im{·} denote the real and imaginary

parts, respectively),
e. under the linear model assumption with real Gaussian x and zero

mean complex noise with known second order statistics, and
f. under the linear model assumption with mutually independent real
(and otherwise arbitrarily distributed) parameters and zero mean
complex noise with known second order statistics.

We also address the analytical relationship between CWCU WLMMSE
and WLMMSE estimators, which is not as straight forward as the
relationship between CWCU LMMSE and LMMSE estimators regarded
in [10].

The rest of the paper is organized as follows: In Section 2 we
recapitulate the mathematical preliminaries required to derive the
linear and particularly the widely linear estimators in this work. In
Section 3 we extend linear CWCU estimation by a certain case not
handled so far in our former papers. Then we turn to widely linear
estimation in Section 4 discussing the derivations of the CWCU
WLMMSE estimator for different prerequisites. Section 5 contains a
parameter estimation example, where the CWCU WLMMSE estimator
is compared in performance to the well-known estimators BLUE,
BWLUE, LMMSE estimator, WLMMSE estimator and to the CWCU
LMMSE estimator. Furthermore, it includes a channel equalization /
data estimation example where the CWCU WLMMSE estimator offers
certain benefits compared to the WLMMSE estimator. Finally, Section

Fig. 1. Visualization of the relative frequencies of the BLUE, the CWCU LMMSE estimator, and the LMMSE estimator, respectively. The black crosses mark the ideal 4-QAM
constellation points.
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6 compares all regarded estimators from an optimization point of view.
Notation:
Lower-case bold face variables (a, b, …) indicate vectors, and upper-

case bold face variables (A, B, …) indicate matrices. We further use 
and  to denote the set of real and complex numbers, respectively, (·)T

to denote transposition and (·)H to denote conjugate transposition, In n×

to denote the identity matrix of size n n× , and 0m n× to denote the zero
matrix of size m n× . If the dimensions are clear from context we simply
write I and 0, respectively. The index R of a vector or matrix denotes its
real part and the index I denotes its imaginary part, e.g., x x= Re{ }R
and x x= Im{ }I . E[·] denotes the expectation operator. In most of the
cases we use an index to denote the averaging PDF, however, if the
averaging PDF is clear from context, the index is sometimes omitted.

2. Preliminaries for widely linear estimators

In this section we recapitulate the preliminaries required to derive
the linear and particularly the widely linear estimators in this work.
This section is more or less a shortened version of the corresponding
parts in [11], where an excellent introduction to improper data and
widely linear processing can be found.

2.1. Linear and widely linear transformations

The complex augmented vector x of a vector jx x x= +R I is
constructed by stacking x on top of its complex conjugate x*, i.e.

x
x
x= * .

⎡
⎣⎢

⎤
⎦⎥ (6)

Augmented vectors are always underlined.
In this work we repeatedly consider widely linear transformations

of the form

y H x H x= + *,1 2 (7)

whose augmented version can easily found to be

y
H H
H H

x
x Hx= * * * = .1 2

2 1

⎡
⎣⎢

⎤
⎦⎥
⎡
⎣⎢

⎤
⎦⎥ (8)

The matrix H is called an augmented matrix, it satisfies a particular
block pattern, where the SE block is the conjugate of the NW block, and
the SW block is the conjugate of the NE block. Obviously, the set of
complex linear transformations y H x= 1 , with H 0=2 , or equivalently

y
H 0
0 H

x
x Hx= * * =1

1

⎡
⎣⎢

⎤
⎦⎥
⎡
⎣⎢

⎤
⎦⎥ (9)

is a subset of the set of widely linear transformations.

2.2. Linear and widely linear estimators

The estimators derived in this work will be compared to well-known
estimators like the BLUE, the BWLUE, the LMMSE and the WLMMSE
estimators. Let x ∈ n be the parameter vector to be estimated and
y ∈ m be the measurement vector, then a widely linear (or actually
affine) estimator takes on the form

x Ey Fy b= + * + . (10)

In general widely linear estimators are superior to their linear counter-
parts as soon as the measurements y turn improper, see [13–24] for
some possible applications of widely linear estimators. In the Sections
on CWCU WLMMSE estimation we introduce

W E F= [ ] (11)

and write (10) usually in the form

x Wy b= + . (12)

Another way to express the estimator is its augmented version

x E F
F E

y
y b Ey b= * * * + = + .

⎡
⎣⎢

⎤
⎦⎥
⎡
⎣⎢

⎤
⎦⎥ (13)

For linear estimators we have F 0= such that x Ey b= + . The LMMSE
estimator minimizing the BMSE cost function E x x[ − ]i ix y,

2 for
i n= 1, 2, …, and fulfilling the Bayesian unbiased constraint in (2) is
given by

E Ex x C C y y= [ ] + ( − [ ]).x xy yy y
−1

(14)

It's widely linear counterpart, the WLMMSE estimator, is most
compactly written in its augmented form [11,12]

E Ex x C C y y= [ ] + ( − [ ]).x xy yy y
−1

(15)

Many technical problems are described by the linear model

y Hx n= + , (16)

where H ∈ m n× is a known observation matrix, x has mean E x[ ]x and
covariance matrix Cxx, and n ∈ m is a zero mean noise vector with
covariance matrix Cnn and independent of x. The augmented version of
(16) is

y Hx n= + , (17)

where H is defined as

H H 0
0 H

= * .
⎡
⎣⎢

⎤
⎦⎥ (18)

If the parameter vector x and the measurement vector y are connected
via the linear model, then the BLUE fulfilling the global unbiased
constraint (1) is [25]

x H C H H C y= ( ) .H H
nn nn
−1 −1 −1 (19)

We notice, that we require m n≥ and H nrank( ) = to ensure the
invertibility of H C H( )H

nn
−1 . The widely linear counterpart, the BWLUE,

can be identified to be [11]

x H C H H C y= ( ) ,H H
nn nn
−1 −1 −1

(20)

and it also fulfills (1). The BLUE and the BWLUE are usually treated in
the classical framework, where x is assumed to be unknown but
deterministic. The BWLUE is only able to outperform the BLUE if
the noise n is improper (c.f. [11]).

2.3. Statistics of complex-valued random vectors

In order to characterize the second-order statistical properties of x
we start by considering the augmented covariance matrix

E E EC x x x x= [( − [ ])( − [ ]) ]H
xx (21)

C C

C C
C= * *

= ∈ ,
∼

∼
H n nxx xx

xx xx
xx

2 ×2
⎡

⎣
⎢⎢

⎤

⎦
⎥⎥ 

(22)

with E E EC x x x x= [( − [ ])( − [ ]) ]H
xx x x x as the (Hermitian and positive

semi-definite) covariance matrix and E E EC x x x x= [( − [ ])( − [ ]) ]∼ T
xx x x x as

the complementary covariance matrix. The relationships between Cxx
and C∼xx with the covariance matrices Cx xR R

, Cx xI I
and the cross

covariance matrix Cx xR I
are given by

jC C C C C C= + + ( − ) =T H
xx x x x x x x x x xxR R I I R I R I (23)

and

jC C C C C C= − + ( + ) = ,∼ ∼T T
xx x x x x x x x x xxR R I I R I R I (24)

respectively. C∼xx is sometimes also referred to as pseudo-covariance

matrix or conjugate covariance matrix. If C 0=∼
xx , then the vector x is
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called proper, otherwise improper [26–31]. Consequently, a scalar
random variable is proper if the real and imaginary parts are
uncorrelated and have equal variances.

It is easy to see that propriety is preserved by strictly linear
transformations, which are represented by block-diagonal augmented
matrices.

2.4. Gaussian random vectors

To simplify notation we regard zero mean vectors in this subsection.
The PDF of complex x can be written as

{ }p
π

x
C

x C x( ) = 1
det

exp − 1
2

,n
H

xx
xx
−1

(25)

cf. [33,34]. This PDF depends algebraically on x, i.e., x and x*, and can
be used for proper and improper x. In this work we call a complex
vector x following this distribution generalized complex Gaussian. The
simplification that occurs when C 0=∼

xx is obvious and leads to the PDF
of a complex proper Gaussian random vector x:

p
π

x
C

x C x( ) = 1
det

exp{− }.n
H

xx
xx
−1

(26)

For a scalar Gaussian random variable properness means that the
equipotential lines of its PDF plotted in the complex plane are circles. If
the equipotential lines are elliptical, then the scalar Gaussian random
variable is improper.

3. CWCU LMMSE estimation

We assume a vector parameter x ∈ n is to be estimated based on a
measurement vector y ∈ m . In the following we derive the CWCU
LMMSE estimator for jointly complex proper Gaussian x and y, while
no further assumptions on the measurement model are made. The
findings will be summarized in Result 1 (a) below. In addition in Result
1 (b)-(c) we will recapitulate the results from [10], where the CWCU
LMMSE estimator has been derived for different linear model assump-
tions. As such Result 1 sums up the most important insights on model
assumptions that allow to find a CWCU LMMSE estimator that is able
to generally outperform the BLUE. We note that the BLUE always also
fulfills the CWCU constraints (4). Consequently, for model assump-
tions that allow to find the BLUE, but that are not covered by Result 1,
we concurrently are able to find a CWCU estimator (which not
necessarily has to be the CWCU LMMSE estimator).

For jointly complex proper Gaussian x and y, the optimum MMSE
estimator is linear (or actually affine). In light of this we also constrain
the CWCU estimator to be affine, such that

x Ey b E b= + , ∈ , ∈ .n m n×  (27)

Note that in LMMSE estimation no assumptions on the specific form of
the joint PDF p x y( , ) have to be made. However, the situation is
different in CWCU LMMSE estimation. Let us consider the ith

component of the estimator

x be y= + ,i i
H

i (28)

where ei
H denotes the ith row of the estimator matrix E. The conditional

mean of xi can be written as

E x x E x be y[ | ] = [ | ] + .x i i i
H

x i iy y| |i i (29)

A closer inspection of (29) reveals that E x x x[ | ] =x i i iy| i
can be fulfilled for

all possible xi if the conditional mean E xy[ | ]x iy| i
is a linear (or actually

affine) function of xi, which is e.g. the case for jointly complex proper
Gaussian x and y. For proper and jointly Gaussian x and y the
conditional mean E xy[ | ]x iy| i

is given by

E x E σ x E xy y C[ | ] = [ ] + ( ) ( − [ ]),x i x x i x iy y y|
2 −1

i i i i (30)

where E E x E xC y y= [( − [ ])( − [ ]) ]x x i x i
H

y y y,i i i
, and σx

2
i
is the variance of xi.

E x x x[ | ] =x i i iy| i
is fulfilled if

σe C =i
H

x xy
2

i i (31)

E x E be y[ ]− [ ] = .x i i
H

iyi (32)

Inserting (28), (31) and (32) in the BMSE cost function E x x[ − ]i iy x,
2

immediately leads to the constrained optimization problem

σ σe e C e e C= argmin( − ) s. t. = ,i i
H

i x i
H

x x
e

yy yCL,
2 2

i
i i i (33)

where “CL” shall stand for CWCU LMMSE. The solution can be found
with the Lagrange multiplier method and is given by

σ
e

C C C
C C= .i

H x

x x
x

y yy y
y yyCL,

2

−1
−1i

i i
i

(34)

Using E e e e= [ , , …, ]n
H

CL CL,1 CL,2 CL, together with (32) and (34) im-
mediately leads us to the estimator summarized in case (a) of

Result 1. If x ∈ n and y ∈ m are

(a) jointly complex proper Gaussian, or
(b) connected via the linear model in (16) and x is complex proper

Gaussian with PDF E x C( [ ], )x xx (the PDF of n is otherwise
arbitrary), or

(c) connected via the linear model in (16) and x has mean E x[ ]x ,
mutually independent elements and covariance matrix

σ σ σC = diag{ , , …, }x x xxx
2 2 2

n1 2
(the joint PDF of x and n is otherwise

arbitrary),

then the CWCU LMMSE estimator minimizing the BMSEs
E x x[ − ]i iy x,

2 under the constraints E x x x[ | ] =x i i iy| i
for i n= 1, 2, …, is

given by

E Ex x E y y= [ ] + ( − [ ]),x yCL CL (35)

with

E DC C= ,xy yyCL
−1

(36)

where the elements of the real diagonal matrix D are

σ
D

C C C
[ ] = .i i

x

x xy yy y
,

2

−1
i

i i (37)

The mean of the error e x x= − CL (in the Bayesian sense) is zero, and
the error covariance matrix Cee,CL which is also the minimum BMSE
matrix MxCL

is

C M C AD DA DAD= = − − + ,ee x xx,CL CL (38)

with A C C C= xy yy yx
−1 . The minimum BMSEs are

x x x x xMBMSE( ) = [ ] = MSE( | ) = var( | )i i i i i i ixCL, , CL, CL,CL
and are given by

x x E x E x x x e C evar( | ) = − [ | ] | =i i x x i x x i i i i
H

x iyyCL, | CL, | CL,

2

CL, | CL,i i i i iCL, CL,

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥ (39)

σ
σ

C C C
= ( ) −x

x x
x

y yy y

2 2

−1
2i

i i
i

(40)

with E E x E x xC y y y y= [( − [ | ])( − [ | ]) | ].x x x i x i
H

iyy y y y| | | |i i i i
Case (b) and (c) are derived in [10]. The statements on e, Cee,CL and
x xvar( | )i iCL, can simply be proved by inserting in their corresponding

definitions, respectively. The conditional variance and the conditional
MSE coincide since the conditional bias is zero. Furthermore, the
Bayesian MSE and the conditional MSE coincide since the conditional
MSE is independent of the parameter value xi.

Remarks:

• We'd like to emphasize that although Result 1 (a)-(c) result in the
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same expression for the CWCU LMMSE estimator, the prerequisites
in (a), (b), and (c) clearly differ.

• If y and x are connected via the linear model in (16) and if x and n
are both Gaussian, then they are jointly Gaussian. Furthermore,
since x y[ , ]T T T is a linear transformation of x n[ , ]T T T , x and y are
jointly Gaussian, too. Under these prerequisites it is clear that Result
1 (a) can be applied. However, the main additional message of
Result 1 (b) is, that the jointly Gaussian assumption for x and n can
significantly be relaxed [10]. In fact, the PDF of the noise n can be
arbitrary in case (b).

• The main message of Result 1 (c) is, that for mutually independent
elements of the parameter vector also the Gaussian assumption of x
can be abandoned.

• We note, that for the linear model in (16) the covariance matrices
required in (36) and (37) become

C C H=x x
H

y xi i (41)

C HC=x xy xi i (42)

C HC H C= +H
yy xx nn (43)

C C H= .H
xy xx (44)

• From (36) it can be seen that the CWCU LMMSE estimator matrix
can be derived as the product of the diagonal matrix D with the
LMMSE estimator matrix E C C= xy yyL

−1. Furthermore, we have

E x x x E xD D[ | ] = [ ] + (1−[ ] ) [ ]x x i i i i i i i x i| L, ,
−1

,
−1

i i iL,
for the LMMSE estimator.

D can also be written as

D C A= diag{ }(diag{ }) .xx
−1 (45)

• The CWCU LMMSE estimator will in general not commute over
linear transformations, an exception is discussed in [9].

4. CWCU WLMMSE estimation

We again assume, that a parameter vector x is to be estimated based
on a measurement vector y ∈ m . In the following we will derive the
best widely linear (or actually affine) estimator in a BMSE sense, which
fulfills the CWCU constraints in (4). As in the previous section we
investigate the estimator under different model assumptions, and we
distinguish real and complex valued parameters for reasons that
become clear soon. Similar as in Result 1 above we compactly
summarize the findings for different model assumptions in Result 2
and 3, respectively.

4.1. Complex parameter vectors

We begin with the assumption that complex y and complex x are
generalized jointly Gaussian. Further, we assume the widely linear
estimator for xi to be of the form

x b i ne y f y= + * + , for = 1, 2, …, .i i
H

i
H

i (46)

Eq. (46) can also be written as

x b i nw y= + , for = 1, 2, …, ,i i
H

i (47)

where we used

w e f= [ ].i
H

i
H

i
H

(48)

The conditional mean of the estimator in (47) follows to

E x x E x bw y[ | ] = [ | ] + .x i i i
H

x i iy y| |i i (49)

Because of the generalized jointly Gaussian assumption on y and x,
E xy[ | ]x iy| i

is linear in x xx = [ *]i i i
T , namely

E x E Ey y C C x x[ | ] = [ ] + ( − [ ]).x i x x x i x iy y y|
−1

i i i i i (50)

This leads to

E x x E E bw y C C x x[ | ] = ( [ ] + ( − [ ])) + .x i i i
H

x x x i x i iy y y|
−1

i i i i i (51)

By setting (51) equal to x x= [1 0]i i we find that the CWCU constraint
E x x x[ | ] =x i i iy| i

is fulfilled if

w C C = [1 0]i
H

x x xy
−1

i i i (52)

E x E bw y[ ]− [ ] = .x i i
H

iyi (53)

These are the two conditions the widely linear estimator in (47) has to
fulfill in order to become a CWCU estimator. For the derivation of the
CWCU WLMMSE estimator we consider the BMSE cost function which
follows to

J E x x E b x E E x E x

E E E

w y w y y

w y y x x w C w w C

C w C

= [ − ] = [ + − ] = [ ( − [ ])−( − [ ]) ]

= [ ( − [ ])−[1 0]( − [ ]) ] = − 1
0

−[1 0] + [1 0] 1
0 .

i i i
H

i i i
H

i x i

i
H

i x i i
H

i i
H

x

x i x x

σ

y x y x y x y

y x y yy y

y

,
2

,
2

,
2

,
2

i

i i

i i i

xi
2

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

(54)

This result can be simplified by using (52), leading to the final
optimization problem

σw w C w w C C= argmin( − ) s. t. = [1 0],i i
H

i x i
H

x x x
w

yy yCWL,
2 −1

i
i i i i (55)

where “CWL” shall stand for CWCU WLMMSE. The solution of this
optimization problem is derived in Appendix A where we used the
Lagrange multiplier method. The results of Appendix A lead to the
estimator summarized in case (a) of

Result 2. If x ∈ n is a complex valued parameter vector and

(a) x and y ∈ m are generalized jointly Gaussian , or
(b) x and y ∈ m are connected via the linear model in (16) and x is

generalized complex Gaussian with mean vector E x[ ]x and
augmented covariance matrix Cxx (the PDF of n is otherwise
arbitrary), or

(c) x and y ∈ m are connected via the linear model in (16) and x has
mean E x[ ]x and mutually independent elements such that

σ σ σC = diag{ , , …, }x x xxx
2 2 2

n1 2
and σ σ σC = diag{ , , …, }∼ ∼ ∼∼

x x xxx
2 2 2

n1 2 (the joint
PDF of x and n is otherwise arbitrary),

then the CWCU WLMMSE estimator minimizing the BMSEs
E x x[ − ]i iy x,

2 under the constraints E x x x[ | ] =x i i iy| i
for i n= 1, 2, …, is

E Ex x W y y= [ ] + ( − [ ]),x yCWL CWL (56)

with

W w w w= [ ⋯ ] ,n
H

CWL CWL,1 CWL,2 CWL, (57)

where the rows of WCWL are given by

w C C C C C C= [1 0] ( ) .i
H

x x x x xy yy y y yyCWL,
−1 −1 −1

i i i i i (58)

The mean of the error e x x= − CWL (in the Bayesian sense) is zero,
and the error covariance matrix Cee,CWL, which is also the minimum
BMSE matrix MxCWL

, is

C C W C I
0

I 0 C W

W C W

= − − [ ]

+ .

n n

n n
n n n n H

H

ee xx yx xy

yy

,CWL CWL

×

×
× ×

CWL

CWL CWL

⎡
⎣⎢

⎤
⎦⎥

(59)

The minimum BMSEs are x MBMSE( ) = [ ]i i ixCWL, ,CWL
x x x x=MSE( | ) = var( | )i i i iCWL, CWL, and are given by

x x E x E x x x w C wvar( | ) = [ − [ | ] | ] =i i i i i i i
H

x iyyCWL, CWL, CWL,
2

CWL, | CWL,i (60)
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σC C C C C=[1 0] ( ) 1
0 − .x x x x x x xy yy y

−1 −1 2
i i i i i i i

⎡
⎣⎢

⎤
⎦⎥ (61)

The statements on e and Cee,CWL can simply be proved by inserting
in their corresponding definitions, respectively. The derivation of the
conditional variance can be found in Appendix B. Due to similar
arguments as for the CWCU LMMSE estimator in Section 3, the
conditional variance, the conditional MSE, and the Bayesian MSE
coincide.

We now consider case (b) and (c) of Result 2. Let x and y be
connected via the linear model (16) (or its augmented version (17)). In
the following it will be seen that some of the prerequisites of Result 2
(a) can be relaxed when incorporating details of the data model into the
derivation of the estimator.

If x and n are both generalized complex Gaussian, then they are
generalized jointly Gaussian. Furthermore, since x y[ , ]T T T is a linear

transformation of x n[ , ]T T T , x and y are generalized jointly Gaussian,
too. Under these prerequisites it is clear that Result 2 (a) can be
applied. We note, that for the linear model the augmented covariance
matrices required in (58) and (59) become

C C H=x x
H

y xi i (62)

C HC=x xy xi i (63)

C HC H C= +H
yy xx nn (64)

C C H= .H
xy xx (65)

However, the jointly Gaussian assumption for x and n can significantly
be relaxed. This can be shown by incorporating the linear model
assumption already earlier in the derivation of the estimator. Let
h ∈i

m be the ith column of H, H ∈i
m n×( −1) the matrix resulting from

H by deleting hi, xi be the ith element of x, and x ∈i
n( −1) the vector

resulting from x after deleting xi. Then we can rewrite (16) as

xy h H x n= + + .i i i i (66)

With the notation

H
h 0
0 h

H
H 0
0 H

= * ∈ , = * ∈i
i

i
i

i

i

n2m×2 2m×(2 −2)
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥ 

(67)

the augmented form of (66) follows to

y H x H x n= + + .i i i i (68)

Incorporating (68) into the conditional mean of the estimator in (47)
yields

E x x E b x E b x

E x b

w y w H x H x n

w H x H x

[ | ] = [ + | ] = [ ( + + ) + | ]

= ( + [ | ]) + .

x i i x i
H

i i x i
H

i i i i i i

i
H

i i i x i i i

y y n x

x

| | , |

|

i i i i

i i (69)

From (69) we can derive conditions that guarantee that the CWCU
constraints (4) are fulfilled. There are at least the following possibi-
lities:

1. (4) can be fulfilled for all possible xi (and all i n= 1, 2, …, ) if x is
generalized complex Gaussian (the reasoning follows immediately).
This will lead us to Result 2 (b).

2. (4) can be fulfilled for all possible xi (and all i n= 1, 2, …, ) if
E x Ex x[ | ] = [ ]x i i ix x|i i i

for all possible xi (and all i n= 1, 2, …, ), which is
true if the elements xi of x are mutually independent. This will lead
us to Result 2 (c).

3. (4) is fulfilled for all possible xi (and all i n= 1, 2, …, ) if
w H = [1 0]i

H
i and w H 0=i

H
i

T for i n= 1, 2, …, , and if we set bi =0.
These constraints and settings correspond to the ones of the BWLUE
[11]. Consequently, the BWLUE is a CWCU estimator.

We start with the first option, assume a generalized complex
Gaussian parameter vector x, and begin the derivation of the ith

component xi of the estimator. Because of the Gaussian assumption we
have

E x x E E bw H x H x C C x x[ | ] = ( + ( [ ]+ ( − [ ]))) + .x i i i
H

i i i i x x x i x i iy x x|
−1

i i i i i i i (70)

By setting (70) equal to x x= [1 0]i i one can see that the CWCU
constraint E x x x[ | ] =x i i iy| i

is fulfilled if

w H w H C C+ = [1 0],i
H

i i
H

i x x xx
−1

i i i i (71)

b E Ew H x C C x= − ( [ ]− [ ])).i i
H

i i x x x x ix x
−1

i i i i i i (72)

After some algebraic manipulations (71) and (72) can compactly be
written as

w HC C = [1 0],i
H

x x xx
−1

i i i (73)

b E x Ew y= [ ]− [ ].i x i i
H

yi (74)

Eq. (73) could also have been derived from (52) by assuming an
underlying linear model. However, the approach in this section shows
that the noise need not to be Gaussian. Inserting into the BMSE cost
function leads to the optimization problem

σw w C w w HC C= argmin( − ) s. t. = [1 0].i i
H

i x i
H

x x x
w

yy xCWL,
2 −1

i
i i i i (75)

The solution to this constrained optimization problem can be found
using the Lagrange multiplier method, which finally leads to the
statements of Result 2 (b).

For mutually independent parameters (case (c) of Result 2) it is
possible to further relax the prerequisites on x. In this case (69)
becomes

E x x E bw H x w H x[ | ] = + [ ] + ,x i i i
H

i i i
H

i i iy x| i i (76)

since E xx[ | ]x i ix |i i
is no longer dependent on xi. By setting (76) equal to

x x= [1 0]i i we see that the CWCU constraint E x x x[ | ] =x i i iy| i
is fulfilled if

w H = [1 0],i
H

i (77)

b E E x Ew H x w y= − [ ] = [ ]− [ ].i i
H

i i x i i
H

x yi i (78)

Eq. (77) could also have been derived from (71) by assuming the
elements of x to be mutually independent. However, the approach in
this section shows that no further assumptions (like the Gaussian
assumption) on the PDF of x have to be made in the case of mutually
independent parameters. Inserting in the BMSE cost function and
simplifying leads to the optimization problem

σw w C w w H= argmin( − ) s. t. = [1 0].i i
H

i x i
H

i
w

yyCWL,
2

i
i (79)

The solution to this constrained optimization problem can again be
found using the Lagrange multiplier method, which finally leads to the
statements of Result 2 (c).

The CWCU WLMMSE estimator matrix WCWL from Result 2 can
be derived from the WLMMSE estimator matrix E C C= xy yyWL

−1 accord-
ing to

W D D E= [ ] ,CWL 1 2 WL (80)

where the elements of the two diagonal matrices D1 and D2 are given by

D C C C C[ ] = [[1 0] ( ) ] ,i i x x x xy yy y1 ,
−1 −1

1,1i i i i (81)

D C C C C[ ] = [[1 0] ( ) ] .i i x x x xy yy y2 ,
−1 −1

1,2i i i i (82)

The complexity of applying the CWCU WLMMSE estimator and the
WLMMSE estimator is the same since both estimators are of the widely
linear form. However, deriving the CWCU WLMMSE estimator matrix
is slightly more complex than for the WLMMSE estimator, as one can
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see in (80)–(82). Eq. (81) and (82) require Cx yi and the inverse of Cyy.
Both terms can be reused from the calculation of the WLMMSE
estimator matrix E C C= xy yyWL

−1. Furthermore, the inverse of

C C Cx xy yy y
−1

i i
is required for i n= 1, 2, …, , however, C C Cx xy yy y

−1
i i

is just a
2 × 2 matrix.

We finally notice, that in a linear model scenario, that does not
fulfill the assumptions of Result 2 (b) or (c) we still can derive the
BWLUE which is a CWCU estimator.

4.2. Real parameter vectors

In this subsection we assume x to be a real valued vector, while y
shall still be complex valued. In that case y and x are no longer
generalized jointly Gaussian since the joint augmented covariance
matrix is no longer invertible. Also Cx xi i

is not invertible, which was
required in the derivation for all three cases of Result 2, since

σ σ

σ σ
C = .x x

x x

x x

2 2

2 2i i
i i

i i

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

(83)

However, we now assume the real composite vector

yy
y

= ∈ ,R

I

2m⎡
⎣⎢

⎤
⎦⎥ 

 (84)

and the real vector x to be jointly Gaussian. Hence, the conditional
mean vector E xy[ | ]x iy | i 

is given by

E x E
σ

x E xy y C[ | ] = [ ] + 1
( − [ ]).x i x

x
i x iy y y| 2i i

i
i   

(85)

By multiplying (85) with the real-to-complex transformation matrix

j
j

T
I I
I I= − ∈n

n n2 ×2⎡
⎣⎢

⎤
⎦⎥ 

(86)

from the left we obtain an expression for E xy[ | ]x iy| i
according to

E x E
σ

x E xy y C[ | ] = [ ] + 1
0

1
( − [ ]).x i x

x
i x iy y y| 2i i

i
i

⎡
⎣⎢

⎤
⎦⎥

(87)

With (87) the conditional mean of the estimator in (47) becomes

E x x E x b E
σ

x E x bw y w y C[ | ] = [ | ] + = [ ] + 1
0

1
( − [ ]) + .x i i i

H
x i i i

H
x

x
i x i iy y y y| | 2i i i

i
i

⎛
⎝
⎜⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠
⎟⎟

(88)

By setting (88) equal to xi we learn that the CWCU constraint
E x x x[ | ] =x i i iy| i

is fulfilled if

σ
w C 1

0
1 = 1i

H
x

x
y 2i

i

⎡
⎣⎢

⎤
⎦⎥

(89)

E x E bw y[ ]− [ ] = .x i i
H

iyi (90)

Simplifying the BMSE cost function in (54) using the constraint in (89)
leads to the optimization problem

σ
σ

w w C w w C= argmin( − ) s. t. 1
0

1 = 1.i i
H

i x i
H

x
xw

yy yCWL,
2

2
i

i i
i

⎡
⎣⎢

⎤
⎦⎥

(91)

The solution of this optimization problem is derived in Appendix C.
The results of Appendix C lead to the estimator summarized in case (a)
of

Result 3. Let y ∈ m . If x ∈ n is a real valued parameter vector
and

(a) x and y ∈ m2
 are jointly Gaussian , or

(b) x and y are connected via the linear model in (16) and x is
Gaussian with PDF E x C( [ ], )x xx (the PDF of n is otherwise
arbitrary), or

(c) x and y are connected via the linear model in (16) and x has mean
E x[ ]x ,mutually independent elements and covariance matrix

σ σ σC = diag{ , , …, }x x xxx
2 2 2

n1 2
(the joint PDF of x and n is otherwise

arbitrary),

then the CWCU WLMMSE estimator minimizing the BMSEs
E x x[ − ]i iy x,

2 under the constraints E x x x[ | ] =x i i iy| i
for i n= 1, 2, …, is

given by (56) where the rows of WCWL are given by

σ
w

C C C
C C=

[1 0] 1
0

[1 0] .i
H x

x x

x

y yy y

y yyCWL,

2

−1

−1i

i i

i⎡
⎣⎢

⎤
⎦⎥ (92)

The minimum BMSEs are x MBMSE( ) = [ ]i i ixCWL, ,CWL
x x x x=MSE( | ) = var( | )i i i iCWL, CWL, and are given by

x x
σ

σw C w
C C C

var( | ) = = ( )

[1 0] 1
0

− .i i i
H

x i
x

x x

xyy

y yy y

CWL, |

2 2

−1

2
i

i

i i

i⎡
⎣⎢

⎤
⎦⎥ (93)

Case (b) and (c) can be derived by following similar steps as in
Section 4.1. The derivation of the conditional variances can be found in
Appendix D. An alternative representation of (92) can be obtained by
utilizing C C[1 0] =x xy yi i

, yielding

σ
w

C C C
C C= .i

H x

x x
x

y yy y
y yyCWL,

2

−1
−1i

i i
i

(94)

The CWCU WLMMSE estimator matrix WCWL from Result 3 can be
derived from the WLMMSE estimator matrix E C C= xy yyWL

−1 according
to

W D I 0 E= [ ] ,n n n n
CWL

× ×
WL (95)

where the elements of the diagonal matrix D are given by

σ
D

C C C
[ ] =

[1 0] 1
0

.i i
x

x xy yy y

,

2

−1

i

i i

⎡
⎣⎢

⎤
⎦⎥ (96)

Note that this estimator always yields real values since F E= *CWL CWL or
W E F E E= [ ] = [ * ]CWL CWL CWL CWL CWL .

4.3. PWCU WLMMSE estimation

We come back to the case of a complex parameter vector x ∈ n .
Another way to estimate x is to rewrite the linear model y Hx n= +
according to

⏟
jy H H

x
x n= [ ] + ,

H
x

′∈

R

I

∈

m n
n

×2
2

⎡
⎣⎢

⎤
⎦⎥


 (97)

and estimate the real and imaginary parts of the parameter vector
separately. With (97), the parameter vector is real valued which enables
us to use the CWCU WLMMSE estimator for real valued parameter
vectors. The estimated real and imaginary parts can then be combined
to a complex estimator for the parameter vector x. It is to note that this
estimator is in general not a CWCU estimator for the complex
parameters x x jx= +i R,i I,i, but it is a CWCU estimator for xR,i and xI,i,
since we forced E x x x[ | ] =R,i R,i R,i and E x x x[ | ] =I,i I,i I,i for i n= 1, 2, …, .
This is why this estimator will be denoted as part-wise conditionally
unbiased WLMMSE (PWCU WLMMSE) estimator. Generally, this
estimator features a lower BMSE compared to its CWCU counterpart,
since conditioning separately on the real and on the imaginary parts
generally leads to weaker constraints than when conditioning on the
complex parameters. However, there exist cases where CWCU and
PWCU estimators feature the same BMSE performance.

M. Huemer et al. Signal Processing 133 (2017) 227–239

233



5. Examples

5.1. DC level and complex exponential in uncorrelated Gaussian noise

In this example we apply the CWCU WLMMSE estimator to a
particular signal parameter estimation problem, and compare it in
performance to the BLUE, the LMMSE estimator, the CWCU LMMSE
estimator, the BWLUE, and the WLMMSE estimator. We do this by
estimating a complex constant and the complex amplitude of a complex
exponential in the presence of noise. The signal model is
y k x x e n k[ ] = + 1.5 + [ ]j k

1 2
6 for k = 0, 1, …, 5, which can easily be

brought to the form of a linear model y Hx n= + . We assume the
noise vector n to be complex proper Gaussian n 0 C∼ ( , )nn with

C = diag{0.1, 0.06, 0.3, 0.2, 0.15, 0.1}.nn (98)

Furthermore, in our experiment we let the covariance matrices of the
real and imaginary parts of x and the cross-covariance matrix be

C = diag{1, 0.6}x xR R (99)

kC = diag{1, 0.6}x xI I (100)

C 0= ,x x
2×2

R I (101)

where the scalar k in Cx xI I
can vary between 10−4 and 102. According to

this setup the parameter vector x is improper for k ≠ 1 and proper for
k=1. We start with k = 10−4, such that the parameter vector is close to
real, and test all the estimators listed in Table 1. Then we increase k
stepwise, such that the imaginary part of x becomes more and more
significant, and repeat the estimation procedures accordingly. The
result is a BMSE curve for each estimator in dependence of k. With this
setup we can observe how the estimators perform for highly improper
and also proper data within the scope of this example. Note that we also
test the CWCU WLMMSE estimator for real parameter vectors. Clearly
this estimator only perfectly fulfills the CWCU constraints once the
parameter vector is in fact real. However, for k = 10−4 it makes sense to
apply this estimator since in that case the imaginary parts of the
parameters are negligible compared to the real parts. Of course for
increasing k the application of this estimator does not make sense.

Fig. 2 shows the resulting BMSE curves plotted over the scaling
factor k. Clearly, the WLMMSE estimator features the best BMSE
performance for all k since this estimator minimizes the BMSE cost
function without any constraints. The BLUE and the BWLUE show the
worst performance. They perform equal, which is clear since the
BWLUE is only able to outperform the BLUE in case of improper
noise. Both estimators show the same performance for all k, because
they do not incorporate statistical knowledge on the parameters.

Especially for small k, which corresponds to highly improper data,
the LMMSE estimator's performance is far below the one of the
WLMMSE estimator, while for k=1 (the proper case) they clearly
perform equal. This impressively shows that the LMMSE estimator is
not able to exploit information about the improperness of x. The CWCU
WLMMSE estimator derived in this work also significantly outperforms
the LMMSE estimator for small values of k, and it is also in front for

large k > 10. For k = 10−4, where we approximately have a real valued
parameter vector, the CWCU WLMMSE estimator for real parameter
vectors comes quite close to the WLMMSE estimator. However, it is
interesting to note that the CWCU WLMMSE estimator for complex
parameter vectors does not converge to the CWCU WLMMSE estima-
tor for real parameter vectors for k → − ∞. Consequently, once we
know from the application that the parameter vector is real we shall
definitely apply the CWCU WLMMSE estimator for real parameter
vectors. In this example it can also be seen that the PWCU WLMMSE
estimator particularly outperforms the CWCU WLMMSE estimator for
small k.

We already noted that for k=1 (the proper case), the LMMSE and
the WLMMSE estimators perform equal, the same is true for the
CWCU LMMSE and the CWCU WLMMSE estimators.

For k⪢1, the variances of the imaginary parts of the parameters are
way bigger than the noise variances. Hence, the prior knowledge about
Cx xI I

become less important. What's left is the prior knowledge about
Cx xR R

. Linear estimators are not able to incorporate this particular
knowledge, and they all converge towards the BLUE's performance for
large k. The WLMMSE estimator and the CWCU WLMMSE estimator
still keep a little performance gain compared to the linear estimators
due to the incorporation of the prior knowledge about the improper-
ness of x.

To conclude this example we can state that the CWCU WLMMSE
estimator significantly outperforms its globally unbiased counterparts
BLUE and BWLUE, and compared to the WLMMSE estimator the
CWCU WLMMSE estimator features the favorable property of compo-
nent-wise conditionally unbiasedness.

5.2. Estimation of 8-QAM symbols in a unique word OFDM
framework

An example where employing the CWCU WLMMSE estimator
allows for reducing the computational complexity of a follow-up
processing step is presented in this section. In digital communications,
data symbols have to be estimated based on the received signal. In this
data estimation / channel equalization example we choose 8-QAM data
symbols from the alphabet S j j j j= {−3 ± , − 1 ± , 1 ± , 3 ± }, which
results in improper symbols since the variance of the real part is larger
than that of the imaginary part. The following investigations and
simulations are carried out within the framework of unique word
orthogonal frequency division multiplexing (UW-OFDM) described in
[35,36]. Like classical OFDM, UW-OFDM is a block based transmis-
sion scheme where at the receive side a data vector d is estimated based

Table 1
Estimators used for the problem described in Section 5.1.

Estimator Section Equation

BLUE 2.2 (19)
LMMSE 2.2 (14)
CWCU LMMSE 3 Result 1
BWLUE 2.2 (20)
WLMMSE 2.2 (15)
CWCU WLMMSE 4.1 Result 2
CWCU WLMMSE for real parameter vectors 4.2 Result 3
PWCU WLMMSE 4.3 Result 3

Fig. 2. BMSE values plotted over the scaling factor k which defines the variances of the
imaginary parts. The variances of the real parts have been kept constant.
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on a received block y∼ of frequency domain samples which are disturbed
by a dispersive channel and additive noise. We choose UW-OFDM
since the estimator matrices are in general full matrices instead of
diagonal matrices as in classical OFDM, such that the problem can be
considered a more demanding and general one compared to the data
estimation problem in classical OFDM systems. Hence, this framework
is well suited for studying general effects of CWCU estimators. The
system model for the transmission of one data block is given by

y HGd v= + ,∼∼ ͠ (102)

where H͠ is the diagonal channel matrix with the frequency response
coefficients of the channel on its main diagonal. G is a so called
generator matrix, for details cf. [35,36], d is a vector of improper 8-
QAM symbols and v∼ is a frequency domain noise vector. A block
diagram of the simulation setup is shown in Fig. 3. The first block is
implemented as a convolutional encoder with the industry standard
rate 1/2, constraint length 7 code with generator polynomials (133,
171) as defined in [37]. The interleaver re-sorts the bits appropriately,
which are then mapped onto improper 8-QAM symbols. These symbols
are arranged in blocks, each block is converted into an UW-OFDM time
domain symbol, and a burst of UW-OFDM symbols is transmitted over
the channel. The channel is assumed to be quasi-static, meaning that it
stays constant during the transmission of one burst. Furthermore, we
assumed perfect channel knowledge at the receiver in these simula-
tions. The widely linear estimators are then applied on each individual
received frequency-domain vector y∼ in order to equalize the channel or
rather estimate the data symbols. The 8-QAM demapper determines
the LLRs of the corresponding bits and feeds them into the deinter-
leaver. Finally, a soft decision Viterbi algorithm is applied for decoding.

In our simulation setup the dimensions of the vectors and matrices
are as follows: d G H y∈ , ∈ , ∈ , ∈∼͠36×1 52×36 52×52 52×1    . The parti-
cular generator matrix G′ introduced and described in [35,36] has been
used.

For a general estimator, the LLRs of any symbol constellation with
equiprobable transmit symbols can be written as [8,38]

Λ b x
x
x

p x

p x
( | ) = log

Pr(b = 1| )
Pr(b = 0| )

= log
∑ ( |s )
∑ ( |s )

,ki i
ki i

ki i

i
q

i
q

q∈S(b =1)
( )

q∈S(b =0)
( )

ki

ki (103)

where xi is the i
th estimated symbol, bki is the k

th bit of the ith estimated
symbol, S b( = 1)ki and S b( = 0)ki are the sets of symbol indices
corresponding to b = 1ki and b = 0ki , respectively, and s q( ) is the qth

out of 8 possible 8-QAM symbols. In (103), p x s( | )i
q( ) denotes the

conditional PDF of the estimate xi given that the actual symbol was
s q( ). With (103), the LLRs of any (widely) linear estimator can be
evaluated by incorporating p x s( | )i

q( ) for the specific estimator. Such a
specific estimator could e.g. be the WLMMSE estimator or the CWCU
WLMMSE estimator. Due to central limit theorem arguments (note
that the data vector length is 36 in our example) p x s( | )i

q( ) can be well
approximated as Gaussian in both cases. If the estimates are improper,
the general complex Gaussian density function [11,32–34]

p x s
π C
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·ei

q

x x s
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− 1
2 ( − [ | ]) ( − [ | ])
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( )
| ( )

−1 ( )
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has to be used, otherwise the simpler complex proper Gaussian density

p x s
πσ

( | ) = 1 ei
q

x s

σ
x E x s

( )

|
2

− 1 − [ | ]

i
q

xi s q
i i

q

( )

| ( )
2

( ) 2

(105)

can be employed instead, where σ
x s|
2
i

q( ) denotes the conditional variance

of the estimate xi given the transmitted symbol s q( ). Note that in
contrast to (104), (105) does not require the augmented form,
consequently no evaluations of determinants and no matrix inversions
are required.

It has been shown in [8], that for the estimated 8-QAM symbols
transmitted over an additive white Gaussian noise (AWGN) channel
(i.e. H I=͠ ) p x s( | )i

q( ) is proper for the CWCU WLMMSE estimator and
improper for the WLMMSE estimator. This result is also suggested by
Fig. 4, which is taken from [8]. For the CWCU WLMMSE estimator the
estimates are centered around the true constellation points since it
fulfills the CWCU constraints. Furthermore, the estimates conditioned
on a specific transmit symbol s q( ) are properly distributed. In contrast
to the CWCU WLMMSE estimates, the WLMMSE estimates condi-
tioned on a specific transmit symbol are neither centered around the
true constellation points nor are they properly distributed, cf. Fig. 4b.
As a consequence, the CWCU WLMMSE estimator allows for utilizing
(105), while the WLMMSE estimator requires (104) to derive the LLRs
for further processing. Furthermore, it has been shown in [8] that the
LLRs and consequently the BERs of the CWCU WLMMSE estimator
and the WLMMSE estimator coincide. Hence, one can conclude that
applying the CWCU WLMMSE estimator in this system setup has the
advantage of a reduced complexity of the LLR determination compared

Fig. 3. Block diagram of the investigated UW-OFDM communication system.

Fig. 4. Relative frequencies of the CWCU WLMMSE estimates in (a), and the WLMMSE estimates in (b). The black crosses mark the original 8-QAM constellation points. Taken from
[8].
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to the WLMMSE estimator without any loss in the BER. We notice, that
(e.g. in WLAN scenarios) the data estimator only has to be derived once
per burst, such that the slightly increased complexity of deriving the
CWCUWLMMSE estimator matrix is negligible. On the other hand, the
LLRs have to be calculated for every single data bit.

In the following we consider multipath channels instead of the
AWGN channel. The channel impulse responses (CIRs) are modeled as
tapped delay lines, each tap with uniformly distributed phase and
Rayleigh distributed magnitude, and with power decaying exponen-
tially as defined in [39]. The model allows the choice of the channel
delay spread, for a more detailed description we refer to [39]. 10000
CIR realizations featuring a channel delay spread of τ = 100 nsRMS have
been generated and stored, and the BER simulation results are
obtained by averaging over these 10000 realizations.

The data estimation has been performed with the WLMMSE
estimator, the CWCU WLMMSE estimator and the BWLUE. (Note,
that the BLUE would have the same BER performance as the BWLUE
since these estimators cannot utilize the improperness of the data.) It
turns out, that the CWCU WLMMSE estimates conditioned on a given
transmit symbol s q( ) are practically proper again for all channel
realizations. The off-diagonal elements of Cx x s|i i

q( ) are below the main
diagonal elements by at least a factor of 10−3 in all cases. We therefore
again apply (105) for the LLR calculation in case the CWCU WLMMSE
estimator is used. The effects on the BER performance in dependency
on the mean energy per bit to noise power spectral density ratio E N/b 0 is
visualized in Fig. 5. This figure shows that the loss in performance of
the CWCU WLMMSE estimator using the simplified PDF in (105) for
LLR calculation is definitely insignificant. Note that in practice usually
approximation formulas are used to derive LLRs, in our application
this means that (105) instead of (104) can be used as starting point to
derive LLR approximations [40–42].

6. Estimator comparison

In standard literature [1] the BLUE is treated as a classical linear
estimator x Ey= , which is derived by minimizing the variances of the
estimator's elements subject to the (global) unbiased constraint:

x δ i j ne hmin var( ) s. t. = , = 1, …,i i
H

j i j, (106)

where ei
H denotes the ith row of the estimator matrix E and δi j, denotes

the Kronecker delta. The constraints in (106) can also be compactly
expressed as EH I= . It can be shown that this estimator can also be
derived in the Bayesian framework by minimizing the BMSE cost
function E x x[ − ]i iy x,

2 subject to the same constraint as in (106), such

that the BLUE can also be interpreted as a Bayesian estimator. Similar
arguments also hold for the BWLUE. Hence, every estimator regarded
in this work can be derived by minimizing the BMSE cost function
subject to particular constraints (except the WLMMSE estimator which
minimizes the BMSE cost function without any constraint but the
widely linear restriction). In the following we concentrate on the linear
model case with a parameter vector having mutually independent
parameters, furthermore we assume the parameter vector and the
measurement vector to have zero mean. These assumptions are made
since then also the constraints for the CWCU estimators take on quite
simple forms (while the constraints on BLUE, BWLUE, LMMSE
estimator and WLMMSE estimator do not change by making particular
assumptions on the PDF of x). Let the general widely linear estimator
for this setup be of the form

x Wy E F y Ey Fy= = [ ] = + *. (107)

Table 2 lists all the estimators regarded in this work together with the
constraints that have to be fulfilled for this particular setup when
minimizing the BMSE cost function. The estimator with the most
stringent constraint, which is the BLUE, will generally perform worst in
a BMSE sense. On the other hand, the BLUE produces unbiased
estimates in the classical sense. The LMMSE estimator and the
WLMMSE estimator, while performing better in a BMSE sense than
the BLUE and the BWLUE, respectively, are conditionally biased,
leading to effects demonstrated in Fig. 1. The CWCU estimators
derived in this paper prevent this property, and in contrast to the
BLUE and the BWLUE they are generally able to incorporate prior
knowledge about the statistics of the parameter vector, which can lead
to a significant performance gain over these classical estimators (c.f.
Section 5.1).

7. Conclusion

In this paper we completed previous findings on CWCU LMMSE
estimation and derived an analytical solution in dependence on the first
and second order statistics for the case, that the parameters and
measurements are jointly Gaussian. The main intent of the work,
however, was the extension of component-wise conditionally unbiased
estimation to widely linear estimators. We derived the CWCU
WLMMSE estimator for a number of different preconditions, and
started with jointly Gaussian parameters and measurements. Then,
under linear model assumptions, we investigated the cases of jointly
Gaussian and mutually independent parameters, and showed that the
jointly Gaussian assumption of the parameter and measurement
vectors can significantly be relaxed. In particular, the PDF of the noise
can be arbitrary, and in case of mutually independent parameters their
joint PDF can also be of any form. Furthermore, we distinguished
between improper complex and real parameters, which lead to different
analytical expressions for the CWCU WLMMSE estimator. Finally, two
examples where chosen to demonstrate the effects of the CWCU
constraints and to highlight potential benefits of this type of estimator.

Fig. 5. Bit error ratio of different widely linear estimators for the described digital
communication system setup in a multipath scenario. For the WLMMSE estimator, (104)
was used for the LLR determination, while for the CWCU WLMMSE estimator the
simpler expression in (105) was applied.

Table 2
Linear and widely linear estimators and their constraints.

Estimator Constraints

BLUE EH I= , F 0=
LMMSE F 0=
CWCU LMMSE EH 1diag{ } = , F 0=
BWLUE EH I= , FH 0* =
WLMMSE –

CWCU WLMMSE EH 1diag{ } = , FH 0diag{ *} =
CWCU WLMMSE for real parameter vectors EH FH 1diag{ } + diag{ *} =
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Appendix A. Derivation of the CWCU WLMMSE estimator for generalized jointly Gaussian x and y

In Appendix A we solve the optimization problem given in (55) using the Lagrange multiplier method. We start with the Lagrangian cost
function which is

J σ λw C w C C w′ = − + − 1
0 .i

H
i x

H
x x x iyy y

2 −1
i i i i

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥
⎞
⎠⎟ (A.1)

Using Wirtinger's calculus [43] for complex derivatives, we obtain

J λ
w

C w C C∂ ′
∂

= * + ( ) .
i

T
i

H
x x x

T
yy y

−1
i i i (A.2)

By setting (A.2) equal to zero, wi
H can be derived as

λw C C C= − .i
H H

x x x y yy
−1 −1

i i i (A.3)

This result reinserted into the constraint in (55) leads to an expression for λ according to

λ C C C C C= −[1 0] ( ) .H
x x x x x xy yy y

−1 −1
i i i i i i (A.4)

Eq. (A.4) reinserted into (A.3) leads to the final solution of the optimization problem in the form of

w C C C C C C= [1 0] ( ) .i
H

x x x x xy yy y y yyCWL,
−1 −1 −1

i i i i i (A.5)

Appendix B. Derivation of the conditional variance of the CWCU WLMMSE estimator

In Appendix B the conditional variance of the estimator regarded in Result 2 will be derived. For simplicity of the formulas we will denote w i
H
CWL,

as wi
H and x iCWL, as xi, respectively. We then have

x x E x E x x x E b E x b x E E x xw y w y w y y w C wvar( | ) = [ − [ | ] | ] = [ + − [ | ]− | ] = [ ( − [ | ]) | ] = .i i i i i i i
H

i i
H

i i i i
H

i i i
H

x iyy
2 2 2

| i (B.1)

Using

C C C C C= − ,x x x x xyy yy y y|
−1

i i i i i (B.2)

which can be shown to hold for all three cases (a)–(c) in Result 2, together with (58) leads to

x σC C C C C C C C C C Cvar( |x ) = [1 0] ( ) 1
0 −[1 0] 1

0 = [1 0] ( ) 1
0 − .i i x x x x x x x x x x x x x x xy yy y y yy y

−1 −1 −1 −1 2
i i i i i i i i i i i i i i i

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥ (B.3)

Appendix C. Derivation of the CWCU WLMMSE estimator for jointly Gaussian real x and y


In Appendix C we solve the optimization problem given in (91) using the Lagrange multiplier method. We start with the Lagrangian cost
function which is

J σ λ
σ

w C w C w′ = − + 1 [1 0] −1 .i
H

i x
x

x iyy y
2

2i
i

i

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

(C.1)

Using Wirtinger's calculus for complex derivatives, the derivation of (C.1) follows to

J λ
σw

C w C∂ ′
∂

= * + 1 [1 0] .
i

T
i

x
x

T

yy y2
i

i

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

(C.2)

By setting (C.2) equal to zero, wi
H can be derived as

λ
σ

w C C= − 1 [1 0] .i
H

x
x y yy2

−1

i
i

(C.3)

This result reinserted into the constraint in (91) leads to an expression for λ according to
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λ
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C C C
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[1 0] 1
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⎤
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Eq. (C.4) reinserted into (C.3) leads to the final solution of the optimization problem in the form of

σ
w

C C C
C C=

[1 0] 1
0

[1 0] .i
H x

x x

x

y yy y

y yyCWL,

2
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−1i
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i⎡
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Compounding w i
H
CWL, to an estimator matrix immediately leads to Result 3.

Appendix D. Derivation of the conditional variance of the CWCU WLMMSE estimator for real valued parameter vectors

In Appendix D the conditional variance of the estimator regarded in Result 3 is investigated. For simplicity of the formulas we will again denote
w i

H
CWL, as wi

H and x iCWL, as xi, respectively. The first steps correspond to the ones of Appendix B, such that after utilizing (87) and (92) we obtain

x x w C wvar( | ) = .i i i
H

x iyy| i (D.1)

To find an expression for C xyy| i
we begin with

σ
C C C C= − 1 ,x x

x
xy y y y y y| 2i i

i
i     

(D.2)

which can be shown to hold for all three cases (a)–(c) in Result 3. Multiplying (D.2) with Tn in (86) from the left and with Tn
H from the right yields

σ
C C C C= − 1 .x x

x
xyy yy y y| 2i i

i
i

(D.3)

Replacing C xy i
with C 1

0xy i

⎡
⎣⎢

⎤
⎦⎥ finally leads to

σ
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Inserting (D.4) into (D.1) results in

x x
σ

σ
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where in the last step, (92) has been incorporated.
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