Rates of convergence to Brownian local time

Richard F. Bass* and Davar Khoshnevisan
Department of Mathematics, University of Washington, Seattle, WA, USA

Received 26 May 1992
Revised 5 October 1992

Suppose S_{n} is a mean zero, variance one random walk. Under suitable assumptions on the increments, we prove a strong approximation theorem for the local times of S_{n} to the local times of a Brownian motion, uniformly at all levels.

1. Introduction

Let X_{1}, X_{2}, \ldots be i.i.d. random variables with mean 0 and variance 1 . Let S_{n} be the usual partial sum process. Define the 'local time' of the random walk S_{n} by

$$
\eta(k, n)=\#\left\{j \leqslant n:\left|S_{j}-k\right| \leqslant \frac{1}{2}\right\}
$$

If the X_{i} 's are integer valued, then $\eta(k, n)$ denotes the number of visits of S_{1}, \ldots, S_{n} to k. Let Z_{t} be a standard 1 -dimensional Brownian motion and denote its local time by $L(x, t)$. In 1981 Révész [11] proved that if S_{n} is a simple symmetric random walk, then one could find a probability space supporting a Brownian motion and a simple symmetric random walk such that

$$
\begin{equation*}
\sup _{x \in \mathbb{Z}}|\eta(x, n)-L(x, n)|=\mathrm{O}\left(n^{1 / 4+\xi}\right) \quad \text { a.s. } \tag{1.1}
\end{equation*}
$$

for any $\varepsilon>0$. Since Révész's work, there have been a number of papers seeking to improve the rate of convergence and to weaken the assumptions on the X 's. See [6] and [3] and the references therein.

The goal of this paper is to obtain what seems to be the optimal rate, under fairly weak assumptions on the X_{i} 's. Let us consider the lattice case first with the X_{i} 's taking values in \mathbb{Z}. [6] showed that if X_{1} possesses a moment generating function which is finite in a neighborhood of the origin, then the rate in (1.1) can be improved to

$$
\begin{equation*}
n^{1 / 4}(\log n)^{1 / 2}(\log \log n)^{1 / 4} \tag{1.2}
\end{equation*}
$$

This rate is achieved by a Skorokhod embedding of S_{n} in Z_{t}. They also show that this is the best possible rate for any Skorokhod embedding. We first prove that the above rate (1.2) holds whenever the X_{i} 's have $5+\varepsilon$ moments.

[^0]For the nonlattice case, previous work includes that of [3] who obtained a rate less optimal than (1.2) under the assumption of 8 or more moments. Borodin also required the assumption that

$$
\begin{equation*}
\int|\phi(u)|^{2} \mathrm{~d} u<\infty \tag{1.3}
\end{equation*}
$$

where $\phi(u)=\mathbb{E} \exp \left(i u \xi_{1}\right)$ is the characteristic function of the increments. It is easy to see that Borodin's condition implies that S_{2} has a bounded density (see Section 4). We require much less: that for some j_{0} the distribution of $S_{j_{0}}$ has a nonzero absolutely continuous part. We then obtain the rate (1.2) when the X_{i} 's have $6+\varepsilon$ moments.

The bulk of the work is done in Section 2. There we obtain a moment estimate on how much local time at 0 of the Brownian motion increases up until the first visit of the random walk to $\left[-\frac{1}{2} ; \frac{1}{2}\right]$. Once we have this, we can in Section 3 handle the lattice case quite easily. The necessary modifications for the nonlattice case are done in Section 4; the key idea is the use of the ergodic theorem for an appropriate additive functional.

The letter c, with or without subscripts, denotes constants whose values are unimportant and which may change from line to line.

2. Skorokhod embedding

Let X_{i} be a sequence of i.i.d. random variables with mean 0 , variance 1 and $\mathbb{E}\left|X_{i}\right|^{r}<\infty$ for some $r \in(2, \infty)$. Let $S_{n}=\sum_{i=1}^{n} X_{i}$. As usual, the random walk is either lattice or nonlattice. In the lattice case, let us assume that the lattice is \mathbb{Z} and the random walk is strongly aperiodic ([12]); we leave to the reader the easy modifications necessary for the general lattice case.

Let Z_{i} be Brownian motion, and let $\tau(j)$ be a sequence of stopping times embedding the random walk in Z_{t}. That is, $\tau(0)=0$, the $\tau(j)-\tau(j-1)$ are i.i.d., and $Z(\tau(j))-Z(\tau(j-1))$ has the same law as X_{j}. There is no loss of generality in taking $X_{j}=Z(\tau(j))-Z(\tau(j-1))$, and so $S_{n}=Z(\tau(n))$. We will sometimes write \mathbb{P} for \mathbb{P}^{0}.

In this paper we require that the $\tau(j)$ be the Skorokhod embedding defined in [4]. It is very likely that our results also hold for some of the other Skorokhod embeddings as well.

Let

$$
I_{j}=\left[2^{j}, 2^{j+1}\right], \quad j=1,2, \ldots, \quad I_{0}=[0,2] .
$$

Let $J=\left[-\frac{1}{2}, \frac{1}{2}\right]$. Let

$$
T_{J}-\min \left\{i:\left|S_{i}\right| \subset I_{j}\right\}, \quad \sigma=\min \left\{i: S_{i} \subset J\right\} .
$$

We start with some upper bounds on σ. Note that in the next two lemmas, only second moments are necessary in the proofs.

Lemma 2.1. (a) For each R there exists c such that

$$
\sup _{|x| \leqslant R} \mathbb{P}^{x}(\sigma>n) \leqslant c / \sqrt{n} .
$$

(b) There exists c such that

$$
\sup _{x \in J} \mathbb{P}^{x}\left(T_{j}<\sigma\right) \leqslant c 2^{-j}
$$

Proof. Let $\rho_{[a, b]}=\min \left\{i: S_{i} \in[a, b]\right\}$, so that $\sigma=\rho_{[-1 / 2,1 / 2]}$. Suppose $\delta<\frac{1}{2}$. If

$$
B_{j}=\left\{\left|S_{j}\right|<\frac{1}{2} \delta,\left|S_{i}\right|>\frac{1}{2} \delta \text { for } j+1 \leqslant i \leqslant n\right\},
$$

then

$$
\begin{aligned}
\mathbb{P}^{0}\left(B_{j}\right) & \geqslant \mathbb{P}^{0}\left(\left|S_{j}\right|<\frac{1}{2} \delta,\left|S_{i}-S_{j}\right|>\delta \text { for } j+1 \leqslant i \leqslant n\right) \\
& =\mathbb{P}^{0}\left(\left|S_{j}\right|<\frac{1}{2} \delta\right) \mathbb{P}^{0}\left(\rho_{[-\delta, s]}>n-j\right) \\
& \geqslant \mathbb{P}^{0}\left(\left|S_{j}\right|<\frac{1}{2} \delta\right) \mathbb{P}^{0}\left(\rho_{[\delta, \delta]}>n\right) .
\end{aligned}
$$

By the local central limit theorem ([12, Theorem 7.9] in the lattice case, [13] in the nonlattice case), $\mathbb{P}^{0}\left(\left|S_{j}\right|<\frac{1}{2} \delta\right) \geqslant c / \sqrt{j}$ if j is large enough, c depending on δ. The B_{j} are disjoint, so for n large enough,

$$
1 \geqslant \mathbb{P}^{0}\left(\bigcup_{j=[n / 2]}^{n} B_{j}\right) \geqslant\left(\sum_{j=[n / 2]}^{n} c / \sqrt{j}\right) \mathbb{P}^{0}\left(\rho_{\lceil-\delta, \delta\rceil}>n\right)=c \sqrt{n} \mathbb{P}^{0}\left(\rho_{[-\delta, \delta]}>n\right) .
$$

Let I be any closed interval of length less than $\frac{1}{8}$ contained in $[-R, R]$. If we are in the lattice case, we insist that $I \cap \mathbb{Z} \neq \emptyset$ as well. By the local central limit theorem, for some m and $c, \mathbb{P}^{0}\left(S_{m} \in I\right)>c$. By taking $\delta<\frac{1}{8}$ small enough, we get, changing m and c is necessary, that

$$
\mathbb{P}^{0}\left(S_{m} \in I, S_{1}, \ldots, S_{m-1} \notin[-\delta, \delta]\right) \geqslant c_{1} .
$$

It follows that

$$
c / \sqrt{n} \geqslant \mathbb{P}^{0}\left(\rho_{[-\delta, \delta]}>n+m\right) \geqslant c_{\mathrm{t}} \inf _{y \in I} \mathbb{P}^{y}\left(\rho_{[-\delta, \delta]}>n\right) .
$$

Hence for some $y \in I, \mathbb{P}^{y}\left(\rho_{[\delta, \delta]}>n\right) \leqslant c / \sqrt{n}, c$ depending on δ and R. By translation invariance, if $x \in I$,

$$
\mathbb{P}^{x}\left(\rho_{[y-x-\delta, y-x+\delta]}>n\right) \leqslant c / \sqrt{n},
$$

c depending on δ and R. Since $|y-x| \leqslant \frac{1}{8}$ and $\delta<\frac{1}{8}$, then $\rho_{[y-x-\delta, y-x+\delta]} \geqslant \sigma$, so

$$
\begin{equation*}
\mathbb{P}^{x}(\sigma>n) \leqslant c / \sqrt{n} \tag{2.1}
\end{equation*}
$$

This and a covering argument prove (a) for n large. For n small the result is trivial since probabilities are bounded by 1 and we can get our result by taking c large enough.

By the invariance principle

$$
\mathbb{P}^{0}\left(\max _{k \leqslant 2^{2 j}}\left|S_{k}\right| \leqslant \frac{1}{4} \cdot 2^{j}\right)>c_{1} .
$$

If $T_{j}<\sigma$ and in the next $2^{2 j}$ steps S_{k} moves a distance at most $\frac{1}{4} \cdot 2^{j}$, then $\sigma>2^{2 j}$. So

$$
c_{1} \sup _{y \in J} \mathbb{P}^{y}\left(T_{j}<\sigma\right) \leqslant \sup _{y \in J} \mathbb{P}^{y}\left(\sigma>2^{2 j}\right) \leqslant c 2^{-j}
$$

by part (a). This gives (b).
Let

$$
N_{j}=\sum_{i=0}^{\sigma} 1_{L_{i}}\left(S_{i}\right) .
$$

Lemma 2.2. There exist c_{1} and c_{2} such that

$$
\sup _{x} \mathbb{P}^{x}\left(N_{j} \geqslant m 2^{2 j}\right) \leqslant c_{1} \exp \left(-c_{2} m\right) .
$$

Proof. We prove the result for large j, the case of small j being much easier (cf. proof of Lemma 2.1). Since $\operatorname{Var} X_{1}=1$, there exist b_{1}, b_{2}, and c_{1} such that if $y \in J$,

$$
\begin{equation*}
\mathbb{P}^{y}\left(\left|S_{1}\right| \in\left[\frac{1}{2}+b_{1}, b_{2}\right]\right) \geqslant c_{1} . \tag{2.2}
\end{equation*}
$$

Let $\mu=\sigma \wedge c 2^{2 j}$. If $|z| \leqslant b_{2}$, then by Lemma 2.1(a),

$$
\mathbb{E}^{2} \mu \leqslant \sum_{k=0}^{c 2^{2 j}} \mathbb{P}^{2}(\sigma \geqslant k) \leqslant 1+c \sum_{k=1}^{c 2^{2 j}} k^{-1 / 2} \leqslant c 2^{j} .
$$

If also $|z| \geqslant \frac{1}{2}+b_{1}$, then since $S_{n}^{2}-n$ and S_{n} are both martingales,

$$
\begin{aligned}
b_{1}+\frac{1}{2} & \leqslant|z|=\left|\mathbb{E}^{z}\left(S_{\mu} ; \mu=\sigma\right)+\mathbb{E}^{z}\left(S_{\mu} ; \sigma>c 2^{2 j}\right)\right| \\
& \leqslant \frac{1}{2}+\left(\mathbb{E}^{2} S_{\mu}^{2}\right)^{1 / 2}\left(\mathbb{P}^{2}\left(\sigma>c 2^{2 j}\right)\right)^{1 / 2}=\frac{1}{2}+\left(\mathbb{E}^{z} \mu\right)^{1 / 2}\left(\mathbb{P}^{2}\left(\sigma>c 2^{2 j}\right)\right)^{1 / 2},
\end{aligned}
$$

or $\mathbb{P}^{z}\left(\sigma>c 2^{2 j}\right) \geqslant b_{1}^{2} / c 2^{j}$. With (2.2),

$$
\begin{equation*}
\inf _{y \in J} \mathbb{P}^{y}\left(\sigma>c 2^{2 j}+1\right) \geqslant c 2^{-j} \tag{2.3}
\end{equation*}
$$

Let $A_{i}=\left\{S_{i} \in J, S_{i+1} \notin J, \ldots, S_{\left.\mathrm{c}^{2}{ }^{2 j} \notin J\right\}}\right.$. If $|x| \in I_{j}$, by the local central limit theorem there exists c not depending on j such that

$$
\mathbb{P}^{x}\left(S_{i} \in J\right) \geqslant c 2^{-j} \quad \text { if } \quad 2^{2 j} \leqslant i \leqslant c 2^{2 j} .
$$

If $|x| \in I_{j}, 2^{2 j} \leqslant i \leqslant c 2^{2 j}$, then using (2.3)

$$
\mathbb{P}^{x}\left(A_{i}\right) \geqslant \mathbb{E}^{x}\left(\mathbb{P}^{S_{i}}\left(\sigma>c 2^{2 j}\right) ; S_{i} \in J\right) \geqslant \mathbb{P}^{x}\left(S_{i} \in J\right) \inf _{y \in J} \mathbb{P}^{y}\left(\sigma>c 2^{2 j}\right) \geqslant c 2^{-2 j}
$$

Hence, since the A_{i} are disjoint, for $|x| \in I_{j}$,

$$
\mathbb{P}^{x}\left(\sigma<c 2^{2 j}\right) \geqslant \mathbb{P}^{x}\left(\bigcup_{i=2^{2 j}}^{c 2^{2 j}-1} A_{i}\right) \geqslant c_{2}>0 .
$$

Therefore

$$
\sup _{x} \mathbb{P}^{x}\left(N_{j} \geqslant c 2^{2 j}\right)=\sup _{|x| \in I_{j}} \mathbb{P}^{x}\left(N_{j} \geqslant c 2^{2 j}\right) \leqslant \sup _{|x| \in I_{j}} \mathbb{P}^{x}\left(\sigma>c 2^{2 j}\right) \leqslant 1-c_{2} .
$$

Since N_{j} is a subadditive functional, our result follows immediately.
Write τ for $\tau(j)$. Let $L(x, t)$ denote the local times for the Brownian motion Z_{t}.

Lemma 2.3.

$$
\sup _{x \in I_{i}} \mathbb{P}^{x}(L(0, \tau)>0) \leqslant c 2^{-r j}
$$

Proof. Let Θ be independent of Z_{t} and uniformly distributed on $\{1, \ldots, N\}$ for some $N \in \mathbb{Z}^{+}$. Let $U(\theta), D(\theta)$ be nonnegative strictly increasing functions on $1, \ldots, N$. Let $\tau=\inf \left\{t: Z_{t} \notin[-D(\Theta), U(\Theta)]\right\}$, and suppose X has the \mathbb{T}^{00} law of $Z(\tau)$. We first prove our result for such X with bounds independent of N.

Given $\Theta=\theta$, the probability that Z_{t} hits $U(\theta)$ before $D(\theta)$ is equal to $D(\theta) /(U(\theta)+D(\theta))$. So

$$
\begin{equation*}
\mathbb{E}|X|^{r} \geqslant \mathbb{E}\left(X^{+}\right)^{r}=\sum_{u \in \operatorname{Range}(U)} u^{r} \mathbb{P}(X=u)=\frac{1}{N} \sum_{\theta} \frac{U(\theta)^{r} D(\theta)}{U(\theta)+D(\theta)} . \tag{2.4}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\mathbb{E}|X|^{r} \geqslant \frac{1}{N} \sum_{\theta} \frac{D(\theta)^{r} U(\theta)}{U(\theta)+D(\theta)} \tag{2.5}
\end{equation*}
$$

Suppose $x \in I_{j}$. B Chebyshev,

$$
\mathbb{P}^{x}\left(|X| \geqslant \frac{1}{2} \cdot 2^{j}\right) \leqslant \mathbb{E}|X|^{r} /\left(\frac{1}{2} \cdot 2^{j}\right)^{r} \leqslant c 2^{-r j}
$$

If $|X| \leqslant \frac{1}{2} \cdot 2^{j}$ but $X<0$, then $D(\Theta) \leqslant \frac{1}{2} \cdot 2^{j}$, and Z_{t} does not hit 0 before time τ, or $L(0, \tau)=0$.

The remaining possibility is if $|X| \leqslant \frac{1}{2} \cdot 2^{j}$ but $X>0$, and hence $U(\Theta) \leqslant \frac{1}{2} \cdot 2^{j}$. Now $L(0, \tau)>0$ only if Z_{t} hits 0 before time τ, and this is impossible if $D(\Theta) \leqslant 2^{j}$. If $D(\Theta)>2^{j}$, then the probability that Z_{t} hits 0 before time τ is, conditional on $\Theta=\theta$, less than or equal to $U(\theta) /\left(2^{j}+U(\theta)\right)$. Let $A=\left\{\theta: U(\theta) \leqslant \frac{1}{2} \cdot 2^{j}, D(\theta)>2^{i}\right\}$. Then

$$
\begin{align*}
\mathbb{P}^{x}\left(|X| \leqslant \frac{1}{2} \cdot 2^{j}, X>0, L(0, \tau)>0\right) & \leqslant \frac{1}{N} \sum_{\theta \in A} \frac{U(\theta)}{2^{j}+U(\theta)} \\
& \leqslant \frac{1}{N} \sum_{\theta \in A} \frac{U(\theta)}{2^{j}} \tag{2.6}
\end{align*}
$$

But by (2.5),

$$
\begin{align*}
\mathbb{E}|X|^{r} & \geqslant \frac{1}{N} \sum_{\theta \in A} \frac{D(\theta)^{r} U(\theta)}{U(\theta)+D(\theta)} \geqslant \frac{1}{2 N} \sum_{\theta \in A} \frac{D(\theta)^{r} U(\theta)}{D(\theta)} \\
& \geqslant \frac{2^{(r-1) j}}{2 N} \sum_{\theta \in A} U(\theta) \tag{2.7}
\end{align*}
$$

Combining (2.6) and (2.7) gives our result in this case.

Any mean 0 , variance 1 random variable X can be written as the limit of random variables $X^{(n)}=Z\left(\tau^{(n)}\right)$ with τ the limit of stopping times $\tau^{(n)}$ of the form described in the first paragraph (cf. [4]). By changing to another probability space if necessary, we can assume $Z\left(\tau^{(n)}\right) \rightarrow Z(\tau)$ a.s. Since $\mathbb{P}^{x}(L(\tau, 0)>0)=\mathbb{P}^{x}\left(\inf _{s \leqslant \tau} Z_{s}<0\right)$ by the joint continuity of Brownian local time, the lemma follows.

Let us introduce the terminology that a random variable Y is a defective exponential with parameters ρ, R, and we will write $Y \sim \operatorname{DE}(\rho, R)$ if $R>0, \rho \in[0,1]$, and

$$
\mathbb{P}(Y>x)=\rho \mathrm{e}^{-R x}, \quad x>0, \quad \mathbb{P}(Y=0)=1-\rho .
$$

So Y could be considered the product of an independent $\operatorname{Bernoulli}(\rho)$ and an exponential (R).

A variation of Lemma 2.3 is:

Lemma 2.4. If $m<j-1$, set $\rho=2^{-j(r-1)-m}, R=2^{-j}$. If $m \geqslant j-1$, set $\rho=2^{-m(r-1)-j}$, $R=2^{-m}$. Then for all $\lambda>0$,

$$
\sup _{x \in I_{j}} \mathbb{P}^{x}\left(L(0, \tau)>\lambda,|X| \in I_{m}\right) \leqslant \mathbb{P}(Y>\lambda),
$$

where $Y \sim \mathrm{DE}(c \rho, c R)$.

Proof. Recall that if $S=\inf \{t: Z, \notin[-a, b]\}$, then $L(0, S)$ is stochastically smaller than an exponential $\left(a^{-1} \vee b^{-1}\right)$.

To prove Lemma 2.4, we again suppose that X is of the form described in Lemma 2.3 and take limits. There are a number of cases. We will do the hardest one; the others are similar. So suppose $m \geqslant j, X<0$. Then $D(\Theta) \in I_{m}$, and the probability that Z_{t} hits 0 before time τ is then $\leqslant N^{-1} \sum_{D(\theta) \in I_{m}}\left(U(\theta) /\left(2^{j}+U(\theta)\right)\right)$. Let

$$
\begin{aligned}
& B_{1}=\left\{\theta: D(\theta) \in I_{m}, U(\theta) \geqslant 2^{m}\right\}, \quad B_{2}=\left\{\theta: D(\theta) \in I_{m}, 2^{j} \leqslant U(\theta) \leqslant 2^{m}\right\}, \\
& B_{3}=\left\{\theta: D(\theta) \in I_{m}, U(\theta) \leqslant 2^{j}\right\} .
\end{aligned}
$$

Now

$$
\frac{1}{N} \sum_{B_{1} \cup B_{2}} \frac{U(\theta)}{2^{j}+U(\theta)} \leqslant \frac{1}{N} \nRightarrow\left(B_{1} \cup B_{2}\right),
$$

while by (2.5)

$$
\mathbb{E}|X|^{r} \geqslant \frac{1}{N} \sum_{B_{1}} \frac{D(\theta)^{r} U(\theta)}{U(\theta)+D(\theta)} \geqslant \frac{1}{4 N} \sum_{B_{1}} D(\theta)^{r} \geqslant \frac{2^{r m}}{4 N} \not \#\left(B_{1}\right)
$$

and

$$
\mathbb{E}|X|^{r} \geqslant \frac{1}{N} \sum_{B_{2}} \frac{D(\theta)^{r} U(\theta)}{U(\theta)+D(\theta)} \geqslant \frac{1}{4 N} \sum_{B_{2}} D(\theta)^{r-1} U(\theta) \geqslant \frac{2^{(r-1) m+j}}{4 N} \#\left(B_{2}\right) .
$$

On the other hand,

$$
\frac{1}{N} \sum_{B_{3}} \frac{U(\theta)}{2^{j}+U(\theta)} \leqslant \frac{2^{-j}}{N} \sum_{B_{3}} U(\theta)
$$

while by (2.5) again,

$$
\mathbb{E}|X|^{r} \geqslant \frac{1}{N} \sum_{B_{3}} \frac{D(\theta)^{r} U(\theta)}{D(\theta)+U(\theta)} \geqslant \frac{2^{m(r-1)}}{2 N} \sum_{B_{3}} U(\theta) .
$$

Combining,

$$
\frac{1}{N} \sum_{B_{1} \cup B_{2} \cup B_{3}} \frac{U(\theta)}{2^{j}+U(\theta)} \leqslant 2^{-m(r-1)-j},
$$

which proves the assertion concerning ρ for this case.
Using the strong Markov property at the first time Z_{t} hits $0, L(0, \tau)$ is stochastically smaller than an exponential with parameter $((U(\Theta)+x) \wedge(D(\Theta)-x))^{-1}$. In the case $m \geqslant j-1, X<0$, we have $D(\Theta) \in I_{m}, x \in I_{j}$, and so $R \leqslant c 2^{-m}$.

Lemma 2.5. Suppose $\rho \in[0,1], R>0$, and we have random variables E_{i} and increasing σ-fields \mathscr{G}_{i} such that E_{i} is \mathscr{G}_{i} measurable and the law of E_{i+1} given \mathscr{G}_{i} is stochastically smaller than $a \operatorname{DE}(\rho, R)$. Then

$$
\mathbb{P}\left(\sum_{i=1}^{n} E_{i}>x\right) \leqslant \exp \left(-\frac{1}{2} R x+\rho n\right)
$$

Proof. Let $a=\frac{1}{2} R$. Then

$$
\mathbb{E}\left(\mathrm{e}^{a E_{i+1}} \mid \mathscr{G}_{i}\right) \leqslant(1-\rho)+\frac{\rho R}{R-a}=1+\rho
$$

So

$$
\begin{aligned}
\mathbb{E}\left(\exp \left(a \sum_{i=1}^{n} E_{i}\right)\right) & =\mathbb{E}\left(\exp \left(a \sum_{i=1}^{n-1} E_{i}\right) \mathbb{E}\left(\exp \left(a E_{n}\right) \mid \mathscr{G}_{n-1}\right)\right) \\
& \leqslant(1+\rho) \mathbb{E}\left(\exp \left(a \sum_{i=1}^{n-1} E_{i}\right)\right)
\end{aligned}
$$

By induction,

$$
\mathbb{E}\left(\exp \left(a \sum_{i=1}^{n} E_{i}\right)\right) \leqslant(1+\rho)^{n} \leqslant \mathrm{e}^{\rho n}
$$

Finally, Chebyshev's inequality yields

$$
\mathbb{P}\left(\sum_{i=1}^{n} E_{i}>x\right) \leqslant \mathrm{e}^{-a x} \mathbb{E} \exp \left(a \sum_{i=1}^{n} E_{i}\right) \leqslant \exp \left(-\frac{1}{2} R x+\rho n\right) .
$$

This completes the proof.

We are ready for the main theorem of this section. Recalling the Skorokhod embedding given by the $\tau(j)$'s, let

$$
\Delta=L(0, \tau(\sigma)) .
$$

Theorem 2.6. Suppose $\mathbb{E}|X|^{r}<\infty$ for some $r \in(3, \infty)$. Then for each $\delta>0$, $\sup _{x \in J} \mathbb{E}^{x} \Delta^{r-1-\delta}<\infty$.

Proof. Let $K \in \mathbb{Z}^{+}$. We will obtain an estimate on $\mathbb{P}\left(\Delta \geqslant 2^{K}\right)$. Let

$$
V_{j}=L(0, \tau(j))-L(0, \tau(j-1)) .
$$

Take ε small and let $K_{0}=[K /(1+\varepsilon)]$.
First we consider $j \geqslant K_{0}$. Let $x \in J$. If ν_{t} is the l th time that $S_{i} \in I_{j}$, then by the strong Markov property and Lemma 2.3,

$$
\mathbb{P}^{y}\left(S_{\nu_{i}} \in I_{j}, V_{\nu_{l}+1}>0\right) \leqslant c 2^{-r j} .
$$

Then by Lemmas 2.1 and 2.2,

$$
\begin{aligned}
& \mathbb{P}^{x}\left(\sum_{i=0}^{\sigma-1} 1_{I_{l}}\left(S_{i}\right) V_{i+1}>0\right) \\
& \leqslant \mathbb{P}^{x}\left(T_{j}<\sigma\right)\left[\sup _{v} \mathbb{P}^{v}\left(N_{j} \geqslant 2^{(2+2 \varepsilon / j}\right)\right. \\
& \left.\quad+\sup _{y} \mathbb{P}^{v y}\left(S_{\nu_{j}} \in I_{j} \text { and } V_{\nu_{l}+1}>0 \text { for some } l \leqslant 2^{(2+2 \varepsilon) j}\right)\right] \\
& \leqslant 2^{-j}\left[\exp \left(-c 2^{\varepsilon j}\right)+2^{(2+2 \varepsilon) j} \sup _{y} \mathbb{P}^{y}\left(S_{\nu_{l}} \in I_{j}, V_{\nu_{l}+1}>0\right)\right] \\
& \leqslant
\end{aligned}
$$

We get a similar estimate when we replace I_{j} by $-I_{j}$. Summing from K_{0} to ∞,

$$
\begin{equation*}
\mathbb{P}^{\times}\left(\sum_{i=0}^{\alpha-1} \sum_{j=K_{0}}^{\infty} 1_{t_{j}}\left(\left|S_{i}\right|\right) V_{i+1}>0\right) \leqslant c 2^{K_{0}(1-r+2 \varepsilon)} \tag{2.8}
\end{equation*}
$$

We now consider $m \geqslant K_{0}, j \leqslant K_{0}$. By Chebyshev and the strong Markov property,

$$
\sup _{y} \mathbb{P}^{y}\left(\left|X_{v_{1}+1}\right| \in I_{m}\right) \leqslant c 2^{-\prime \prime} .
$$

So

$$
\begin{aligned}
& \mathbb{P}^{x}\left(\sum_{i=0}^{\alpha-1} 1_{I_{i}}\left(S_{i}\right) 1_{I_{m}}\left(\left|X_{i+1}\right|\right) V_{i+1}>0\right) \\
& \leqslant \mathbb{P}^{x}\left(T_{j}<\sigma\right)\left[\sup _{y} \mathbb{P}^{y}\left(N_{j}>m K 2^{(2+\varepsilon) j}\right)\right. \\
& \left.\quad \quad \quad \sup _{y} \mathbb{P}^{y}\left(\left|X_{\nu_{l}+1}\right| \in I_{m} \text { for some } l \leqslant m K 2^{(2+\varepsilon) j}\right)\right] \\
& \leqslant
\end{aligned}
$$

Summing over m from K_{0} to ∞ and doing a similar estimate for $-I_{j}$, we get

$$
\mathbb{P}^{x}\left(\sum_{i=0}^{\sigma-1} \sum_{m=K_{0}}^{\infty} 1_{I_{i}}\left(\left|S_{i}\right|\right) 1_{I_{I, \prime}}\left(\left|X_{i, 1}\right|\right) V_{i, 1}>0\right) \leqslant c 2^{K_{0}(1-r+3 \varepsilon)}
$$

and since we are considering here the case where $j \leqslant K_{0}$,

$$
\begin{equation*}
\mathbb{P}^{\times}\left(\sum_{i=0}^{v-1} \sum_{m \geqslant K_{0, j} \leqslant K_{0}} 1_{I_{j}}\left(\left|S_{i}\right|\right) 1_{I_{I_{m}}}\left(\left|X_{i+1}\right|\right) V_{i+1}>0\right) \leqslant c K_{0} 2^{K_{0}(1-r+3 e)} . \tag{2.9}
\end{equation*}
$$

We now consider $j, m \leqslant K_{0}$. We will show that in this case

$$
\begin{equation*}
\mathbb{P}^{x}\left(\sum_{i=0}^{\sigma-1} 1_{I_{i}}\left(S_{i}\right) 1_{I_{m}}\left(\left|X_{i+1}\right|\right) V_{i+1}>2^{K} / K^{2}\right) \leqslant c 2^{K_{0}(1-r+4 \varepsilon)} \tag{2.10}
\end{equation*}
$$

Once we have (2.10), together with a similar bound with I_{j} replaced by $-I_{j}$, then summing over the K_{0}^{2} possible values of j and m will give

$$
\begin{equation*}
\mathrm{J}^{\times}\left(\sum_{i=0}^{\sigma-1} 1_{I_{i}}\left(\left|S_{i}\right|\right) 1_{I_{m}}\left(\left|X_{i+1}\right|\right) V_{i+1}>2^{K}\right) \leqslant K_{0}^{2} c 2^{K_{0}(i-r+4 \varepsilon)} \tag{2.11}
\end{equation*}
$$

Then (2.8), (2.9) and (2.11) together give

$$
\sup _{x \in J} \mathbb{P}^{x}\left(\Delta>2^{K}\right) \leqslant c K^{2} 2^{K(1-r+4 \varepsilon) /(1+\varepsilon)} .
$$

Taking ε small enough then gives us the desired estimate on $\mathbb{P}^{x}\left(\Delta>2^{K}\right)$ to complete the proof.

So we look at (2.11). Suppose $m<j-1$.

$$
\begin{align*}
& \mathbb{P}^{x}\left(\sum_{i=0}^{\sigma-1} 1_{l_{j}}\left(S_{i}\right) 1_{I_{m, m}}\left(\left|X_{i+1}\right|\right) V_{i+1}>2^{K} / K^{2}\right) \\
& \quad \leqslant \mathbb{P}^{x}\left(N_{j} \geqslant c K^{2} 2^{(2+2 \varepsilon) j}\right) \\
& \quad+\mathbb{P}^{x}\left(\sum_{l=1}^{c K^{2} 2^{(2+2+2) i}} 1_{l_{j}}\left(S_{\nu_{l}}\right) 1_{l_{l_{m}}}\left(\left|X_{\nu_{l}+1}\right|\right) V_{\nu_{l}+1}>2^{K} / K^{2}\right) . \tag{2.12}
\end{align*}
$$

By Lemma 2.2, the first term on the right of (2.12) is less than $c \exp \left(-c_{1} c K^{2} 2^{\text {Fj }}\right) \leqslant$ $c \exp \left(-c K^{2}\right)$. Using Lemmas 2.4 and 2.5 with $\rho=2^{-j(r-1)-m}, R=2^{-j}, x=2^{K} / K^{2}$, $n=c K^{2} 2^{(2+2 \varepsilon) j}$, and $\mathscr{G}_{l}=\sigma\left(S_{\nu_{1}}, \ldots, S_{\nu_{l}}\right)$, the second term on the right hand side of (2.12) is

$$
\leqslant \exp \left(-c 2^{-j} 2^{K} / K^{2}+c 2^{-j(r-1)-m} K^{2} 2^{(2+2 \varepsilon) j}\right)
$$

Now

$$
j \leqslant K_{0}=[K /(1+\varepsilon)] \leqslant K-\frac{1}{2} K \varepsilon,
$$

or $K-j \geqslant \frac{1}{2} K \varepsilon$. Since $r>3,(2+2 \varepsilon) j-j(r-1)-m<0$ if ε is small enough. Thus the second term on the right hand side of (2.12) is

$$
\leqslant \exp \left(-c 2^{K_{\varepsilon} / 2} / K^{2}+c K^{2}\right) \leqslant c \exp \left(K_{0}(1-r+4 \varepsilon)\right)
$$

This gives (2.13) when $m<j-1$. The case $m \geqslant j-1$ is very similar.

Corollary 2.7. For each $\delta>0$,

$$
\sup _{x \in \mathbb{R}} \mathbb{E} \Delta^{r-2-\delta}<\infty .
$$

Proof. The proof is the same as the proof of Theorem 2.6, except that we no longer have the term $\mathbb{P}^{x}\left(T_{j}<\sigma\right)$ to help us. This accounts for the exponent $r-2-\delta$.

Remarks. (1) Csörgő and Horváth [6] proved $\mathbb{E}^{0} \Delta^{2}<\infty$ when $\mathbb{E}\left|X_{1}\right|^{3}<\infty$ in the lattice case.
(2) Theorem 2.6 is trivial when S_{n} is a simple symmetric random walk.

3. Lattice case

In this section we assume the X_{i} are i.i.d., \mathbb{Z}-valued and strongly aperiodic. We assume now that $\mathbb{E}\left|X_{i}\right|^{r}<\infty$ for some $r>5$.

Let $\sigma(1)=\min \left\{i>0: S_{i}=0\right\}, \sigma(j+1)=\min \left\{i>\sigma(j): S_{i}=0\right\}$. Let

$$
\Delta_{i}=L(\tau(\sigma(i)), 0)-L(\tau(\sigma(i-1)), 0) .
$$

By the strong Markov property, the Δ_{i} are i.i.d., and by Theorem 2.6, have more than 4 moments. Let

$$
\eta(x, n)=\sum_{i=0}^{n} 1_{\{x\}}\left(S_{i}\right), \quad x \in \mathbb{Z}, \quad n \in \mathbb{Z}^{+}
$$

and define $\eta(x, t)$ by linear interpolation for other values of x and t. Let $\kappa=\mathbb{E}^{0} \Delta_{1}$. Later we shall show $\kappa=1$.

Lemma 3.1. For $\varepsilon>0$ sufficiently small,

$$
\mathbb{P}\left(\sup _{i \leqslant m}\left|\sum_{j=1}^{i} \Delta_{j}-\kappa i\right|>c_{1}(m \log m)^{1 / 2}\right) \leqslant c m^{-(1+\varepsilon / 8)} .
$$

Proof. Let $\bar{\Delta}_{i}=\Delta_{i} 1_{\left(\Delta_{i} \leqslant m^{1 / 2-\varepsilon / 16)}\right.}$. Then

$$
\begin{aligned}
\mathbb{P}\left(\bar{\Delta}_{i} \neq \Delta_{i} \text { for some } i \leqslant m\right) & \leqslant m \mathbb{P}\left(\bar{\Delta}_{1} \neq \Delta_{1}\right)=m \mathbb{P}\left(\Delta_{1} \geqslant m^{(1 / 2-\varepsilon / 16)}\right) \\
& \leqslant m \frac{\mathbb{E} \Delta_{1}^{4+\varepsilon / 2}}{m^{(1 / 2-\varepsilon / 16)(4+\varepsilon / 2)}} \leqslant c m^{(1+\varepsilon / 8)}
\end{aligned}
$$

if ε is sufficiently small. Since

$$
\begin{aligned}
\mathbb{E}\left(\Delta_{i}-\overline{\Delta_{i}}\right) & \leqslant \int_{m^{1 / 2 \cdots / 16}}^{\infty} \mathbb{P}\left(\Delta_{i}-\bar{\Delta}_{i}>x\right) \mathrm{d} x \\
& \leqslant c \int_{m^{1 / 2-\varepsilon / 16}}^{\infty} x^{-(1 / 2-\varepsilon / 16)(4+\varepsilon / 2)} \mathrm{d} x \leqslant m^{-1 / 2-\xi / 16},
\end{aligned}
$$

then $\sum_{i-1}^{m}\left|\mathbb{E} \bar{\Delta}_{i}-\kappa\right|=o\left(m^{1 / 2}\right)$.

So to prove the lemma, it suffices to show

$$
\mathbb{P}\left(\sup _{j \leqslant m}\left|\sum_{i=1}^{j}\left(\bar{\Delta}_{i}-\mathbb{E} \bar{U}_{i}\right)\right|>c_{1}(m \log m)^{1 / 2}\right) \leqslant c m^{-(1+\varepsilon / 8)} .
$$

But by Bernstein's inequality, since $\operatorname{Var} \bar{\Delta}_{i} \leqslant \mathbb{E} \bar{\Delta}_{i}^{2} \leqslant \mathbb{E} \Delta_{i}^{2}=\mathbb{E} \Delta_{1}^{2}<\infty$ and $\bar{\Delta}_{i}$ is bounded, this probability is

$$
\begin{aligned}
& \leqslant \exp \left(\frac{-c_{1}^{2} m \log m}{c m+c m^{1 / 2-\varepsilon / 16} c_{1}(m \log m)^{1 / 2}}\right) \\
& \leqslant \exp \left(-c_{2} \log m\right) \leqslant c m^{-(1+\varepsilon / 8)}
\end{aligned}
$$

if c_{1} is large enough.
Let

$$
\begin{aligned}
& A_{n}=\left\{\sup _{x \in \mathbb{Z}} \eta(x, m) \leqslant 4(m \log \log m)^{1 / 2} \text { for all } m \geqslant n\right\}, \\
& B_{n}=\left\{|\tau(m)-m| \leqslant 4(m \log \log m)^{1 / 2} \text { for all } m \geqslant n\right\}, \\
& C_{n}=\left\{\left|S_{m}\right| \leqslant 4(m \log \log m)^{1 / 2} \text { for all } m \geqslant n,\left|Z_{t}\right| \leqslant 4(t \log \log t)^{1 / 2} \text { for all } t \geqslant n\right\} .
\end{aligned}
$$

Lemma 3.2. $1_{A_{n}} \rightarrow 1$ a.s., $1_{B_{n}} \rightarrow 1$ a.s., $1_{C_{n}} \rightarrow 1$ a.s.
Remark. The assertion concerning $1_{A, n}$ follows from [10]. We give a proof, however, that will also work for the nonlattice case of Section 4.

Proof of Lemma 3.2. Since the X_{i} have more than 5 moments, then

$$
\sup _{t \leqslant 1}\left|S_{[n t]} / \sqrt{n}-Z_{n t} / \sqrt{n}\right|=\mathrm{O}\left(n^{-\beta}\right), \quad \text { a.s. }
$$

for some $\beta>0$ (for a proof see [8], for example). Since $L(\sqrt{n} x, n t) / \sqrt{n}$ is the local time at time t of the Brownian motion $Z_{n t} / \sqrt{n}$, then by [1],

$$
\begin{equation*}
\sup _{x \in \mathbb{Z} / \sqrt{n, t \leq 1}}|\eta(\sqrt{n} x,[n t]) / \sqrt{n}-L(\sqrt{n} x,[n t]) / \sqrt{n}|-\mathrm{O}\left(n^{-\beta / 12}\right) \quad \text { a.s. } \tag{3.1}
\end{equation*}
$$

By [10],

$$
\limsup _{n} \sup _{y} \frac{L(y, n)}{(n \log \log n)^{1 / 2}}=\sqrt{2} \quad \text { a.s. }
$$

It follows immediately that

$$
\begin{equation*}
\lim _{n} \sup _{n} \sup _{y \in \mathbb{Z}} \frac{\eta(y, n)}{(n \log \log n)^{1 / 2}}=\sqrt{2} \quad \text { a.s., } \tag{3.2}
\end{equation*}
$$

from which $1_{A_{n}} \rightarrow 1$ a.s. follows.
Since $Z_{t}^{2}-t$ is a martingale, by the Burkholder-Davis-Gundy inequalities, $\mathbb{E} \tau(1)^{2} \leqslant c \mathbb{E}|Z(\tau(1))|^{4}=c \mathbb{E}\left|X_{1}\right|^{4}<\infty$ and also $\mathbb{E} \tau(1)=\mathbb{E} Z(\tau(1))^{2}=\mathbb{E} X_{1}^{2}=1$. So $1_{B_{11}} \rightarrow 1$ a.s., by the law of the iterated logarithm for the $\tau(i)$ sequence.

The assertion about $1_{C_{n}}$ is an immediate consequence of the law of the iterated logarithm for the S_{n} sequence and the one for Brownian motion.

Let $r_{n}=n^{1 / 4}(\log n)^{1 / 2}(\log \log n)^{1 / 4}$.

Lemma 3.3.

$$
\mathbb{P}\left(\sup _{j * n}|\eta(0, j)-L(0, j)| \geqslant c r_{n} ; A_{n} \cap B_{n} \cap C_{n}\right) \leqslant c n^{-1 / 2-\varepsilon}
$$

Proof. Let

$$
D_{m}=\left\{\sup _{i \leqslant m}\left|\sum_{j=1}^{i} \Delta_{j}-\kappa i\right|>c(m \log m)^{1 / 2}\right\} .
$$

Suppose $\omega \in A_{n} \cap B_{n} \cap C_{n} \cap\left(\bigcap_{\left.\{j:\rangle^{\geqslant} \geqslant m\right\}} D_{2^{j}}^{\mathrm{c}}\right)$. Then for k sufficiently large,

$$
\begin{equation*}
\sup _{j \leqslant k}\left|\sum_{i=1}^{j} \Delta_{i}-\kappa j\right|(\omega)<c(k \log k)^{1 / 2} . \tag{3.3}
\end{equation*}
$$

By (3.1), $\eta(0, m) \rightarrow \infty$ as $m \rightarrow \infty$. In (3.3), take $j=\eta(0, m)$ and note $\Delta(\eta(0, m))=$ $L(0, \tau(\sigma(\eta(0, m))))$. Since $m \geqslant \sigma(\eta(0, m))$,

$$
\begin{aligned}
L(0, \tau(m)) & \geqslant L(0, \tau(\sigma(\eta(0, m))))=\Delta(\eta(0, m)) \\
& \geqslant \kappa \eta(0, m)-c(\eta(0, m) \log \eta(0, m))^{1 / 2}
\end{aligned}
$$

Since $m \leqslant \sigma(\eta(0, m)+1)$, setting $j=\eta(0, m)+1$,

$$
\begin{aligned}
L(0, \tau(m)) & \leqslant L(0, \tau(\sigma(\eta(0, m)+1)))=\Delta(\eta(0, m)+1) \\
& \leqslant \kappa(\eta(0, m)+1)+c([\eta(0, m)+1] \log [\eta(0, m)+1])^{1 / 2} \\
& \leqslant \kappa \eta(0, m)+c_{1}(\eta(0, m) \log \eta(0, m))^{1 / 2}
\end{aligned}
$$

Hence for n large,

$$
\sup _{j \leqslant n}|L(0, \tau(j))-\kappa \eta(0, j)| \leqslant c(\eta(0, m) \log \eta(0, m))^{1 / 2} .
$$

Since $\omega \in A_{n}$,

$$
\sup _{j \leqslant n}|L(0, \tau(j))-\kappa \eta(0, j)| \leqslant c r_{n} .
$$

By standard estimates on Brownian local time, since $\omega \in B_{n}$,

$$
\sup _{j \leqslant n}|L(0, \tau(j))-L(0, j)|=\mathrm{O}\left((|\tau(n)-n| \log |\tau(n)-n|)^{1 / 2}\right)=\mathrm{O}\left(r_{n}\right) .
$$

Therefore

$$
\begin{aligned}
& \mathbb{P}\left(\sup _{j \leqslant n}|L(0, j)-\kappa \eta(0, j)| \geqslant c r_{n} ; A_{n} \cap B_{n} \cap C_{n}\right) \\
& \quad \leqslant \mathbb{P}\left(A_{n} \cap B_{n} \cap C_{n} \cap\left(\bigcup_{, \gg n^{1 / 2+\varepsilon / 16}} D_{2^{i}}\right)\right) \\
& \quad \leqslant c n^{-1 / 2-\varepsilon}
\end{aligned}
$$

by Lemma 3.1.

Using a standard Borel-Cantelli argument for the sequence $n=2^{i}$,

$$
\sup _{j \leqslant n}|\kappa \eta(0, j)-L(0, j)| / \sqrt{n}=\mathrm{O}\left(r_{n} / \sqrt{n}\right) \quad \text { a.s. }
$$

Using (3.2) again, we conclude that $\kappa=1$.

Theorem 3.4.

$$
\sup _{x \in \mathbb{Z}, j \leqslant n}|\eta(x, j)-L(x, j)|=\mathrm{O}\left(r_{n}\right) \quad \text { a.s. }
$$

Proof. Fix $y \in \mathbb{Z}$. Let $N=\min \{i: Z(\tau(i))=y\}, U=\tau(i)$. By the strong Markov property at time U, Lemma 3.3 tells us that

$$
\begin{aligned}
& \mathbb{P}\left(\sup _{j \leqslant n}|[\eta(y, j)-\eta(y, N-1)]-[L(y, j)-L(y, U)]|>c r_{n} ; A_{n} \cap B_{n} \cap C_{n}\right) \\
& \quad \leqslant c n^{-1 / 2-\varepsilon} .
\end{aligned}
$$

Of course, $\eta(y, N-1)=0$, P-a.s. On the other hand, by translation invariance, Chebyshev, and Corollary 2.7,

$$
\mathbb{P}\left(L(y, U)>c r_{n}\right) \leqslant \mathbb{P}^{-y}\left(\Delta_{1}>c r_{n}\right) \leqslant c \mathbb{E}^{-y} \Delta_{1}^{3} / r_{n}^{3} \leqslant n^{-1 / 2-\varepsilon}
$$

Therefore,

$$
\begin{equation*}
\mathbb{P}\left(\sup _{j \leqslant n} \eta(y, j)-L(y, j) \mid>c r_{n} ; A_{n} \cap B_{n} \cap C_{n}\right) \leqslant c n^{-1 / 2-\varepsilon} . \tag{3.4}
\end{equation*}
$$

Since $\max _{j \leqslant n}\left|S_{j}\right| \leqslant n^{1 / 21 e / 2}$ and $\sup _{t \leqslant n}\left|Z_{l}\right| \leqslant n^{1 / 21+/ 2}$ on C_{n},

$$
\begin{aligned}
& \mathbb{R}\left(\sup _{j \leqslant n} \sup _{y \in \mathbb{Z}}|\eta(y, j)-L(y, j)|>c r_{n} ; A_{n} \cap B_{n} \cap C_{n}\right) \\
& \quad \leqslant 2 n^{1 / 2 \mid \varepsilon / 2} \sup _{y \in \mathbb{Z},|y| \leqslant n^{1 / 2+\epsilon / 2}} \mathbb{P}\left(\sup _{j \leqslant n}|\eta(y, j)-L(y, j)|>c r_{n} ; A_{n} \cap B_{n} \cap C_{n}\right) \\
& \quad \leqslant c\left(n^{1 / 2+\varepsilon / 2}\right)\left(n^{-1 / 2-F}\right) \leqslant c n^{-\varepsilon / 4} .
\end{aligned}
$$

We now use Borel-Cantelli along the sequence $n=2^{i}$ and Lemma 3.2 to complete the proof.

Remark. Our method can be modified to give rates for when the X_{i} have fewer than 5 moments, although the rates will be poorer than (1.2). In this connection, see also [1]. We conjecture that the rate (1.2) holds when the X_{i} have 4 moments and must deteriorate when the X_{i} have fewer than 4 moments.

4. Nonlattice case

In this section we obtain the analogous results to Section 3, except we look at the nonlattice case. We assume $\mathbb{E}\left|X_{1}\right|^{r}<\infty$ for some $r>6$, and throughout this section we also assume:

Hypothesis 4.1. For some j_{0}, the law of $S_{j_{0}}$ has a nonzero absolutely continuous part.
Remark. Borodin [3] uses the condition that $\int|\varphi(u)|^{2} \mathrm{~d} u<\infty$, where φ is the characteristic function of X_{1}. By the Fourier inversion formula, this implies that S_{2} has a bounded density, and so Hypothesis 4.1 holds in this case.

Let

$$
\begin{aligned}
& \eta(x, n)=\sum_{i=0}^{n} 1_{[x-1 / 2, x+1 / 2]}\left(S_{i}\right), \\
& \sigma(i)=\min \left\{j>\sigma(i-1): S_{j} \in J\right\}, \quad J=\left[-\frac{1}{2}, \frac{1}{2}\right]
\end{aligned}
$$

Note $Y_{i}=S_{\sigma(i)}$ is a Markov chain on J.
Recall that X is strongly nonlattice if $\lim \sup _{|u| \rightarrow \infty}|\varphi(u)|<1$. When this property holds, the results of [1] are applicable. Y_{i} satisfies Doeblin's condition if there exists a finite measure μ on $J, \varepsilon \in(0,1)$ and $j \geqslant 1$ such that if $\Lambda \subseteq J$ with $\mu(A) \leqslant \varepsilon$, then $\sup _{y \in J} \mathbb{P}^{y}\left(Y_{j} \in A\right) \leqslant 1-\varepsilon$.

Lemma 4.2. If Hypothesis 4.1. holds, then
(a) X is strongly nonlattice;
(b) Y_{i} satisfies Doeblin's condition.

Proof. If F is the distribution function of S_{j}, we can write $F=\alpha F_{\mathrm{a}}+(1-\alpha) F_{\mathrm{s}}$, $\alpha>0$, where F_{a} is the absolutely continuous part of F and F_{s} is the remainder. Let $\psi_{\mathrm{a}}, \psi_{\mathrm{s}}, \psi$ be the characteristic functions of $F_{\mathrm{a}}, F_{\mathrm{s}}, F$, respectively. By the RiemannLebesgue lemma, $\left|\psi_{\mathrm{a}}(u)\right| \rightarrow 0$ as $|u| \rightarrow \infty$. Thus $\lim \sup _{|u| \rightarrow \infty}|\psi(u)| \leqslant 1-\alpha<1$. Since $\psi(u)=(\varphi(u))^{j_{0}}$, (a) follows.

By Lemma 2.1, $\sup _{x \in J} \mathbb{P}^{x}(\sigma(1)>n) \leqslant c_{1} / \sqrt{n}$. For any $k>5$, if $\sigma(k)>n k$, then for at least one $i \leqslant k, \sigma(i+1)-\sigma(i)>n$, and by the strong Markov property,

$$
\sup _{x \in J} \mathbb{P}^{x}(\sigma(k)>n k) \leqslant c_{1} k / \sqrt{n} .
$$

Taking $n=c_{1}^{2} k^{4}$, for any $k>5$,

$$
\begin{equation*}
\sup _{x \in J} \mathbb{P}^{x}\left(\sigma(k)>c_{1}^{2} k^{5}\right) \leqslant 1 / k<\frac{1}{5} . \tag{4.1}
\end{equation*}
$$

Since the convolution of an absolutely continuous distribution with any distribution is absolutely continuous and since the distribution function of $S_{k j_{0}}$ is

$$
\left(\alpha F_{\mathrm{a}}+(1-\alpha) F_{\mathrm{s}}\right)^{* k}
$$

then the total mass of the singular part of the distribution of $S_{k_{j 0}}$ is $\leqslant(1-\alpha)^{k}$. Take $k>5$ large enough so that $(1-\alpha)^{k} \leqslant 1 /\left(4 c_{1}^{2} k^{5} j_{0}^{5}\right)$, where c_{1} is the c_{1} of (4.1). Let $j=k j_{0}$. Note a similar argument shows that the total mass of the singular part of the distribution of S_{j+i} will also be $\leqslant 1 /\left(4 c_{1}^{2} j^{5}\right)$.

Let μ be Lebesgue measure and note $\alpha(j) \geqslant j$. Let p_{i} be the density of the absolutely continuous part of S_{i}. If $x \in J$, by (4.1),

$$
\begin{align*}
\mathbb{P}^{x}\left(S_{\sigma(j)} \in A\right) & \leqslant \mathbb{P}^{x}\left(\sigma(j)>c_{1}^{2} j^{5}\right)+\sum_{i=j}^{c_{i}^{2} j^{5}} \mathbb{P}^{x}\left(S_{i} \in A\right) \\
& \leqslant \frac{1}{5}+\sum_{i=j}^{c_{i}^{2} j^{5}}\left[\int_{A-x} p_{i}(y) \mathrm{d} y+\left(4 c_{1}^{2} j^{5}\right)^{-1}\right] \\
& <\frac{1}{5}+\sum_{i=j}^{c_{i}^{2} j^{5}} \int_{A-x} p_{i}(y) \mathrm{d} y+\frac{1}{5} \tag{4.2}
\end{align*}
$$

Since $|A-x|=|A|$ for each x and $p_{i}, i=j, \ldots, c_{1}^{2} j^{5}$ is a finite collection of L^{1} functions, then provided $\varepsilon<\frac{1}{4}$ is taken small enough, $\int_{A-x} p_{i}(y) \mathrm{d} y$ will be less than $\left(4 c_{1}^{2} j^{5}\right)^{-1}$ whenever $|A|<\varepsilon$. Substituting in (4.2),

$$
\mathbb{P}^{x}\left(S_{\sigma(j)} \in A\right)<\frac{3}{4} \leqslant 1-\varepsilon,
$$

or (b) holds.

Remarks. (1) Since Doeblin's condition holds, the \mathbb{P}^{x} law of Y_{i} converges to some probability measure ν on J exponentially fast, uniformly over $x \in J$ ([7]). Let $F(x)=\mathbb{E}^{x} \Delta_{1}, \kappa=\int_{J} F(x) \nu(\mathrm{d} x)$. By Section $2, F$ is bounded on J.
(2) If the distribution of X_{i} is purely atomic but nonlattice, it is not hard to see that the random walk is not strongly nonlattice nor do the Y_{i} satisfy Doeblin's conditions with μ equal to Lebesgue measure.

Lemma 4.3. If c_{1} is large enough,

$$
\sup _{x \in 1} \mathbb{P}^{x}\left(\sup _{j \leqslant m}\left|\sum_{i=0}^{j} F\left(S_{\sigma(i)}\right)-\kappa j\right|>c_{1}(m \log m)^{1 / 2}\right) \leqslant c m^{-10} .
$$

Proof. We follows a standard argument; see [2], for example. Let

$$
G(x)=\mathbb{E}^{x} \sum_{j=0}^{\infty}\left[F\left(S_{\sigma(j)}\right)-\kappa\right] .
$$

By Remark 1 immediately preceding, the sum is absolutely convergent and G is bounded. If

$$
M_{j}=G\left(S_{\sigma(j)}\right)-G\left(S_{0}\right)-\sum_{i=0}^{j}\left[F\left(S_{\sigma(i)}\right)-\kappa\right],
$$

then M_{j} is a martingale with bounded jumps; hence $[M, M]_{j} \leqslant c j$. So by the martingale version of Bernstein's inequality (cf. [9]), for each K,

$$
\mathbb{P}^{x}\left(\sup _{j \leqslant m}\left|M_{j}\right| \geqslant c(m \log m)^{1 / 2}\right) \leqslant c m^{-K}
$$

Since G is bounded, this proves the lemma.
Lemma 4.4. For each $\varepsilon>0$, if c_{1} is large enough.

$$
\sup _{x \in J} \mathbb{P}^{x}\left(\sup _{j \leqslant m}\left|\sum_{i=1}^{j} \Delta_{i}-\kappa j\right|>c_{1}(m \log m)^{1 / 2}\right) \leqslant c m^{-(3 / 2+e / 8)} .
$$

Proof. Write

$$
\begin{equation*}
\Delta_{i}-\kappa=\left(\Delta_{i}-F\left(S_{\sigma(i)}\right)\right)+\left(F\left(S_{\sigma(i)}\right)-\kappa\right) \tag{4.3}
\end{equation*}
$$

Lemma 4.3 takes care of the partial sums of the second term on the right of (4.3). Since

$$
\mathbb{E}^{x}\left(\Delta_{i+1} \mid S_{\sigma(1)}, \ldots, S_{\sigma(i)}\right)=\mathbb{E}_{\sigma(i)}^{S_{\sigma}} \Delta_{1}=F\left(S_{\sigma(i)}\right),
$$

then $\sum\left[\Delta_{i+1}-F\left(S_{\sigma(i)}\right)\right]$ is a martingale. So for the first term on the right of (4.3), we proceed as in Lemma 3.1, using the martingale version of Bernstein's inequality and subtracting off the conditional expectations of the truncated random variables.

Theorem 4.5.

$$
\sup _{x \in \mathbb{R}, t \leq 1}|\eta(x,[n t])-L(x, n t)|=\mathrm{O}\left(r_{n}\right) \quad \text { a.s. }
$$

Proof. Using Lemma 4.4, we proceed exactly as in Section 3 to obtain, if γ is sufficiently small,

$$
\begin{equation*}
\sup _{|x|<n^{1 / 2+\gamma, x \in \mathbb{R} / n^{1 / 4+\gamma}, t \leq 1}}|\eta(x,[n t])-L(x,[n t])|=\mathrm{O}\left(r_{n}\right) \quad \text { a.s. } \tag{4.4}
\end{equation*}
$$

Let

$$
\hat{\eta}(x, n)=\sum_{i=0}^{n} 1_{[x-1 / 2, x+1 / 2)}\left(S_{i}\right) .
$$

These are the local times considered in [1]. Since $\hat{\eta}(x, j)-\eta(x, j)=\sum_{i=0}^{j} \mathbf{1}_{\{x+1 / 2\}}\left(S_{i}\right)$, using Proposition 4.4(b) of [1] it is easy to see that

$$
\sup _{j \leqslant n, x \in \mathbb{R}}|\hat{\eta}(x, j)-\eta(x, j)|=\mathrm{o}\left(r_{n}\right) \quad \text { a.s. }
$$

If $|x-y| \leqslant 1, x<y$, then

$$
\eta(x, j)-\eta(y, j)=\sum_{i=0}^{j}\left(1_{[x-1 / 2, y-1 / 2)}\left(S_{i}\right)+1_{(x+1 / 2, y+1 / 2]}\left(S_{i}\right)\right) .
$$

So using Proposition 4.4(b) of [1] with $\beta_{n}=n^{-(1 / 4+\gamma)}$, we get

$$
\begin{equation*}
\sup _{|x-y| \leqslant n^{-11 / 4+\gamma)}, j \leqslant n}|\eta(x, j)-\eta(y, j)|=\mathrm{o}\left(r_{n}\right) \quad \text { a.s. } \tag{4.5}
\end{equation*}
$$

Standard estimates on the modulus of continuity of Brownian local time yield

$$
\begin{equation*}
\sup _{|x-y| \leqslant n^{-(1 / 4+\gamma)}, j \leqslant n}|L(x, j)-L(y, j)|=\mathrm{o}\left(r_{n}\right) \quad \text { a.s. } \tag{4.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{x \in \mathbb{R}, s \leqslant n, h \leqslant 1}|L(x, s+h)-L(x, s)|=\mathrm{o}\left(n^{1 / 4}\right) \quad \text { a.s. } \tag{4.7}
\end{equation*}
$$

Now (4.4), (4.5) and (4.6) together give

$$
\begin{equation*}
\sup _{|x| \leqslant n^{1 / 2+\gamma}, t \leqslant 1}|\eta(x,[n t])-L(x,[n t])|=O\left(r_{n}\right) \quad \text { a.s. } \tag{4.8}
\end{equation*}
$$

The result now follows similarly to Section 3 by using Lemma 3.2, (4.7) and (4.8).

Acknowledgement

We would like to thank Greg Lawler for many helpful discussions concerning Lemmas 2.1 and 2.2.

References

[1] R.F. Bass and D. Khoshnevisan, Strong approximations to Brownian local time, in: Seminar on Stochastic Processes 1992 (Birkhäuser, Boston, MA, 1993).
[2] R.N. Bhattacharya, On the functional central limit theorem and the law of the iterated logarithm for Markov processes, Z. Wahrsch. Verw. Gebiete 60 (1982) 185-201.
[3] A.N. Borodin, Brownian local time. Russian Math. Surveys 44 (1989) 1-51.
[4] L. Breiman, Probability (Addison-Wesley, Reading, MA, 1968).
[5] E. Csáki and P. Révész, Strong invariance for local times, Z. Wahrsch. Verw. Gebiete 62 (1983) 263-278.
[6] M. Csörgő and L. Horváth, On best possible approximations of local time, Statist. Probab. Lett. 8 (1989) 301-306.
[7] J.L. Doob, Stochastic Processes (Wiley, New York, 1953).
[8] U. Einmahl, Strong invariance principles for partial sums of independent random vectors, Ann. Probab. 15 (1987) 1419-1440.
[9] D.A. Freedman, On tail probabilities for martingales, Ann. Probab. 3 (1975) 100-118.
[10] H. Kesten, An iterated logarithm law for the local time, Duke Math. J. 32 (1965) 447-456.
[11] P. Révész, Local times and invariance, in: Analytic Methods in Probability Theory. Lecture Notes in Math. No. 861 (Springer, Berlin, 1981) pp. 128-145.
[12] Г. Spitzer, Principles of Random Walk (Springer, Berlin, 1976, 2nd ed.).
[13] C.J. Stone, A local limit theorem for nonlattice multi-dimensional distribution functions, Ann. Math. Statist. 36 (1965) 546-551.

[^0]: Correspondence to: Dr Richard F. Bass, Department of Mathematics, GN-50, University of Washington, Seattle, WA 98195, USA.

 * Research partially supported by NSF grant.

