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Suppose S,, is a mean zero, variance one random walk. Under suitable assumptions on the increments, 

we prove a strong approximation theorem for the local times of S,, to the local times of a Brownian 

motion, uniformly at all levels. 

1. Introduction 

Let X,,X2,... be i.i.d. random variables with mean 0 and variance 1. Let S,, be 

the usual partial sum process. Define the ‘local time’ of the random walk S,, by 

q(k, n)=#{jSn: Is,-+;}. 

If the Xi’s are integer valued, then 17 (k, n) denotes the number of visits of S, , . . . , S, 

to k. Let 2, be a standard l-dimensional Brownian motion and denote its local time 

by L(x, t). In 1981 R&&z [ll] proved that if S,, is a simple symmetric random 

walk, then one could find a probability space supporting a Brownian motion and 

a simple symmetric random walk such that 

supj~(x, n)-L(x, ,)1=O(n”4+E) a.s. 
XEL 

(1.1) 

for any E > 0. Since R&&z’s work, there have been a number of papers seeking to 

improve the rate of convergence and to weaken the assumptions on the X’s. See 

[6] and [3] and the references therein. 

The goal of this paper is to obtain what seems to be the optimal rate, under fairly 

weak assumptions on the X,‘s. Let us consider the lattice case first with the Xi’s 

taking values in Z. [6] showed that if X, possesses a moment generating function 

which is finite in a neighborhood of the origin, then the rate in (1.1) can be improved 

to 

rC4(log n)“2(log log n)1’4. (1.2) 

This rate is achieved by a Skorokhod embedding of S, in 2,. They also show that 

this is the best possible rate for any Skorokhod embedding. We first prove that the 

above rate (1.2) holds whenever the Xi’s have 5 + F moments. 
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For the nonlattice case, previous work includes that of [3] who obtained a rate 

less optimal than (1.2) under the assumption of 8 or more moments. Borodin also 

required the assumption that 

(1.3) 

where 4(u) = IE exp(iu[,) is the characteristic function of the increments. It is easy 

to see that Borodin’s condition implies that S, has a bounded density (see Section 

4). We require much less: that for some j, the distribution of S, has a nonzero 

absolutely continuous part. We then obtain the rate (1.2) when the Xi’s have 6 + F 

moments. 

The bulk of the work is done in Section 2. There we obtain a moment estimate 

on how much local time at 0 of the Brownian motion increases up until the first 

visit of the random walk to [-$;$J. Once we have this, we can in Section 3 handle 

the lattice case quite easily. The necessary modifications for the nonlattice case are 

done in Section 4; the key idea is the use of the ergodic theorem for an appropriate 

additive functional. 

The letter c, with or without subscripts, denotes constants whose values are 

unimportant and which may change from line to line. 

2. Skorokhod embedding 

Let Xi be a sequence of i.i.d. random variables with mean 0, variance 1 and ElX,l < co 

for some r E (2,~). Let S, =Cy=, X,. As usual, the random walk is either lattice or 

nonlattice. In the lattice case, let us assume that the lattice is Z and the random 

walk is strongly aperiodic ([12]); we leave to the reader the easy modifications 

necessary for the general lattice case. 

Let Z, be Brownian motion, and let I be a sequence of stopping times 

embedding the random walk in Z,. That is, r(O) = 0, the r(j) - ~(j - 1) are i.i.d., 

and Z( r(j)) - Z( r( j - 1)) has the same law as X,. There is no loss of generality in 

taking X, = Z( 7(j)) - Z( ~(j - l)), and so S, = Z( T( n)). We will sometimes write P 

for PO. 

In this paper we require that the T(j) be the Skorokhod embedding defined in 

[4]. It is very likely that our results also hold for some of the other Skorokhod 

embeddings as well. 

Let 

Ij=[2j,2’+‘], j=1,2 ,..., I, = [O, 21. 

Let /=[-$,;I. Let 

T, = min{i: IS,/ E I,}, a=min{i: SiEJ}. 

We start with some upper bounds on u. Note that in the next two lemmas, only 

second moments are necessary in the proofs. 
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Lemma 2.1. (a) For each R there exists c such that 

sup !+(a> n) s c/V%. 
(X(5 R 

(b) There exists c such that 

sup PX( q. < (T) C c2-‘. 
IFJ 

Proof. Let ~[~,~]=rnin{i: Si~[a, b]}, so that u=Z+~/~,~/~I. Suppose s<t. If 

Bj={JSjI<f6,1Si]>$3 forj+l~iGfl}, 

then 

$‘(Bj)~~‘((S,(<~6,(Si-S,(>S forj+15iirr) 

= P”(lS,] < ;s)uqp[_,,,, > n -j) 

~$"(IsjI<~G)po(PIS,fil> n). 

By the local central limit theorem ([12, Theorem 7.91 in the lattice case, [13] in 

the nonlattice case), lP”(lS,l<$6) 3 c/G if j is large enough, c depending on 6. The 

B, are disjoint, so for n large enough, 

Let I be any closed interval of length less than i contained in [-R, R]. If we are 

in the lattice case, we insist that Z n Z # P, as well. By the local central limit theorem, 

for some m and c, P”(S, E I) > c. By taking 6 < f small enough, we get, changing 

m and c is necessary, that 

PO(S, E Z, s, , . . . , s,_, fz [-6, S]) 2 c,. 

It follows that 

Hence for some y E Z, P’(pts,~l > n) G c/G, c depending on 6 and R. By translation 

invariance, if x E Z, 

~X(P~y--r-&~s+S,~ n) s c/G, 

c depending on 8 and R. Since ly -xl si and 6 ~4, then ply-_x_8,y_~+Sl~ u, so 

P”(u> n) c c/J;;. (2.1) 

This and a covering argument prove (a) for n large. For n small the result is trivial 

since probabilities are bounded by 1 and we can get our result by taking c large 

enough. 
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By the invariance principle 

PO I9S&f.2’ 
( 

>c,. 

If 7; < CT and in the next 2” steps Sk moves a distance at most a * 2’, then w > 2?‘. So 

c,sup$Y(T<a)~sup$Y(~>22j)~C2-J I 
y E J YE’ 

by part (a). This gives (b). 0 

Let 

Nj= F II,( 
i=O 

Lemma 2.2. There exist c, and c2 such that 

sup P”( NJ 2 ~2~‘) s c, exp (-c2m). 
x 

Proof. We prove the result for large j, the case of small j being much easier (cf. 

proof of Lemma 2.1). Since Var X, = 1, there exist b,, b,, and c, such that if y E J, 

P’(]S,J E [$+ b,, bJ) 2 cl. (2.2) 

Let p = u A ~2”. If 1.~1 s b2, then by Lemma 2.1(a), 

C2” c2” 

G~k~OW ask)sl+c C k-‘j2sc2j. 
k=l 

If also (zJ z:+ b, , then since S’, - n and S, are both martingales, 

b,++lz[ =IIE’(S,; p =a)+F(S,; a> ~2’91 

~;+(lEzs2)“qJqT> c22’)) c” L/2=;+(~~p)1/2(pz(0> c22j))1/2, 

or P’((T> c2”)* bf/c2’. With (2.2), 

inf Py(rr> ~2~J+l)>c2-~ H . (2.3) 
yt’ 

Let Ai = {Si E J, St+, E J, . . . , SC+ IZ J}. If 1x1 E I,, by the local central limit theorem 

there exists c not depending on j such that 

P”( Si E J) 2 c2-’ if 2”’ G i C c2”. 

If 1x1 E I,, 22J c is c~~J, then using (2.3) 

P’“(A,)zE”(P”((T> ~2’9; S,EJ)>P*(S~EJ) inJfPY(a> c2”)3~2-~‘. 

Hence, since the A, are disjoint, for 1x1 E I,, 
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Therefore 

sup P”( Arj 3 c22’) = sup P( N, 3 c2”) G sup P”( c > c2”) s 1 - c2 
x IX/E ‘, IX/E 1, 

Since N, is a subadditive functional, our result follows immediately. 17 

Write T for r(j). Let L(x, t) denote the local times for the Brownian motion 2,. 

Lemma 2.3. 

sup P”(L(0, T) > 0) s c2-“. 
\-cl, 

Proof. Let 0 be independent of 2, and uniformly distributed on (1, . . , N} for 

some NEZ+. Let U(0), D( 0) be nonnegative strictly increasing functions on 

1, . . . , N. Let r= inf{t: Z, E [ - D( @), U( 0) ] }, and suppose X has the P0 law of Z( 7). We 

first prove our result for such X with bounds independent of N. 

Given 0 = 0, the probability that 2, hits U(0) before D( 0) is equal to 

D(O)/( U(O) + o(e)). So 

E(xI’~lE(x+)‘= c urP(x=u)=L~ u(e)rae) 
ut Ran& U) N B U(O)+D(O) 

Similarly, 

(2.4) 

Suppose x E 4. B Chebyshev, 

lP”(lX( 3;. 2’) <E/x/r/(;. 2’)‘s c2_“. 

If Ix/+ 2’ but X < 0, then D( 0) G $. 2’, and 2, does not hit 0 before time T, or 

L(0, 7) = 0. 

The remaining possibility is if 1x1 d $ . 2’ but X > 0, and hence U( 0) s 3 . 2,‘. Now 

L(0, T) > 0 only if 2, hits 0 before time r, and this is impossible if D( 0) s 2’. If 

D( 0) > 2’, then the probability that 2, hits 0 before time T is, conditional on 0 = 0, 

less than or equal to U(0)/(2j+U(e)). Let A={O: U(ti)~-f.2', D(O)>2'}. Then 

But by (2.5), 

ZG c u(e). 
OEA 

Combining (2.6) and (2.7) gives our result in this case. 

(2.6) 

(2.7) 
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Any mean 0, variance 1 random variable X can be written as the limit of random 

variables XC”’ = Z( r(“) ) with T the limit of stopping times T(“) of the form described 

in the first paragraph (cf. [4]). By changing to another probability space if necessary, 

we can assume Z(rCn))-+Z(r) a.s. Since PX(L(r,O)>O)=Px(inf,~,Z,<O) by the 

joint continuity of Brownian local time, the lemma follows. 0 

Let us introduce the terminology that a random variable Y is a defective exponential 
with parameters p, R, and we will write Y - DE(p, R) if R > 0, p E [0, 11, and 

P(Y>x)=peeR”, x>O, P(Y=O)=l-p. 

So Y could be considered the product of an independent Bernoulli(p) and an 

exponential(R). 

A variation of Lemma 2.3 is: 

Lemma 2.4. If m<j-1, set p=2mj(r-“-m, R=2-j. If m>j-1, setp=2p”“-“-‘, 

R = 2-“. Then for all h > 0, 

sup~“(L(O,7)>h,IX~EI,)~P(Y>h), 
Xii, 

where Y - DE( cp, CR). 

Proof. Recall that if S = inf{ t: Z, & [-a, b]}, then L(0, S) is stochastically smaller 

than an exponential(a-’ v b-‘). 

To prove Lemma 2.4, we again suppose that X is of the form described in Lemma 

2.3 and take limits. There are a number of cases. We will do the hardest one; the 

others are similar. So suppose rn 3 j, X < 0. Then D( 0) E I,,,, and the probability 

that Z, hits 0 before time r is then c N-’ CDCB)G,,,, (U( 13) /(2’+ U( 0))). Let 

B, = {e: o(e) E I,, u(e) 32m}, B,={e: D(e)EI,,2jG u(e)s2m), 

B,={e: D(e)EI,, u(e)==2j}. 

Now 

while by (2.5) 

WI ‘z- lc D(@)‘u(O) 
alz D(e)+$(B,) 

N B, U(e>+D(f?) 4N B, 

and 
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We are ready for the main theorem of this section. Recalling 

embedding given by the r(j)‘s, let 

A = L(0, ~(a)). 

the Skorokhod 

Theorem 2.6. Suppose IE\X(’ < ~0 for some r E (3, CO). Then for each 6 > 0, 

sup E”A’-‘-’ <co. 
XEJ 

Proof. Let K E Z?. We will obtain an estimate on lP(A 2 2K ). Let 

q = L(0, r(j)) - L(0, r( j - 1)). 

Take E small and let K0 = [K/(1 + F)]. 

First we consider j z K,. Let x E J. If vI is the Zth time that Si E Z,, then by the 

strong Markov property and Lemma 2.3, 

Then by 

P(S,, E I,, V”,,, > 0) G c2P. 

Lemmas 2.1 and 2.2, 

( 
<,-I 

$” C l,,(Si)K+l'" 

i = 0 > 

< p”(T, < (T) sup P”(fl; > 2(2+2c)j) 
u 

+ sup lF’(S,, E 4 and If,,,, > 0 for some 1 c 2 
? (2+2F ‘4 

S 2-’ 
[ 

exp(-c2”) +2’L+2F)i SLlp P’(S,, E Zj, V,,+, > 0) 
J I 

s 2Pj[exp(-c2cj) + c2Qt2F’i2-v] 

< c2-” I - r+ 26) 

We get a similar estimate when we replace Z, by -I,. Summing from K0 to ~0, 

<r-l co 

P’ c c l,,(~Si~)v,,,>O s c2KJ-r+2F). 
i=O j=K,) > 

(2.8) 

We now consider m 3 KO, j c KO. By Chebyshev and the strong Markov property, 

sup P(IX,+,] E I,) s c2_“. 
) 

so 

( 

u-l 

$” C lI,(si)l,,,,(Ixi+l/)vI+~>o 

i=o > 

$-sup P”(IXU,+,l E Z, for some I< mK2 
? 
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Summing over m from K0 to ~0 and doing a similar estimate for -Zj, we get 

( 

<r-l cc 
ax C C l,,(IS,l)l,,~~(lxi+,() V+l >O 

i=O m=K,, > 
s c2Ko(‘-r+3F)~ 

and since we are considering here the case where js Ko, 

( 

v--l 

P” igo mJKIK,, l,,(ISiI)l,,,,(Ixi+,I) vl+, >O 
> 

G cK~~~“-‘+~“. (2.9) 

We now consider j, m s K,,. We will show that in this case 

( 

r,p I 
P” 1 l,,(S,)l,(lX,+,l)v,+, >2K/K2 s ~2~n(‘-~+~‘). 

> 
(2.10) 

i=O 

Once we have (2.10), together with a similar bound with I, replaced by -I,, then 

summing over the Ki possible values of j and m will give 

v-1 

P” c l,,(lS,I)l,,,,(lX,+,I) v,,, > 2K G K*c~~~+~‘+~~). 
> 

0 
i=o 

(2.11) 

Then (2.8), (2.9) and (2.11) together give 

sup $“(A > 2K) C cK*2KCr++4~)/(r+~). 
x t J 

Taking a small enough then gives us the desired estimate on $“(A > 2K) to complete 

the proof. 

So we look at (2.11). Suppose m <j- 1. 

( 

LT--L 
P” is0 1,,(si)l,,,,(Ix~+,I)~+,>2KIK2 

> 
s P”( yj a cK*~(~+*~)~) 

( 

cK Q”iZ ,/ 

l tP’ C l~,(Su,)l,,,,(lX,,+,I) Vu,+, > 2KIK2 . (2.12) 
/=I ) 

By Lemma 2.2, the first term on the right of (2.12) is less than c exp(-c,cK*2’) c 

c exp(-cK*). Using Lemmas 2.4 and 2.5 with p = 2-i(‘P’)Pm, R =2-J, x = 2K/ K2, 

n = cK 22(2t-2F)i, and 9, = a( S,, , . . . , S,,), the second term on the right hand side of 

(2.12) is 

c exp(_c2-~2K/K*+ C2-l(r-1)-mK*2(2+*F)j). 

Now 

jc K,=[K/(l+&)]s K -fKe, 

or K -j 2 ~KF. Since r > 3, (2 + 2a)j - j( r - 1) - m < 0 if e is small enough. Thus the 

second term on the right hand side of (2.12) is 

C exp( -c2 KF’2/ K * + cK ‘) G c exp(K,( 1 - r + 4~) ) . 

This gives (2.13) when m <j - 1. The case m 3 j - 1 is very similar. 0 
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Corollary 2.7. For each 6 > 0, 

sup [Ed r-2-8 < oo. 

XER 

Proof. The proof is the same as the proof of Theorem 2.6, except that we no longer 

have the term P”( ?; < o) to help us. This accounts for the exponent r - 2 - 6. 0 

Remarks. (1) CsorgG and Horvath [6] proved lEoA < 00 when E(X1)3 <cc in the lattice 

case. 

(2) Theorem 2.6 is trivial when S, is a simple symmetric random walk. 

3. Lattice case 

In this section we assume the X, are i.i.d., Z-valued and strongly aperiodic. We 

assume now that E]X,]‘<o;, for some r> 5. 

Let a( 1) = min{ i 10: Si = 0}, o( j + 1) = min{i > fl( j): Si = 0). Let 

A, = L(~(cr(i)), 0)-L(T((T(~-l)),O). 

By the strong Markov property, the Ai are i.i.d., and by Theorem 2.6, have more 

than 4 moments. Let 

rltxv n)= i l{x)(si), xEZ, nEZ+, 
i=O 

and define r](x, t) by linear interpolation for other values of x and t. Let K = E’A, . 

Later we shall show K = 1. 

Lemma 3.1. For E > 0 suficiently small, 

P(~~~/~,Aj-xi~>c,(mlogm)“‘)~cm-“”’”’. 

Proof. Let Ai = All~d,+,,l/~~~/~~I. Then 

P(Ai # Ai for some is m) s m$(d, # A,) = mP(A, 2 ~YI(“~~“‘~‘) 

‘Its/2 

Grn 
EA, 

m(l/2-~/16)(4+~/2) 
c (_*(l+P/W 

if E is sufficiently small. Since 

I 
00 

E(Ai-d;)s P(Ai -a; > x) dx 
,1,*--F/K 

then C~z,lEdi-K(=O(m”2). 
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So to prove the lemma, it suffices to show 

$ (&-[Ed;) > c,(m log m)“2 s cmP(‘+e’s). 

But by Bernstein’s inequality, since Var ii. < IEn: c [Ed; = EAf < co and & is bounded, 

this probability is 

5 exp 
( 

-c:m log m 

cm + cm”2-E/‘6c,(m log m)“2 > 

=z exp( -c2 log m) C cm-(‘+“8) 

if c, is large enough. 0 

Let 

A,, = 
I 

sup 7(x, m) <4(m log log m)1’2 for all m 2 n , 
xtz 

B, = {[T(m) - ml S4(m log log m)“* for all m 2 n}, 

C,={(S,~~4(mloglogm)“2 for all m 2 n, jZ,l s 4( t log log t)“’ for all t 2 n}. 

Lemma 3.2. lA,,+ 1 U.S., lB,,+ 1 U.S., l,,+ 1 U.S. 

Remark. The assertion concerning l,h,, follows from [IO]. We give a proof, however, that 

will also work for the nonlattice case of Section 4. 

Proof of Lemma 3.2. Since the Xi have more than 5 moments, then 

sup IS,,,,/v5 - Z,,/J;;I = O( n-O>, a.s. 
,<1 

for some p > 0 (for a proof see [8], for example). Since L( 6~. nt) /&z is the local time at 

time t of the Brownian motion Z,,/&, then by [ 11, 

Xizyyfil,5,1)7(fix, [ntl)lv5-L(J;;x, [nt])/vGj =O(n-P”2) a.s. (3.1) 

BY 1101, 

lim sup sup 
L(Y, n) 

= Jz a.s. 
” Y (n log log n)“2 

It follows immediately that 

lim sup sup 
T(Y, n) 

yaz (n log log n)“2 
=Jz as., 

n (3.2) 

from which lA,, + 1 a.s. follows. 
Since Zf - t is a martingale, by the Burkholder-Davis-Gundy inequalities, 

IE?(1)2~c[EIZ(~(l))(4=clE(X,14<ooandalsoIE?(1)=IEZ(?(1))2=IEX:.=1. Sol.,,-+1 

a.s., by the law of the iterated logarithm for the 7(i) sequence. 
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The assertion about lc,, is an immediate consequence of the law of the iterated 

logarithm for the S,, sequence and the one for Brownian motion. 0 

Let r, = n1’4(log n)“2(log log n)“4. 

Lemma 3.3. 

P suplr)(O, j) - L(0, j)l~ cr,,; A,, n B, n C, G u-“~-‘. 
j-n > 

Proof. Let 

Suppose w E A,, n B, n C, n (nf,:21_,, 0;)). Then for k sufficiently large, 

yzrlj, Ai-Kjl(u)<c(klog k)“‘. (3.3) 

By (3.1), ~(0, m)+cc as m+co. In (3.3), take j= ~(0, m) and note A(v(O, m))= 

UO, ddv(O, m)))). Since m 2 a(rl(O, m)), 

UO, T(m)) 2 ~30, dd~(O, m)))) = A(q(O, m)) 

2 Kv(o, m) - C(v(o, m) log ~(0, m))“2. 

Since 112 G a(T(O, m)+ l), setting j = q(O, m)+ 1, 

UO, r(m)) s UO, r(o(n(O, m) + 1))) = A(7(0, m)+ I) 

s-~(rl(O, m)+I)+c([77(0, m>+lllod77(0, m)+ll)“2 

c 40, ml+ c,(17(0, m) log ~(0, m))1’2. 
Hence for n large, 

SUPIUO, dj)) - ~(0, Al s ddo, ml log 77(0, ml)“‘. 
jsn 

Since w E A,,, 

wl~(O, T(j)) - ~(0, j)l s cr,. 
jSn 

By standard estimates on Brownian local time, since w E B,, 

suplL(O,r(j))-L(0, j)l=O((1~(n)-nllog1~(n)-n()“2)=O(r,). 
jSn 

Therefore 

P’ sup\L(O, j) - K~(O, j)l Z cr,,; A, n B, n C, 
jsn > 

S cn -1/2-c 

by Lemma 3.1. 
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Using a standard Borel-Cantelli argument for the sequence n = 2’, 

sup)rcq(O, j) - L(0, j)l/J;;= O(r,/G) a.s. 
j%n 

Using (3.2) again, we conclude that K = 1. 0 

Theorem 3.4. 

SUP I?1(x, j) - ux, j)l = O(m) a.s. 
XiZ,J~rl 

Proof. Fix y E Z. Let N = min{i: .Z(T( i)) = y}, U = T(i). By the strong Markov 

property at time U, Lemma 3.3 tells us that 

PJ supl[~(~,j)-rl(~,N-1)1-[~(y,j)-~(y, W1/>c~,I;A,n&nG jsn > 

< &1/2-F. 

Of course, n(y, N - 1) = 0, P-a.s. On the other hand, by translation invariance, 

Chebyshev, and Corollary 2.7, 

$(L(y, U)> cr,,)~P~~(d,> ~r,,)~c[E-~Af/r~~ nm”2-F. 

Therefore, 

P sup(n(y, j) - L(y, j)l> cr,,; A,, n B, n C,, s ~n~“~-~. 
j=sn > 

Since maxj,,lSjls n”2+“2 and suplGnlZ,\ s n”2+“2 on C,, 

(3.4) 

c2n 1/2+F/2 
ycz,,_“~_u~,,_+I,* P 

( 
SUPldY, 3 - UY, .a > cm; 4 n Bf? n cn 
j=n ) 

=z c(n 1/2+F/2 )(f’l2-y < cn-‘/4. 

We now use Borel-Cantelli along the sequence n = 2’ and Lemma 3.2 to complete 

the proof. 0 

Remark. Our method can be modified to give rates for when the X, have fewer than 

5 moments, although the rates will be poorer than (1.2). In this connection, see also 

[ 11. We conjecture that the rate (1.2) holds when the Xi have 4 moments and must 

deteriorate when the X, have fewer than 4 moments. 
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4. Nonlattice case 

In this section we obtain the analogous results to Section 3, except we look at the 

nonlattice case. We assume E1X,I’ < ~0 for some r > 6, and throughout this section 

we also assume: 

Hypothesis 4.1. For some j,,, the law of S, has a nonzero absolutely continuous part. 

Remark. Borodin [3] uses the condition that j (cp( u)\’ du < 00, where cp is the charac- 

teristic function of XI. By the Fourier inversion formula, this implies that Sz has a 

bounded density, and so Hypothesis 4.1 holds in this case. 

Let 

77(% n, = i 1[x--I/*,x+1/2](si)v 
i=O 

fl(i)=min{j>a(i-1): S,EJ}, J=[-;,$I. 

Note Y, = SoCi) is a Markov chain on J. 

Recall that X is strongly nonlattice if lim SU~~,+~ Iq( u)l < 1. When this property 

holds, the results of [ l] are applicable. Yi satisfies Doeblin’s condition if there exists 

a finite measure p on J, E E (0, 1) and j 2 1 such that if A z J with p(A) G E, then 

sup,,, U=‘( Yj E A) s 1 -E. 

Lemma 4.2. If Hypothesis 4.1. holds, then 

(a) X is strongly nonlattice; 

(b) Yi satisfies Doeblin’s condition. 

Proof. If F is the distribution function of S,, we can write F = aF,+ (1 - (Y) F,, 

a > 0, where F, is the absolutely continuous part of F and F, is the remainder. Let 

$,, $,s, + be the characteristic functions of F,, F,, F, respectively. By the Riemann- 

Lebesgue lemma, I$,(u)l+ 0 as JuI + CO. Thus lim supl,l,,l~l(u)l s 1 - (Y < 1. Since 

(cl(u) = (cp(u)P, (a) follows. 

By Lemma 2.1, supxE J $“(a( 1) > n) s c,/v’%. For any k > 5, if c(k) > nk, then for 

at least one is k, m( i + 1) - o(i) > n, and by the strong Markov property, 

sup P”( u( k) > nk) c c, k/6. 
XEJ 

Taking n = c:k4, for any k> 5, 

supP(cr(k)> c;k5)=z l/k<;. 
XCJ 

(4.1) 

Since the convolution of an absolutely continuous distribution with any distribu- 

tion is absolutely continuous and since the distribution function of S,, is 

(aF,+(l-Q)F,)*~, 
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then the total mass of the singular part of the distribution of Sk, is s( 1 - Q)~. Take 

k > 5 large enough so that (1 - CI)~ s 1/(4cfk5ji), where c1 is the c1 of (4.1). Let 

j = kj,. Note a similar argument shows that the total mass of the singular part of 

the distribution of Sj+i will also be ~1/(4c:j’). 

Let CL be Lebesgue measure and note a(j) 3 j. Let pi be the density of the absolutely 

continuous part of S,. If XEJ, by (4.1), 

Pi(Y) dy + (4c?j5)-’ 1 
(4.2) 

SinceIA-x]=]A]foreachxandp,,i=j,..., c: j’ is a finite collection of L’ functions, 

then provided E <i is taken small enough, IA_x p,(y) dy will be less than (4c:j5))’ 

whenever IAl < E. Substituting in (4.2), 

or (b) holds. 0 

Remarks. (1) Since Doeblin’s condition holds, the P” law of Y, converges to some 

probability measure v on J exponentially fast, uniformly over XCJ ([7]). Let 

F(x) = VA,, K =I, F(x)v(dx). By Section 2, F is bounded on J. 

(2) If the distribution of Xi is purely atomic but nonlattice, it is not hard to see 

that the random walk is not strongly nonlattice nor do the Y, satisfy Doeblin’s 

conditions with p equal to Lebesgue measure. 

Lemma 4.3. If c, is large enough, 

F(S,(;J) - Kj > C,(m log m)“* s cm-lo. 

Proof. We follows a standard argument; see [2], for example. Let 

G(x) = E” ij [F(S,,,,) -K]. 
,=O 

By Remark 1 immediately preceding, the sum is absolutely convergent and G is 

bounded. If 
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then M, is a martingale with bounded jumps; hence [M, Mlj s cj. So by the 

martingale version of Bernstein’s inequality (cf. [9]), for each K, 

P” 
( 

sup]M,] 3 c(m log m)“2 s cKK. 
jsm > 

Since G is bounded, this proves the lemma. 0 

Lemma 4.4. For each F > 0, if c, is large enough. 

Proof. Write 

A, --K = (Ai-F(S,,;,))+(F(S,,i,)-K). (4.3) 

Lemma 4.3 takes care of the partial sums of the second term on the right of (4.3). Since 

E”(Ai+r JSmcr,v. . . 7 Sect,) =~s-~~lAl = F(Sr<i,), 

then C [Ai+, - F(S,,,,)] is a martingale. So for the first term on the right of 

(4.3), we proceed as in Lemma 3.1, using the martingale version of Bernstein’s 

inequality and subtracting off the conditional expectations of the truncated random 

variables. 0 

Theorem 4.5. 

sup 17(x, [ nt]) - L(x, nt)l = O( rti) as. 
xeu8,rc-I 

Proof. Using Lemma 4.4, we proceed exactly as in Section 3 to obtain, if y is 

sufficiently small, 

sup 17(x, [ntl) - ~34 [W = O(m) a.s. 
Ixl~n’/‘+Y,x~L/n”4+Y,,~l 

(4.4) 

Let 

G(x, n) = f lIx--1~2,x+1~2~(S). 
i=O 

These are the local times considered in [l]. Since 6(x, j) - 7)(x, j) = I:=, l{r+l/2z(Si), 

using Proposition 4.4(b) of [l] it is easy to see that 

SUP 1+Xx, 3 - 77(x, 3 =o(r,) a.s. 
jGn,xGR 

If IX-y(sl, x<y, then 

v(x,j)-77(y, j) = C (1~x-1,2,)1~1,2)(Si)+ l~r+~~2.~+l~2~(S)). 
i=O 
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So using Proposition 4.4(b) of [l] with P,, = n-(“4+y), we get 

sup 117(x, j) - 17(x j)l = o(r,) as. (4.5) 
~x--y~Gnm”‘4+y’,jSn 

Standard estimates on the modulus of continuity of Brownian local time yield 

and 

sup lL(x, j) - L(Y, j)l = o(r,) a.s. (4.6) 
lx-yl%n m(“4+y’,jSn 

sup IL(X,s+h)-L(x,s)l=o(n"4) a.s. 
xER,ssn,hs, 

(4.7) 

Now (4.4), (4.5) and (4.6) together give 

,,,,~;lj~ In(x, [nrl) - Lt.7 [ntl)l =O(r,) a.s. (4.8) 
,!c-L 

The result now follows similarly to Section 3 by using Lemma 3.2, (4.7) and (4.8). 0 
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